
Umbrella: A Portable Environment Creator for Reproducible Computing on Clusters, Clouds, and Grids
Haiyan Meng and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
{hmeng|dthain}@nd.edu

1 Abstract
Environment configuration is a significant challenge in large scale computing. An application that runs cor-
rectly on one carefully-prepared machine may fail completely on another machine, creating wasted effort
and serious concerns about long-term reproducibility. Virtual machines and system containers provide a
partial solution to this problem, in that they allow for the accurate reconstruction of an entire computing en-
vironment. However, when used directly, they have the dual problems of significant overhead and a lack of
portability. To avoid this problem, we present Umbrella, a tool for specifying and materializing comprehen-
sive execution environments from the hardware all the way up to software and data. A user simply invokes
Umbrella with the desired task, and Umbrella determines the minimum mechanism necessary to run the task
- direct execution, a system container, a local virtual machine, or submission to a cloud or grid environment.
We present the overall design of Umbrella and demonstrate its use to precisely execute a high energy physics
application across many platforms using combinations of chroot, Docker, Parrot, Condor, and Amazon EC2.

2 Motivation

3 Architecture of Umbrella

Figure 1: Architecture of Umbrella - Local Execution Engine

4 Specification
Figure 2 shows the specification for a CMS physics application. Umbrella allows a user to specify a depen-
dency in two ways: unique identifier (one referent) and attribute description (a class of referents). The only
except is the environ section, which has a fixed syntax: <env name>:<env value>.

Figure 2: Specification Example - CMS Data Analysis

5 Evaluation of Matching Degree
Umbrella deploys the minimum virtualization technology necessary to achieve the desired environment. (S1)
If the host machine is fully compatible, the task is run directly. (S2) If the OS is compatible but some addi-
tional software or data are needed, Parrot is used to deliver the files. (S3) If only the kernel is compatible,
Docker is used to deliver the operating system. (S4) If the kernel is not compatible, a virtual machine is
created.

Figure 3: Umbrella Uses Varying Degrees of Virtualization

6 Local Cache
To minimize the execution environment construction time, each software dependency should be pre-built
and configured. To improve the portability of archived software, software dependencies should conform to
common-used internal organizations.

Figure 4: Mounting Mechanism

7 Evaluation
Sandbox Matching Software Sandbox Application Post Total Access

Technique Evaluation Preparation Construction Execution Processing Time Authority
Parrot <1s 2m 11s <1s 5m 34s <1s 7m 45s any user
chroot <1s 2m 11s <1s 4m 33s <1s 6m 44s only root
Docker <1s 2m 11s 1m 24s 4m 35s 3s 8m 13s docker group users

Figure 5: Time Overhead of Three Sandbox Techniques - Local Execution Engine

Subtask Time
Start an EC2 Instance 6s
Send Task to VM 2s
Remote Execution 6m 40s
Post Processing 4s

Figure 6: Time Overhead (EC2)

Subtask Time
Construct Submit File <1s
Submit Condor Job <1s
Remote Execution 6m 20s
Post Processing <1s

Figure 7: Time Overhead (Condor)

Cooperative Computing Lab: ccl.cse.nd.edu
Data and Software Preservation for Open Science: www.daspos.org


