
1

A Job Sizing Strategy
for High-Throughput Scientific Workflows

Benjamin Tovar∗, Rafael Ferreira da Silva†, Gideon Juve†,

Ewa Deelman†, William Allcock‡, Douglas Thain∗, and Miron Livny§

∗ University of Notre Dame

Notre Dame, IN

{btovar,dthain}@nd.edu

† University of Southern California

Information Sciences Institute

Marina Del Rey, CA

{rafsilva,deelman}@isi.edu

§ University of Wisconsin

Madison, WI

miron@cs.wisc.edu

‡ Argonne National Laboratory

allcock@alcf.anl.gov

✦

Abstract—The user of a computing facility must make a critical decision

when submitting jobs for execution: how many resources (such as cores,

memory, and disk) should be requested for each job? If the request is too

small, the job may fail due to resource exhaustion; if the request is too

large, the job may succeed, but resources will be wasted. This decision

is especially important when running hundreds of thousands of jobs in

a high throughput workflow, which may exhibit complex, long tailed dis-

tributions of resource consumption. In this paper, we present a strategy

for solving the job sizing problem: (1) applications are monitored and

measured in user-space as they run; (2) the resource usage is collected

into an online archive; and (3) jobs are automatically sized according to

historical data in order to maximize throughput or minimize waste. We

evaluate the solution analytically, and present case studies of applying

the technique to high throughput physics and bioinformatics workflows

consisting of hundreds of thousands of jobs, demonstrating an increase

in throughput of 10-400 percent compared to naive approaches.

Index Terms—high throughput computing (HTC), resource monitoring

and enforcement, automatic provision of resources, automatic job sizing,

throughput and waste optimization

1 INTRODUCTION

High throughput computing (HTC) is an essential compo-
nent of the scientific enterprise in fields as diverse as biology,
physics, economics, and the digital humanities. In HTC, the
goal is to run a very large number of independent jobs
across a large number of independent nodes, maximizing
the number of jobs completed over a long period of time.
While early work in HTC assumed that a job occupied an
entire node, the advent of large multicore machines now
makes it common to run multiple jobs simultaneously on a
large machine, while also harnessing multiple machines.

In practice, the end user of an HTC facility has very little
direct control over the operation of the underlying facility.
System administrators generally control the scheduling or-
der, job placement, and a myriad of other details about how
and when jobs run. The user simply submits concurrent jobs
and expects that they will return after some time, having
succeeded or failed.

However, the user does control one detail that can
have an enormous effect on throughput: the size of a job,

measured in the resources (such as cores, memory, and
disk) needed for execution. Typically, a user states these
values when a job is submitted and the facility scheduler
uses this information to schedule jobs onto the available
machines, attempting to meet local policy objectives such
as system throughput, machine utilization, fairness between
users, and other considerations. If a job should happen to
exceed the stated resources, it is typically returned to the
user as a failure.

The user of the facility faces a dilemma when selecting
the size of a job. If the job size is small, then more jobs
can run simultaneously in the available resources, achieving
higher throughput. But, the job is more likely to exceed the
resource limits at runtime and be returned as a failure. If
the job size is large, the job is more likely to successfully
run to completion. But, fewer jobs will run in the available
resources, reducing throughput relative to the resources
consumed. We call this the job sizing problem: how should
the user select the size of a job so as to maximize the
throughput of their workload?

Previous works in HTC has generally made two simpli-
fying assumptions about job sizes. One is that the end user is
familiar with the resources needed by each job, and is will-
ing and able to accurately state these needs in advance [1]–
[6]. The other is that similar jobs submitted in one batch are
likely to have identical resource consumption profiles [7]. In
our experience, neither assumption is generally true [8]–
[12].

There are two reasons underlying this observation:

First, domain experts typically develop a code on their
laptop or workstation, and simply know that the code runs
effectively within that environment. Given the rapid pace
of hardware development and upgrade cycles, they have no
reason to know or care (for example) how much memory a
single job consumes, or even how much memory is installed
on their workstation. They simply take their working code,
submit a large number of instances of it to a workflow
manager, and expect the system to figure things out.

Second, as shown in Fig. 1, a large number of simi-
lar jobs submitted in a batch may exhibit complex, long-

2

 0

 45000

 250 900 1320 2350 3100 3800

ideal
first-allocation
predicted by model

9 jobs

#
 o

f
jo

b
s

MB memory (RAM) per task

Fig. 1: Histogram for memory usage (resident size) for jobs in a high energy physics (HEP) data analysis workflow.
If we wish to run a new job in the workflow, how should we provision resources given this historical memory usage? Provisioning
the maximum 3.8GB ensures no job failure, which it is wasteful for most jobs. Provisioning less than 3.8GB implies that some jobs
will have to be retried with a larger allocation. For all these processes we need: a tool to measure the job, infrastructure to record the
measurements, and a procedure to compute new provisions based on historical data.

tailed distributions in resource consumption. These tails
arise because even related jobs are not entirely uniform:
they may start simulations from different random seeds or
process different subsets of heterogeneous data. Measuring
the resource consumption of a single job does not trivially
produce the expected consumption of future jobs [9], [11],
[12]. Moreover, allocating the upper bound of resources
consumed by a batch of jobs would result in significant un-
derutilization of the system [10]. A more informed approach
is needed.

With this in mind, we present a job sizing strategy
for the high throughput execution of a large number of
jobs with complex resource distributions. Section 2 gives
an overview of our approach with an example of resource
observations from a production workload. Section 3 formal-
izes our ideas, presenting our resource feedback loop archi-
tecture, and our resource accounting model together with
formal analysis of first-allocation strategies with straight-
forward implementations, and considering coarse qualita-
tive information as job categories from the user. Section 4
evaluates this approach using resource consumption data
collected from production workflows of thousands of jobs
in the domains of high energy physics and bioinformatics.
We compare our analytic approach to other strategies based
on coarse statistical information and brute-force evaluation.
Finally, we show the behavior of the algorithm in a pro-
duction online workflow. Overall, we demonstrate that our
job sizing strategy leads to an overall increase in throughput
(from 10% to 400% across different workflows), and decrease
in resource waste compared to fixed allocations under the
richness of resource variations.

2 THE BASIC IDEA

2.1 System Model

We assume a system composed of the following parts. The
user provides a workflow description which indicates a set
of jobs to be run, and the dependencies between them.
A workflow management system (WMS) reads the workflow
description, identifies which jobs are ready to run, and

Fig. 2: System Components

Workflow

Workflow
Management

System

Batch
System

submit

retrieve
Cluster

User System Administrator

submits them to a batch system running on a cluster, cloud,
or grid. The batch system schedules the jobs according to
some local policy and places them on machines to run.
As jobs complete or fail, they are returned to the WMS,
which examines the results and may submit more jobs as
dependencies are satisfied (see Fig. 2, below).

We assume that the batch system is owned by an out-
side service provider, and the details of scheduling and
placement on the cluster are outside of our knowledge and
control. The user’s only point of information and control
is the WMS, which selects the resources for each job, in
terms of a quantity of cores, memory, disk, and possibly
other resources. The batch system runs the job within this
static allocation of resources. If a running job exceeds any
one resource, the batch system will terminate the job and
return it to the WMS, indicating the reason for the failure.
In this case, the WMS may choose to re-submit the same job
again with a different job size.

2.2 The Job Sizing Problem

What job size (measured in system resources) should the WMS
select for each job that it submits to the batch system?

Broadly speaking, if the initial job size selected is too
small, it is more likely that the job will fail and be returned,
thus wasting resources on a failed run that must be retried.
On the other hand, if the initial job size selected is too large,
the job will succeed on the first try, but waste resources that
go unused inside the job’s allocation. If the waste is large
enough, throughput will be reduced because those resources
could have been used to run another job.

If the resources consumed by a collection of jobs were
constant, then the solution would be easy: run one job at
a large size, measure its consumption, and then use that
smaller size for the remainder of the jobs. However, our
experience is that real jobs have non-trivial distributions.
For example, Fig. 1 shows the histogram of memory con-
sumption for a set of jobs in a high energy physics workflow
run on an HTCondor [13] batch system at the University of
Notre Dame. (We describe this workflow later in the paper.)
Note that the histogram shows large peaks at approximately
900MB and 1300MB, but there are small number of outliers
both above and below those values.

What memory size should we select for this workload? If
we pick 3.8GB RAM for all jobs, then every job will succeed,
but then most jobs would end up wasting several GB of
memory that could be used to run other jobs. On the other
hand, we could try running each job with a smaller value,
wait to see which ones succeed or fail, and then increase the
allocation gradually until reaching 3.8GB.

3

But precisely what smaller value should be used for the
first attempt? The dotted line in Fig. 1 shows the value
chosen by the method described in this paper, achieved by
balancing the potential waste of over-allocation against that
of under-allocation.

2.3 Our Approach

We present a comprehensive solution to the job sizing prob-
lem. Our solution consists of a user-level resource monitor
to observe, record, and enforce resource limits on jobs in a
facility-independent way. These observations are stored in
a historical archive so that online systems can accumulate
information across multiple runs. We develop a resource
feedback loop that uses historical information to compute a
recommended first allocation for the job sizing problem. (The
dotted line in Fig. 1 shows the first allocation selected by this
algorithm.) If the attempt to run the job fails, the resource
archive is updated, and the job size is increased.

We consider two objectives in selecting a first allocation.
If the user’s objective is to minimize waste, then our algo-
rithm balances the weighted probability of waste from a job
size that is too small against the waste of a job size that
is too large. If the user’s objective is to maximize throughput,
then our algorithm maximizes the number of jobs completed
relative to the resources consumed. Finally, we show that
these objectives, while not identical, only result in different
allocations for a reduced set of resource usage and execution
times values.

Finally, we evaluate these techniques on a large high
energy physics workload of over 500K jobs and demonstrate
that both throughput and waste can be improved by a factor
of two over naive approaches. Our approach is external
to the HTC facility in use, which means it can be used
entirely from the user side by making modifications to
the WMS, and no changes to the facility itself. That said,
these techniques could be used by schedulers that need job
resource usage information to place jobs efficiently [14]–[17].

3 RESOURCE FEEDBACK LOOP

We consider the resources related to a job in three stages:
(1) how many resources the job used in previous executions,
(2) how many resources the job is using during the current
execution, and (3) how many resources we predict the job
will use in future executions. As shown in Fig. 3, these
stages are arranged in two nested loops. The outer, or
main loop, going from top-to-bottom and returning with
a dashed line deals with the querying and recording of
historical data. It communicates job information to the inner,
or execution loop, which allocates, executes, and monitors
jobs. We think of resources as real-valued functions of time
per job. Managing and communicating these detailed job
resources records as time-series across the different stages
of execution becomes unwieldy as the number of jobs, and
their duration, increases. Thus, we focus on conservatively
describing the job using its peak resource usage values. We
refer to the records of peak resource usage values as resource
summaries.

3.1 User-Level Monitoring Tool

To collect job resource consumption in a consistent way
across varying batch systems, we deploy a user-level moni-
toring tool along with each job. (The tool is fully described

Yes

No task has
maximum
label?

Record
success/failure

Query/set
historical
information

Monitor task.
Kill task if resources

are exhausted

Label task with
a prediction of
the resources

task
successful?

Yes

No

execution loop

main loop

Fig. 3: Resource feedback loop.

The system has two nested feedback loops: the outer main loop
queries historical resource usage information, executes the work-
flow in the inner execution loop, and updates the historical data
with new measurements collected. The execution loop computes
resource allocations to provision and run the workflow’s jobs, and
retries jobs with larger allocations when resources are exhausted.

and evaluated in an earlier paper [18].) The monitoring tool
generates resource summaries describing the execution of
a job, and enforces allocations by keeping the job within
given limits. Our interest is in measuring the job as a
whole, considering its entire process tree, rather than record-
ing individual processes. By necessity, the design of the
monitoring tool is highly dependent on the host operating
system, and we focus on jobs that run on Linux. The tool
is designed to be independent of the batch-system, and it is
dispatched as a wrapper for the job, running as a regular
user process with no administrator privileges required.

We note that many other tools provide whole-system
resource usage, such as load average, or swap memory
used, but this information is not appropriate to character-
ize single jobs running on a machine. The objective is to
observe peak resource values as closely as possible. Peak
information can be accessed through the /proc filesystem,
but this information is only available while a process is
active. Thus, the monitor needs to run concurrently to (as
the parent process of) the job, to track the appropriate
processes on fork calls, and to retrieve peak informa-
tion just before exit/wait events complete. Such control
can be implemented by overloading libc functions using
LD PRELOAD [19], or through the ptrace interface [20].
Our monitoring tool can also produce a time series of the
resources used, but as we discuss in Section 3.3, some formal
conservative assumptions can be made such that only peak
information is necessary.

Regarding the measurement of cores, our monitoring
tool provides two statistics: average cores, and peak cores
used. The average number of cores used is computed by
cpu_time/wall_time. For peak cores, we similarly use

4

 0

 225

 30 60 90 120 150

#
 h

o
st

s

median wall time per host (s)

 0

 700

 1146

#
 h

o
st

s

memory per host (MB)

 0

 700

 1360

#
 h

o
st

s

disk usage per host (MB)

Fig. 4: Effect from the underlying resources pool.
For these histograms, the same job was dispatched to 670 different
opportunistic hosts, and ran a total of 100000 times. The measure-
ment for memory and disk in all executions was a unique value,
while wall-time showed some variability.

cpu/wall-time, but using 20 second windows.

We have integrated the monitor with the Makeflow [21]
workflow system, such that a user may simply activate
monitoring through a command line switch, or an API call1,
after which jobs are automatically run with the monitor, and
resource summaries are recorded. The resource information
becomes immediately available to make decisions about
running further jobs.

It is reasonable to question whether variations in re-
source measurement (such as those in Fig. 1) are due to
the properties of jobs themselves, or due to unexpected
variations between machines. To eliminate the latter, we
designed an artificial job that computes cosines for about
60 seconds in one of our workstations. The values are also
stored in memory (1.1GB), and written to a file (1.3GB).
This job was dispatched 100000 times to our local campus
batch system on which, for this particular run, landed in 670
different machines. The machines are highly heterogeneous,
having been purchased from different vendors at different
times, and vary from 4 to 64 cores, 1GB to 1TB of memory,
and have a variety of X86-64 compatible CPU architectures.

The machines are managed by the HTCondor [23] batch
system, which is able to harness computational resources
which otherwise would remain idle because their owners
are not using them. As soon as the owner starts using
the machine, all HTCondor jobs are evicted. HTCondor is
also able to partition hosts, such that multicore machines
may serve several jobs, even from different users, at the
same time. Given the opportunistic nature of our campus
cluster, a priori, we have no precise knowledge about the
hosts available to execute a workflow. In fact, as this small
test shows, on average, the job ran for 73.73 seconds, with
median 63.84s, and median absolute deviation of 25.15s. In
Fig. 4, we show histograms for the median per host for wall-
time, and the unique values recorded for memory and disk.
The wall-time median per host was 64.78s, with a median
absolute deviation of 26.32s.

These results indicate that conclusions about resource
requirements such as cores, memory usage, and disk space
can easily be used across different pools of resources, while
one must exercise some care with regards to wall-time and
cpu-time. For example, when dealing with wall-time our
developments in Section 3.3 will use ratios and averages.
This leads to a great practical reduction in time dependence,
as presented in Section 4.

1. All of our software is available at [22].

3.2 Historical Archive

The resource summaries of executed jobs reported by the
monitor are recorded in a database, which we refer to as the
resource archive. Users of the archive submit JSON-encoded
resource summaries with a structured schema. Additionally,
using recent advances in PostgreSQL2, we keep the raw
JSON document submitted. We found this to be of great
benefit, as we discovered that users are more likely to query
the database by custom labels given to jobs, rather than by
the numeric value of resources recorded. We formalize user
custom labels by adding the field category to our struc-
tured schema. Categories are subsets of jobs that the user
determines having the same purpose (e.g., merge, analysis,
or parameter-X). In our experience, users can more easily
label the type of job, compared to give ballpark figures of
resources consumed; jobs with the same category label are
suspected to have similar resource consumption, but this is
not guaranteed.

Queries to the archive can be done directly through a
website3, or they can be made automatically by a workflow
manager using a REST interface. For efficiency, the archive
is contacted twice per workflow run. First, to bootstrap
the allocation sizes based on historical data, and later to
update the archive with the new jobs measured when the
workflow finishes. The result of a query is a list of JSON
objects encoding the jobs matched. SQL-based queries can
be made according to user, category, command-lines, ex-
ecutable names, input/output files, user-defined fields, or
resource ranges. A query can also be made by workflow
type, for workflows that have the same description4.

In Fig. 5, we show an example of historical information
from a High Energy Physics (HEP) workflow. The figure
shows the resource histograms for a CMS5 experiment
data analysis production workflow run with Lobster [24],
a system for deploying high-throughput applications on
opportunistic resources built on top of our tools, and de-
signed with HEP jobs in mind. The workflow consisted of
538078 jobs that were run on approximately 25,000 different
machines in our campus batch system over the course of
a month. The workflow was labeled by the user with four
categories, which correspond to five different steps: generat-
ing initial input data and simulation (LHEGS), digitization
(DIGI), reconstruction (RECO), final reductions (mAOD)
and merging (MERGE). All steps lend to high parallelization
with bags of jobs, and can be run as pipeline where no
step has to be completely finished before the next can start
processing. We show the historical histograms for wall-
time, cpu time, peak cores, memory, and disk, split by user-
provided categories and as a whole. As it can be seen, the
distributions cannot be easily characterized, as they may
have many modes, with non-trivial tails.

3.3 Resource Allocations

We think of allocations per resource as establishing two-
dimensional boxes where the jobs run. One dimension of the

2. As of PostgreSQL version 9.2.
3. http://dvdt.crc.nd.edu
4. That is, the description of the workflow (e.g., a file describing

graph dependencies) has the same checksum. The archive does not try
to interpret such descriptions, as it is workflow engine agnostic.

5. CMS stands for Compact Muon Solenoid, a general purpose parti-
cle physics detectors built on the Large Hadron Collider (LHC) at the
Conseil Européen pour la Recherche Nucléaire (CERN)

5

category
(#jobs)

Wall time cpu-time Cores Memory Disk

ALL
(538078)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1000 2000 3000 4000 5000 6000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1000 2000 3000 4000 5000 6000

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 1 2 3 4 5 6

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 1 2 3 4 5 6

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0 500 1000 1500 2000 2500 3000

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0 500 1000 1500 2000 2500 3000

DIGI
(22911)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

LHEGS
(500000)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 250000

 500000

 0.5 1 1.5 2 2.5 3 3.5

 250000

 500000

 0.5 1 1.5 2 2.5 3 3.5

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000

mAOD
(2544)

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.5 1 1.5 2 2.5 3 3.5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.5 1 1.5 2 2.5 3 3.5

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

RECO
(11582)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000 5000 6000

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

Fig. 5: Peak resource usage histograms for a CMS data analysis workflow.
Historical histograms for wall-time, cpu time, peak cores, memory usage, and disk space. (Other resources, such as average cores, omitted given space considerations.) Histograms are shown
for the workflow as a whole (ALL), and split by user-provided categories (DIGI, LHEGS, mAOD, and RECO). A single distribution family cannot be used to describe the resources of a
category, as the histograms have in general different shapes, are multi-modal, and have non-trivial tails. The dashed line shows the first-allocation for maximum throughput, to be introduced
in Section 3.3, Equation 3.

6

un
de
r-
al
lo
ca
ti
on

re
so
ur
ce
pe
ak

r

ov
er
-a
llo
ca
ti
on

0 τr τ

resource usage
is the area

under the curve
(resource × time)

intrinsic waste

over-allocation waste

under-
allocation
waste

Fig. 6: Resource accounting model.

Resource values (thick black curve) are modeled as functions
of time. Exact resource usage is found by the integral of the
resource value curve, and has units of resource units × time. For
simplicity, we do not consider exact resource usage, but instead
focus on usage as a function of the peak value. This generates
three kinds of waste: (1) intrinsic waste occurs for fixed allocation
as the difference of the resource current usage to its peak. The more
the average usage of the job approaches its peak, the less intrinsic
waste. (2) over-allocation waste occurs when the allocation is
larger than the job peak. (3) underallocation waste considers the
resources wasted when the job fails given resource exhaustion.

box corresponds to the maximum resource peak allowed,
while the other corresponds to execution time (i.e., wall-
time). Allocations have three main purposes: (1) to homog-
enize the resources where jobs are executed (i.e., define
resource boxes where jobs run), (2) to serve as input to
schedulers to request appropriate allocations (i.e., create the
resource boxes), and (3) to serve as input to the monitoring
tool to terminate jobs when resources are exhausted (enforce
the resource boxes). Note that these allocation computations
occur before jobs are dispatched to the batch system.

As we mentioned before, precise requirements for a job’s
resource needs are generally unavailable or inaccurate. As
seen in Fig. 6, we confront two situations: either resources
are overallocated, wasting unused resources; or resources
are underallocated, with all the resources allocated wasted
given that the job fails with resource exhaustion, and further
resources wasted as the job needs to be retried.

When allocating resources for a job, we assume that all
dependencies of the job have been satisfied by the WMS,
and it is ready to run. In the most general case, we can
assume that all jobs belong to the same bag-of-jobs and share
the same general properties. However, we have found that
resource allocation can be improved if the user performs
a coarse grouping of jobs into categories (e.g., simulation,
analysis, visualization, etc.) that are known to have similar
properties. Our further developments do not assume this
category labeling, but they can take significant advantage of
it, as we show in Section 4.

In practical terms, completely eliminating wasted re-
sources is not possible, even if perfect information is avail-
able. Resource usage per job varies with time, and successful
jobs executed on practical, static allocations, will almost
surely have resources overallocated (referred to as intrinsic
waste in Fig. 6). In general, there are two options: we can

allocate the maximum resources available so that no job
needs to be retried, or we can make smaller allocations
initially, letting some jobs be retried (perhaps several times).

Next, we present a set of conservative simplifying as-
sumptions that we call the slow-peaks model, which enables
us to optimize job retries for minimum expected waste,
or maximum expected throughput. The assumptions of the
slow-peaks model are: (1) jobs do not modify their behavior
according to the available resources; (2) resource exhaustion
results in failure (e.g., no migration, checkpointing, nor
resource expansion occurs); (3) if a job takes τ time to
complete successfully with allocation r, and it exhausts its
resources with allocation r′ < r, the resource exhaustion
is detected in the worst case at τ time. It is this last point
that gives the name to the model, as we work under the
worst-case assumption that resource peaks do not occur
fast, but at the end of execution. As for the batch system,
we assume that any resources not consumed by the job’s
resource allocation remain available to the underlying batch
to be used by other jobs. In Section 3.4.4, we describe how
this assumption can be accurately implemented on real,
finite resources.

Note that (1) is a strong assumption, as for example, it
assumes that wall-time is not affected by the amount of
memory available, which is not true for jobs that would
need to swap to disk. Our developments to date do not
consider this interplay of resources.

3.4 Computing First Allocations

Now we come to the crux of the problem: how should we se-
lect the resources for the first execution of a job? We present
solutions for two different objectives: Section 3.4.1 mini-
mizes the amount of resources wasted, while Section 3.4.2
maximizes the throughput relative to resources consumed.
In practice, both of these methods give similar values, so
Section 3.4.3 explains when and why the two methods
converge. We use the following notation throughout this
section:

r resource peak value, per job
ai the ith allocation tried.
am the largest allocation tried, usually

the maximum resource peak across
jobs, or the largest node available

τ execution time, per job
τ̄ average execution time of all jobs
τ̄r average execution time of jobs with

resource peak r

p(r, τ) = p(r|τ)p(τ) joint probability density of all re-
source peaks and execution times

P (r) cumulative probability of the re-
source peaks

3.4.1 Minimizing Waste

Using static allocations and the slow-peaks model, we need
two variables to describe the usage of a single resource
per job: the resource peak r, which is the maximum usage
value (e.g., peak resident memory, or peak disk storage
used), and the execution time τ , which is the time it takes for
the job to successfully complete (i.e. wall-time). We define
resource usage as how many resource units are required
over time: usage(r, τ) = rτ (e.g., MB·s). Similarly, consider

7

an allocation sequence a1, a2, . . . , am, with ai < ai+1, in
which allocations are used in order until the job completes
without exhausting resources. The resource waste for such
allocation sequence is defined as:

waste(r, τ, ai) =

{

(ai − r)τ, if ai ≥ r

aiτ + waste(r, τ, ai+1) otherwise,

with the assumption that all resource peaks are no
larger than am. There are several ways in which waste
can be minimized, but the common thread is to choose
an appropriate total waste expression, and a sequence of
allocations that minimize it. We describe how to minimize
the expected value of total waste using a two-step policy.
In the two step policy all jobs are first tried with some
allocation a1, and if that allocation is exhausted, then they
are tried with the maximum allocation am available (say,
the one corresponding to the largest computational node
currently in the system). The two-step policy is simple to
implement, but multi-step allocations might be also used.
We conjecture that the larger the distribution tail, the better
a multi-step allocation performs, but this remains an open
problem that we have not evaluated.

Given allocations a1, and am, we treat r and τ as random
variables with joint probability density p(r, τ), and find the
expected waste to be:

E[waste(r, τ, a1)] =

∫ ∞

0

∫ a1

0

(a1 − r)τp(r, τ)dr

︸ ︷︷ ︸

first-allocation succeds

+

∫ am

a1

((am + a1 − r)τp(r, τ)dr

︸ ︷︷ ︸

final allocation succeds

dτ

=a1

∫ am

a1

∫ ∞

0

τp(r, τ)dτdr

︸ ︷︷ ︸

mean wall-time for all jobs

+ am

∫ am

a1

∫ ∞

0

τp(τ |r)dτ

︸ ︷︷ ︸

mean wall-time taks w. peak r

p(r)dr

−

∫ ∞

0

∫ ∞

0

rτp(r, τ)dτdr

︸ ︷︷ ︸

resources effectively used

,

Using τ̄ for the mean wall-time across all jobs, τ̄r for the
mean wall-time for jobs with peak r, converting integrals
to summations, and probability densities to probability dis-
tributions, the allocation a1 that minimizes waste is found
with:

argmin
a1

{

a1τ̄ + am

am∑

r>a1

τ̄rp(r)

}

. (1)

Note that τ̄ , τ̄r and p(r) can be easily computed by keep-
ing running averages as historical data becomes available.
In practice, we found it convenient to group neighboring
peaks to reduce the number of averages kept (say every
minute for time, or every 100MB for memory or disk).

Further, note that the allocation is given only in terms of
the resource, but not in terms of time. Assumption 3 of
the slow-peaks model simply states that, in a worst-case
scenario, if resource exhaustion occurs, it does so at the end
of execution. This assumption is used in the minimization,
but no time deadlines are enforced per job unless wall and
cpu-times are considered as resources (see Section 3.4.4).

If we further assume that resource peaks r and wall-time
τ are independent variables, we find the expected waste to
be:

E[waste(r, τ, a1)] = a1τ̄ + amτ̄

∫ am

a1

p(r)dr

︸ ︷︷ ︸

approx. from histograms

−

∫ ∞

0

∫ ∞

0

rτp(r, τ)dτdr

︸ ︷︷ ︸

resources effectively used

,

and the minimum waste can be found by:

argmin
a1

{

a1 + am

am∑

r>a1

p(r)

}

. (2)

It is interesting that wall-time does not appear in this ex-
pression. Even though we should not expect independence
of r and τ to hold for every workflow, Equation 2 is simpler
to compute as only one histogram needs to be kept, and
performs extremely well in practice.

3.4.2 Maximizing Throughput

HTC facilities typically accumulate the quantity of resources
consumed by a user and either charge it against some
total quota, or charge the user money for total resources
consumed. Therefore, we define user-perceived throughput as
the amount of work completed relative to the resources
consumed. This allows the quality of a job sizing algorithm
to be evaluated independently of the size of the cluster,
the batch system’s scheduling algorithm, or other factors
outside of the user’s control. To this end, it is advantageous
to think of workflows as consisting of an infinite number
of jobs, running on an infinite, continuous pool of resources.
This captures the steady state of a finite executing workflow,
running on finite resources.

Given allocation a1, throughput (#jobs/seconds) is given
by:

lim
#jobs→∞

#jobs completed with a1 + #jobs completed with am
total time run at a1 + total time run at am

Consider the throughput with a resource maximum am
and first-allocation a1. For jobs with peak r ≤ a1, per
every am units of the pool of resources, am/r jobs can run
simultaneously in τ time. Conversely, if r > a1, then only a
single job can be completed per every am, and this takes 2τ
(one τ for failure under the slow-peaks assumption plus
one τ for the job to successfully complete). If nr is the
number of jobs with peak r, and τ̄r their mean wall-time,
our throughput expression becomes:

lim
#jobs→∞

(am/a1)
∑

r≤a1
nr +

∑

r>a1
nr

∑

r≤a1
τ̄rnr + 2

∑

r>a1
τ̄rnr

.

8

0

1

2

0 0.8 1

t a
m
/
t a

am/a = 1.25

0

1

2

0 0.5 1

pa

am/a = 2

0

1

2

0 0.2 1

am/a = 5

Fig. 7: Comparison of Min-Waste vs Max-Throughput
For a binomial distribution of resource sizes a and am with
probabilities pa and 1−pa, and wall-times ta and tam

, the shaded
regions show the value of the ratio tam

/ta for which optimizing
by minimum waste or maximum throughput yields different allo-
cations. The dashed lines showed the minimum ratio for tam

/ta
for which it is advantageous to use first allocation a according to
the minimum waste optimization. The dotted lines show the same
information, but considering maximum throughput.

After arranging terms, and dividing each of the terms by
the total number of jobs, the first-allocation that maximizes
the expected throughput is:

argmax
a1

{

(am/a1)P (r ≤ a1) + P (r > a1)

τ̄ +
∑

r>a1
τ̄rp(r)

}

, (3)

with cumulative probabilities P (r ≤ a) =
∑

r≤a
p(r),

and P (r > a) = 1 − P (r ≤ a). As in the case of minimum
waste, all terms are easily computed from histograms that
can be incrementally updated.

3.4.3 Comparing Min Waste and Max Throughput

As we will see in Section 4, the allocations computed using
minimum waste or maximum throughput often yield the
same first allocations in practice. The similarity is a function
of how close the wall-times (i.e., the different τ̄) are across
the different resources sizes (i.e., the different r). To explore
this idea further, consider a simple workflow, which consists
of two types of jobs: a small job, that uses a units of a
resource, runs precisely for ta seconds, and occurs pa of the
time; the other, a big job, uses am > a units of a resource,
runs precisely for tam

, and occurs 1 − pa of the time. If we
fix the ratio am/a > 1, can we compute the minimum ratio
tam

/ta for which using first allocation a becomes worth it?
In Fig. 7, the curves show the minimum value of tam

/ta
for which first trying allocation a is advantageous. The
dashed line shows the values for minimum waste, while
the dotted line for maximum throughput. The shaded areas
show the sole regions where the two minimization methods
give different results. Note that around tam

/ta = 1, the
result for both optimization methods is the most similar.

3.4.4 Practical Considerations

One aspect we have not directly addressed is any “penalty”
for retries. Resubmitting a job still involves some use of
resources, even when the job is not executing. This means
that bytes written, and received by computational node
when a job is dispatched should be accounted to the job,
together with the adding the time to dispatch to the overall
job wall-time.

Further, so far we have ignored internal fragmentation
of resources. Equations 2, and 3 give the allocations for the
minimum waste and maximum throughputs possible under
the slow-peaks model. This is done by ignoring internal
resource fragmentation, or in other words, by running on
machines that perfectly fit the allocations computed. For a
practical implementation we have two options: try to mimic
the infinite pool of resources on real practical machines, or
modify the expressions so that they deal directly with inter-
nal fragmentation. Mimicking the pool of infinite resources
gets us closer to the theoretical extrema, but is not always
practical. On the other hand, modifying the optimization
expressions can always be done, but comes at the expense
of increasing waste and decreasing throughput.

To mimic the infinite pool of resources, we need to take
a closer look at am. There are not many restrictions on am,
other than it has to be large enough to fit the largest resource
peak of the workflow. Also, note that a single computational
node may host several am allocations (e.g., a node with
16GB of memory, with a maximum allocation per job of
4GB). If a1 exactly divides am, then all the computational
nodes effectively act as a continuous pool of resources,
with scheduling of jobs reducing, or eliminating internal
fragmentation [25]. This can be achieved even when am
occupies an entire node. The farther am is from a multiple
of a1, the farther we are from modeling the continuous pool
of resources, and the more internal fragmentation is created.

For the second option, we can take internal fragmen-
tation into account by not allowing fractions of jobs when
computing throughput:

argmax
a1

{

⌊am/a1⌋P (r ≤ a1) + P (r > a1)

τ̄ +
∑

r>a1
τ̄rp(r)

}

.

For minimum waste, Equations 1 and 2 remain the same,
but the (open) range of allocations (am/2, am) is removed
from the set of possible solutions.

Wall-time and cpu-time as resources deserve special con-
siderations regarding first-allocations. Our model does not
consider job checkpointing or migration, as it is common in
some HPC systems. If we again think of allocations as boxes,
an allocation for a resource such as memory defines a box
for a job to run along two dimensions, memory and time.
Enforcing first-allocations means that we can stack more
boxes along the memory axis, while the time axis comes
into play for minimizing waste or maximizing throughput.
For wall-time and cpu-time, as resources, we only have the
time axis, thus in general, enforcing such allocations is detri-
mental for both wasted resources and throughput. There are
cases, however, where a scheduler may take advantage of
information provided by the first-allocation computation.
For example, without checkpointing or migration, wall-
time first-allocations are better interpreted as guarantees
of resource availability rather than limits to enforce on a
job. Consider a system with queues for short and long
running jobs6. The wall-time first-allocation can be used to
decide whether submitting a new job to the short-running
jobs’ queue is appropriate, and to compute the throughput
expected of running all jobs first allowing for retries in the

6. In an opportunistic/dedicated system, the limit for the short-
running jobs’ queue can be taken as the average time to eviction, while
the dedicated resources act as the queue for long-running jobs.

9

naive brute-force min. waste max. through
resource max. peak P (0.95 > r) P (0.5 > r) min. waste max. throug. Equation 2 Equation 3

first allocation
cores(cores) 5 3 2 2 2 2 2
cores avg(cores) 2.9 1.5 0.8 1 1 1 1
memory(MB) 3830 2416 914 1350 1350 1350 1350
disk(MB) 2657 1338 1241 1300 1300 1300 1300

proportion of wasted resources per task
cores 58% 34% 13% 13% 13% 13% 13%
cores avg 70% 48% 64% 23% 23% 23% 23%
memory 72% 57% 62% 32% 32% 32% 32%
disk 55% 16% 53% 15% 15% 15% 15%

throughput normalized
cores 1.00 1.58 2.18 2.18 2.18 2.18 2.18
cores avg 1.00 1.74 1.41 2.69 2.69 2.69 2.69
memory 1.00 1.51 1.75 2.54 2.54 2.54 2.54
disk 1.00 1.88 1.07 1.91 1.91 1.91 1.91

percentage of tasks retried
cores 0% 5% 9% 9% 9% 9% 9%
cores avg 0% 5% 50% 7% 7% 7% 7%
memory 0% 5% 49% 8% 8% 8% 8%
disk 0% 5% 48% 6% 6% 6% 6%

overhead
overhead (s) — — — 5.05 5.37 0.40 0.40

538078 tasks read in 28.68 seconds

Fig. 8: First-allocations for the CMS analysis workflow as a whole.
The fixed allocations are particular value of the distribution of jobs seen: max-peak is the maximum value seen, P (0.95 < r) chooses
the 95th percentile, and P (0.50 < r) chooses the median (50th percentile). The rest of the allocations optimize for minimum waste
or maximum throughput using the slow-peaks model. We show both brute-force computations considering every resource summary,
and computations using Equations 2, and 3. The value of am, the maximum allocation used, was max-peak. Per allocation, we also
show the average waste per job, the throughput as compared to the max-peak allocation, the percentage of jobs that were retried, and
the time it took to compute the allocation. For histograms, we use partitions of 10-seconds for time, and one MB for disk and memory.
Allocations were computed on an off-the-shelf 4-core workstation.

long-running jobs’ queue. Thus, the first-allocation compu-
tation to be helpful as an analysis tool for characterizing and
detecting inefficient workflow dispatches.

4 EVALUATION

To evaluate our method, we apply it to data collected from
production workflows runs on the HTCondor batch system
described above. For each job in a workflow, we use the
resource monitoring tool to capture the cores, memory,
disk, etc. actually consumed by each job. Using this data,
we use offline analysis to demonstrate: (1) there exist real
applications that suffer from the job sizing problem; (2)
our methods for computing minimum waste and maximum
throughput are confirmed by producing equivalent results
from a brute-force search of the solution space; and (3) these
methods produce better results than simple statistical mea-
sures. Finally, we demonstrate the entire system operating
online and show that it converges to accurate job sizes.

We evaluate these results on three different applications:
The application we show in the greatest detail is the

CMS-analysis workflow already described above in Sec-
tion 3.2 with complete histograms displayed in Fig. 5. It
consists of 538,078 jobs in five categories (DIGI, LHEGS,
mAOD, and RECO) labelled by the user.

CMS-simulation is another production high energy
physics workflow used to generate simulated data for the
CMS experiment. This was also executed using the Lobster
workload manager on top of the HTCondor batch system at

the University of Notre Dame. It consists of 30,630 jobs di-
vided into three categories (ttW, ttZ, and MERGE) identified
by the user. These tasks are largely computation-bound and
have a lower degree of heterogeneity than CMS-analysis.

BWA-makeflow is a bioinformatics workflow build on
the Burrows Wheeler Alignment (BWA) tool [26]. It consists
of 826 jobs, divided in three steps: split (2 jobs), analysis
(822 jobs), and join (2 jobs). The split jobs subsample a 30GB
input file into 822 parts, each of which is fed into an analysis
job that uses BWA to query a reference database of about
30 MB. The results of each analysis job (approximately 23
MB each) are then fed into the join jobs which merge and
reconcile the results.

4.1 Offline Analysis

The collection of resource measurements was used to per-
form an offline evaluation of various methods of job sizing
for CMS-analysis which are shown in Fig. 8. (This table
includes all tasks together without distinguishing between
categories.) Each column indicates a different method of job
sizing: in order, always using the maximum peak value,
always using the 95th percentile, always using the 50th

percentile, brute-force searches for the minimum waste
and maximum throughput, and finally our solution using
Equations 2 and 3 for minimum waste and maximum
throughput. The first group of rows indicates the values of
cores, memory, and disk selected by each method. Following
groups indicate the percent of wasted resources of each type,

10

the throughput relative to the max-peak method, and the
percentage of tasks retried.

We can highlight a number of points from Fig. 8:

First, the max-peak method wastes 70%, 72%, and 55%
of cores, memory, and disk (respectively) compared to 23%,
32%, and 15% of the maximum throughput method. The
other naive methods of picking job sizes at the 50th, or
95th percentiles offer higher throughput than max-peak, but
still have considerable waste. Some amount of this waste is
due to the fact that all tasks are evaluated together without
distinguishing between categories; we will show later the
effect of analyzing categories separately.

Gains in throughput are normalized to the maximum per
resource. The more uniform the resource value across jobs,
the less advantageous this strategy becomes. For example,
compare the memory and disk resources, with an original
72% and 55% of waste, respectively. Using the maximum
throughput first-allocations, waste is reduced to 32% and
15%, with a throughput increase of 2.54 and 1.91 respec-
tively. However, note that we can only say that a first-
allocation strategy will have at least a 1.91X increase in
throughput, but this does not mean that the disk is the
computational bottleneck. Which resource is the bottleneck
depends on the computational site.

The brute force method confirms the minimum-waste
and maximum-throughput equations, although it is likely
an expensive approach to use in practice. Using counts
in the histograms, first-allocations can be computed using
fewer data points, and in linear time. In contrast, brute-force
uses every resource summary to find the minimum waste
and maximum throughput in a quadratic time computation.
We used histograms with divisions at 30s for time, and
50MB for disk and memory. These small divisions were
chosen to show that the more efficient method generates the
same allocation as brute-force calculations. In production,
differences in the order of seconds, or megabytes are most
likely irrelevant, and larger divisions can be used to filter
some of the noise from the measured data.

Finally, note that minimum waste and maximum
throughput yield the same results for this particular work-
flow, but as noted in Section 3.4.3, they are not guaranteed
to be the same.

4.2 Category Analysis

We applied the same techniques to all three workflows, but
in the interest of space we show a smaller set of results in
Fig.s 9, 10, and 11 for the CMS-analysis, CMS-simulation,
and BWA-makeflow workloads, respectively. Each table
shows the number of tasks in each category and the first
allocation for memory selected by the max-peak, min-waste,
and max-throughput methods for each separate category.
These tables show the effect of exploiting category informa-
tion provided by the user, rather than simply treating the
entire workflow as a bag of equivalent tasks.

For example, Fig. 9 shows the effect of categorization in
CMS-analysis. We observe an immediate decrease in waste
and a very noticeable increase in throughput when using
categories, even for fixed policies. Note that the percentage
of retries becomes much more manageable, even with some
slight increases for some columns. Similarly, not shown in
the figure, the number of retries for wall-time decreased

category count max. peak min. waste max. th.
digi 22911 3830 3600 3600
merge 1041 2289 1700 1700
mAOD 2544 2311 2250 2250
lhegs 500000 2192 1350 1350
reco 11582 2910 2850 2850
(all) 538078 3830 1350 1350

proportion wasted resources
with cats. — 51.9% 27.2% 27.2%
w/o cats. — 71.8% 31.5% 31.5%

throughput
with cats. — 1.70 2.65 2.65
w/o cats. — 1.00 2.54 2.54

retries
with cats. — 0% <1% <1%
w/o cats. — 0% 7.8% 7.8%

Fig. 9: Memory Allocations (MB) for CMS-analysis

category count max. peak min. waste max. th.
ttW mAODv2 10161 2000 1900 2000
merge 1587 900 850 850
ttZ mAODv2 18882 2000 1900 2000
(all) 30630 2000 1900 2000

proportion wasted resources
with cats. — 14.1% 14.5% 14.0%
w/o cats. — 15.9% 16.1% 15.9%

throughput
with cats. — 1.09 1.09 1.10
w/o cats. — 1.00 1.00 1.00

retries
with cats. — 0% 3.9% <1%
w/o cats. — 0% 3.8% 0%

Fig. 10: Memory Allocations (MB) for CMS-Simulation

category count max. peak min. waste max. th.
Join 18 4 4 4
Split 18 1304 50 50
Analysis 7398 321 300 300
(all) 7434 1304 300 300

proportion wasted resources
with cats. — 21.0% 16.2% 16.2%
w/o cats. — 78.9% 20.6% 20.6%

throughput
with cats. — 4.38 4.56 4.56
w/o cats. — 1.00 4.15 4.15

retries
with cats. — 0% 1.4% 1.4%
w/o cats. — 0% 1.4% 1.4%

Fig. 11: Memory Allocations (MB) for BWA-makeflow

from 88% to 13% when using categories. This results high-
light the importance of three concepts for an efficient use
of resources: historical data to create resource allocations,
monitoring to enforce such allocations, and coarse categori-
cal knowledge about the workflow from the user.

In Fig. 10, we show the first-allocations for CMS-
simulation. This figure highlights the advantages of having
some coarse information regarding the workflow: without
categories, the effect of first-allocation is negligible. How-
ever, when labeling and processing jobs based on category,
an increase in throughput of about 7% is seen. Further,
not shown in the figure, the 95th percentile allocation has
a throughput of 0.97, and wasted more resources (18%)

11

fixed
max.

online
no cats.

online
+ cats.

oracle
predic-
tion

CMS
ana.

cores 1.00 2.18 2.24 2.51
cores avg 1.00 2.69 2.76 3.60
memory 1.00 2.54 2.62 4.00
disk 1.00 1.91 1.97 4.13

CMS
simul.

cores 1.00 1.94 1.95 1.99
cores avg 1.00 1.10 1.11 1.19
memory 1.00 1.00 1.12 1.42
disk 1.00 8.89 9.09 32.33

BWA
cores 1.00 1.97 2.03 2.05
cores avg 1.00 1.00 1.03 1.11
memory 1.00 4.15 6.15 7.32
disk 1.00 51.30 55.88 60.96

Fig. 12: Summary of Results

first-allocation waste throughput retries overhead

fixed
max-peak highest lowest none none
P (r < 0.95) moderate low least none
P (r < 0.50) high low highest none

brute-force
min waste lowest moderate moderate high
max th. moderate highest most high

slow-peak online histograms
min waste Eq. 2 lowest moderate moderate negligible
max th. Eq. 3 moderate highest most negligible

Fig. 13: Rules of Thumb

as compared to the maximum peak allocation. Similarly,
there is a reduction of throughput (0.98) and increase in
waste (18%) for the allocation computed using Equation 2
(not shown in figure), in which the dependency on time
is eliminated. This indicates that a fixed first allocation
that simply tries to handle resource peak outliers may be
detrimental to the execution of the workflow.

Fig. 11 shows the results for memory first-allocations
per category and with the workflow as a whole. Observe
that by simply dividing by categories, we get an increase in
throughput of at least 4.38 times, or 4.56 times by allowing
1.4% of the jobs to be retried. Fig. 11 also highlights the
coarse information regarding the workflow, as the split cat-
egory shows a significant difference between the maximum
peak and first-allocations computed.

In Fig. 12 summarizes the effect of these techniques on
each of the three workloads, compared to a perfect “oracle”
prediction which knows in advance whether the job will
succeed or fail within a given job size. Note that even though
online computations give a noticeable gain compared to
the fixed maximum peak allocation, in some cases they are
somewhat far from the value of oracle predictions. This
leaves the door open for improvements, as we discuss in
Section 6.

Finally, in Fig. 13 shows a general comparison for the
different first-allocation policies. Note that these are general
guidelines, as the actual values for waste and throughput
are a function of the workflow’s resource distributions.

4.3 Online Execution

The results so far have been computed offline, taking advan-
tage of a complete recorded history of resource consump-
tions. This allows us to use a maximum observed value

of a resource (i.e., am in Equations 2 and 3), and to pre-
compute first-allocations before any jobs of a workflow is
actually executed. In a more general setting, such historical
information is not available, and first-allocations need to be
computed during execution as partial information from the
workflow becomes available.

To implement these techniques online, we proceed as
follows:

1) Set the maximum allowable value ao for the resource.
For example, this could be the size of the largest com-
putational node at the site.

2) Run jobs allocating ao units of the resource until some
statistics converge. (For example, wait for some conver-
gence of the resource usage variance when at least n
jobs are completed.)

3) Record the maximum resource value observed, and set
am to it.

4) Compute the first-allocation with the historical data
now available.

5) New jobs are deployed using the computed first-
allocation. On resource exhaustion, jobs are retried us-
ing am.

6) If a jobs exhaust resources using am, then go to step 2.

In Fig. 14 we show the first-allocation computations for
the first 12 hours of the CMS-analysis workflow. The maxi-
mum computational node considered was 6 cores, with 6 GB
of RAM and 12 GB of disk. Observe the spike back to the
maximum allowed size at about 6 hours, which correspond
to a new job resource maximum usage observed. In Fig. 15
we show the time-series for the total of cores, memory
and disk, both committed and used for the 11 days the
workflow ran. The gaps in time correspond to manual re-
starts activated by the user. The dynamic range of the com-
mitted resources responds in great part to the availability
of resources in our opportunistic setting using HTCondor.
At the bottom of Fig. 15.d we include a normalization to
memory committed resources. Note that the expected usage
stabilizes at about 68% (or 32% wasted resources), that
follows closely the one obtained previously when historic
data was available (Fig. 8). This shows the scalability of our
intuition regarding allocations: do not compute how many
allocations, but rather, how big they should be.

5 RELATED WORK

Managing systems with limited intervention of system ad-
ministrators is the goal of autonomic computing, which
has been used to address various problems related to
self-healing, self-configuration, self-optimization, and self-
protection in distributed systems. For instance, the pro-
visioning of virtual machines is studied in [27] and an
approach to tackle service overload, queue starvation, the
“black hole” effect and job failures is sketched in [28].
An autonomic feedback-loop process to quantify incident
degrees of workflow executions from metrics measuring
performance-related issues is proposed in [29]–[31]. Al-
though the process constantly monitors workflow execu-
tions to perform corrective actions, it does not tackle the
resource provisioning problem.

Monitoring systems, such as Ganglia [32], Nagios [33],
and Munin [34], offer a system administrators a wealth of
information for troubleshooting at a site-level, but they are

12

 0

1

2

3

4

5

6

 0 6 hours 12 hours

m
em

o
ry

 (
G

B
) reco

mAOD
digi

lhges
merge

 0

1

2

3

4

5

6

 0 6 hours 12 hours

Fig. 14: Computing first-allocations with partial information for the HEP CMS analysis workflow.
The first-allocations for memory per category for the first 12 hours of a run of 11 days are shown. The spike around 6 hours corresponds
to a new job resource usage maximum being observed.

 0

 1

2

3

0 days 1 2 3 4 5 6 7 8 9 10 11

m
em

o
ry

 (
T

B
)

committed
used

 0

 1

2

3

0 days 1 2 3 4 5 6 7 8 9 10 11

 0

%68

%100

0 days 1 2 3 4 5 6 7 8 9 10 11

m
em

o
ry

 (
n

o
rm

)

committed
used

 0

%68

%100

0 days 1 2 3 4 5 6 7 8 9 10 11

Fig. 15: Time-series for committed and used memory for the HEP CMS analysis workflow.
The great variation in committed resources corresponds to the variation of the availability of opportunistic resources in our campus

HTCondor pool. Note, however, that the percentage of used resources remains stable, at about 68%.

not available to unprivileged users, and provide only coarse
job resource usage information. Site specific systems, such as
TACC Stats [35] and NCAR [36], collect resource usage for
HPC workloads as time series allowing for an analysis per
job. ParaTrac [37] focuses on monitoring data-intensive
workflows by interposing all I/O operations via an overlay
file system implemented using FUSE [38]. Full resource
workflow profiles are also generated by polling information
from procfs, taskstats [39].

Our developments focused on workflows that consist
of bag of jobs. In a study by [8], several characteristics
of general workflows in the cloud are observed that are
amenable to our approach: workflows usually consist of
bag of jobs, with several resources to be allocated and
enforced, heterogeneity is managed by grouping jobs in bag
(e.g. categories), the distributions tend to be heave tailed,
and the number of available resources is highly dynamic.
Labeling of categories is sometimes done implicitly, such as
in MapReduce applications, in which it is understood that
mappers and reducers have different resource requirements.
For workflows running on grids [40], users are often able to
label the stages of a multi-step job, such as retrieving data
from an instrument or database, running an analysis, and
extracting statistics.

In this paper we did not touch on scheduling jobs.
Scheduling algorithms usually assume that resource infor-
mation is available [14]–[17]. For example, back-filling algo-
rithms [41], follow a first-come-first-serve policy, that uses a
priori job sizes and execution times to schedule in partially

available resources. Our first-allocation computations can
be used as input to such algorithms, to take advantage of
particular site architectures, or respect given site policies,
such as [42], [43]. Along these lines, [44] uses machine
learning techniques to predict the wall-time of a job. Unlike
our approach, where a user minimizes waste or maximizes
throughput for jobs in a workflow, the objective of [44] was
to improve job slowdowns of a batch system using a back-
filling algorithm. One particular issue that we do not handle
is the resource waste given the external fragmentation in a
computational node. Such fragmentation may be reduced
using schedulers such as [45].

6 CONCLUSIONS AND FUTURE WORK

This paper introduced a feedback-loop for efficient use
of computational resources for scientific workflows. We
dealt with computational resources descriptions in three
stages: an historical archive of past job executions, monitor-
ing/enforcement of current job executions, and allocations
for provisioning future executions. We presented strategies
to minimize the expected waste, or maximize the expected
throughput and applied them to real production scientific
workflows running on O(25K) opportunistic cores.

There are several ways in which the job sizing problem
could be further explored:

Our results are based on a conservative accounting of
resources called the slow-peaks model. The model is based on
a worst-case scenario, in which a job resource exhaustion oc-
curs at the time the job would have completed successfully.

13

This assumes that the resource exhaustion can be detected,
which is not a trivial problem in itself [18] and that the
job does not modify its behavior according to the resources
available. A more sophisticated analysis could address jobs
where one resource selection affects another.

The manner in which we account for the time it takes to
transfer files to a computational node deserves further ex-
ploration. In our current implementation, such times can be
easily accounted as part of the total running time. However,
this does not accurately describe scenarios where transfer of
one job can be overlapped with the computation of another.

Finally, we have evaluated a two-step process of making
a first allocation, then jumping to a maximum allocation on
failure. We conjecture that a multi-step process might have
further advantages on distributions with very long tails.
This requires evaluating both the number of steps as well
as the strategy for increase between steps.

ACKNOWLEDGEMENTS

This work was funded by DOE under the contract num-
ber ER26110, “dV/dt - Accelerating the Rate of Progress
Towards Extreme Scale Collaborative Science”.

REPRODUCIBILITY

The data used in this paper, the waste minimization and
throughput maximization computations (with C and python
interfaces), are available at:

https://github.com/cooperative-computing-lab/

efficient-resource-allocations

The resource monitoring tool, the resource feedback
loop, and the min-waste and max-throughput techniques
are implemented in the Makeflow workflow management
software, available here:

https://ccl.cse.nd.edu/software/makeflow

REFERENCES

[1] J. Montagnat et al., “Workflow-based comparison of two dis-
tributed computing infrastructures,” in 2010 5th Workshop on Work-
flows in Support of Large-Scale Science (WORKS). IEEE, 2009, pp.
1–10.

[2] O. A. Ben-Yehuda et al., “Expert: Pareto-efficient task replication
on grids and a cloud,” in 2012 IEEE 26th International Parallel &
Distributed Processing Symposium (IPDPS). IEEE, 2007, pp. 167–
178.

[3] H. Arabnejad et al., “Fairness resource sharing for dynamic work-
flow scheduling on heterogeneous systems,” in 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with
Applications (ISPA). IEEE, 2012, pp. 633–639.

[4] D. Poola et al., “Enhancing reliability of workflow execution
using task replication and spot instances,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 10, no. 4, p. 30, 2015.

[5] W. Chen, R. Ferreira da Silva, E. Deelman, and T. Fahringer,
“Dynamic and fault-tolerant clustering for scientific workflows,”
IEEE Transactions on Cloud Computing, vol. 4, no. 1, pp. 49–62, 2016.

[6] I. Casas et al., “A balanced scheduler with data reuse and replica-
tion for scientific workflows in cloud computing systems,” Future
Generation Computer Systems, 2016.

[7] N. Zakay and D. G. Feitelson, “On identifying user session bound-
aries in parallel workload logs,” in Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 2012, pp. 216–234.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing, ser. SoCC ’12. New York, NY, USA: ACM, 2012, pp.
7:1–7:13.

[9] R. Ferreira da Silva et al., “Toward fine-grained online task char-
acteristics estimation in scientific workflows,” in 8th Workshop on
Workflows in Support of Large-Scale Science, 2013.

[10] I. Sfiligoi, “Estimating job runtime for cms analysis jobs,” in Journal
of Physics: Conference Series, vol. 513, no. 3. IOP Publishing, 2014,
p. 032087.

[11] R. Ferreira da Silva et al., “Online task resource consumption pre-
diction for scientific workflows,” Parallel Processing Letters, vol. 25,
no. 3, 2015.

[12] ——, “Characterizing a high throughput computing workload:
The compact muon solenoid (CMS) experiment at LHC,” Procedia
Computer Science, vol. 51, pp. 39–48, 2015.

[13] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing
in Practice: The Condor Experience,” Concurrency and Computation:
Practice and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[14] J. Blythe et al., “Task scheduling strategies for workflow-based
applications in grids,” in 5th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’05), may 2005.

[15] T. D. Braun et al., “A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel and Distributed
Computing, vol. 61, no. 6, pp. 810–837, jun 2001.

[16] H. Casanova et al., “Heuristics for scheduling parameter sweep
applications in grid environments,” in 9th Heterogeneous Computing
Workshop, 2000.

[17] A. Mandal et al., “Scheduling strategies for mapping application
workflows onto the grid,” in 14th IEEE International Symposium on
High Performance Distributed Computing, 2005.

[18] G. Juve, B. Tovar, R. F. da Silva, D. Krol, D. Thain, E. Deelman,
W. Allcock, and M. Livny, “Practical Resource Monitoring for Ro-
bust High Throughput Computing,” in Workshop on Monitoring and
Analysis for High Performance Computing Systems Plus Applications
at IEEE Cluster Computing, 2015.

[19] “ltrace,” http://ltrace.org.
[20] J. Keniston et al., “Ptrace, utrace, uprobes: Lightweight, dynamic

tracing of user apps,” in Ottowa Linux Symposium, 2007.
[21] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A

Portable Abstraction for Data Intensive Computing on Clusters,
Clouds, and Grids,” in Workshop on Scalable Workflow Enactment
Engines and Technologies (SWEET) at ACM SIGMOD, 2012.

[22] “CCTools,” http://www3.nd.edu/ ccl/software/download.
[23] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor – a

distributed job scheduler,” in Beowulf Cluster Computing with Linux,
T. Sterling, Ed. MIT Press, October 2001.

[24] A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar, P. Donnelly,
P. Ivie, K. H. Anampa, P. Brenner, D. Thain, K. Lannon, and M. Hil-
dreth, “Scaling Data Intensive Physics Applications to 10k Cores
on Non-Dedicated Clusters with Lobster,” in IEEE Conference on
Cluster Computing, 2015.

[25] C. Bays, “A comparison of next-fit, first-fit, and best-fit,” Commun.
ACM, vol. 20, no. 3, pp. 191–192, March 1977.

[26] D. Peters, X. Luo, K. Qiu, and P. Liang, “Speeding up large-
scale next generation sequencing data analysis with pbwa,” J.
Biocomput., vol. 1, no. 1, 2012.

[27] N. Van et al., “Autonomic virtual resource management for ser-
vice hosting platforms,” in ICSE Workshop on Software Engineering
Challenges of Cloud Computing, 2009, pp. 1–8.

[28] P. Collet et al., “Issues and scenarios for self-managing grid
middleware,” in 2nd workshop on Grids meets autonomic computing.
ACM, 2010, pp. 1–10.

[29] R. Ferreira da Silva et al., “Self-healing of workflow activity inci-
dents on distributed computing infrastructures,” Future Generation
Computer Systems, vol. 29, no. 8, pp. 2284–2294, 2013.

[30] ——, “Controlling fairness and task granularity in distributed,
online, non-clairvoyant workflow executions,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 14, pp. 2347–2366,
2014.

[31] ——, “Characterizing a high throughput computing workload:
The compact muon solenoid (CMS) experiment at LHC,” Procedia
Computer Science, vol. 51, pp. 39–48, 2015.

[32] M. L. Massie et al., “The ganglia distributed monitoring sys-
tem: design, implementation, and experience,” Parallel Computing,
vol. 30, no. 7, pp. 817–840, jul 2004.

[33] “Nagios,” http://nagios.org.
[34] “Munin,” http://munin-monitoring.org.
[35] C.-D. Lu et al., “Comprehensive job level resource usage measure-

ment and analysis for xsede hpc systems,” in Proceedings of the
Conference on Extreme Science and Engineering Discovery Environ-
ment: Gateway to Discovery (XSEDE), 2013.

https://github.com/cooperative-computing-lab/efficient-resource-allocations
https://github.com/cooperative-computing-lab/efficient-resource-allocations
https://ccl.cse.nd.edu/software/makeflow

14

[36] D. D. Vento et al., “System-level monitoring of floating-point
performance to improve effective system utilization,” in Supercom-
puting, 2011.

[37] N. Dun et al., “Paratrac: A fine-grained profiler for data-intensive
workflows,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, 2010.

[38] “Fuse: Filesystem in userspace,” http://fuse.sourceforge.net/.
[39] “taskstats,” http://www.kernel.org/doc/Documentation/

accounting/taskstats.txt.
[40] I. Taylor et al., Workflows for e-Science: Scientific Workflows for Grids.

Springer, 2007.
[41] D. A. Lifka, “The ANL/IBM SP scheduling system,” in Job Schedul-

ing Strategies for Parallel Processing, IPPS’95 Workshop, Santa Bar-
bara, CA, USA, April 25, 1995, Proceedings, 1995, pp. 295–303.

[42] S. Bardhan and D. A. Menascé, “Predicting the effect of memory
contention in multi-core computers using analytic performance
models,” IEEE Trans. Computers, vol. 64, no. 8, pp. 2279–2292, 2015.

[43] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”
in SIGOPS European Conference on Computer Systems (EuroSys),
Prague, Czech Republic, 2013, pp. 351–364.

[44] E. Gaussier, D. Glesser, V. Reis, and D. T. Denis, “Improving
backfilling by using machine learning to predict running times,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15, 2015, pp.
64:1–64:10.

[45] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 4, pp. 455–466, Aug.
2014.

Benjamin Tovar is a research software engineer
at the University of Notre Dame. In his current
role, he is the lead maintainer of CCTools, a
suite of tools to quickly enable scientist the use
distributed, high-throughput computing. Prior to
his position at Notre Dame, he was a Post-
doctoral fellow in the area of control engineering
in robotics at Northwestern University, and he
received a Ph.D. in Computer Science from the
University of Illinois Urbana-Champaign, where
he studied algorithmic modeling for robotics.

Rafael Ferreira da Silva is a Research Assis-
tant Professor at the USC Computer Science
Department, and a Computer Scientist at the
USC Information Sciences Institute (ISI). His re-
search focuses on the efficient execution of sci-
entific workflows on heterogeneous distributed
systems (e.g., clouds, grids, and supercomput-
ers), computational reproducibility, and Data Sci-
ence?workflow performance analysis, user be-
havior in HPC/HTC, and citation analysis (for
publications). Dr. Ferreira da Silva received his

PhD in Computer Science from INSA-Lyon, France, in 2013.

Gideon Juve worked as a Computer Scientist
in the Science Automation Technologies group
at the USC Information Sciences Institute. He
received his BS, MS and PhD degrees in Com-
puter Science from USC in 2004, 2008, and
2012. His research focused on enabling and
optimizing large-scale, data-intensive scientific
workflows on clusters, grids and clouds. He now
works on the automation team at SpaceX.

Ewa Deelman is a Research Professor at the
USC Computer Science Department and a Re-
search Director, at the USC Information Sci-
ences Institute (ISI). Dr. Deelman’s research in-
terests include the design and exploration of
collaborative, distributed scientific environments,
with emphasis on automation of scientific work-
flows, management of computing resources, and
management of scientific data. Her work in-
volves close collaboration with researchers from
a wide spectrum of disciplines. At ISI she leads

the Science Automation Technologies group, responsible for the devel-
opment of the Pegasus Workflow Management software. She founded
the annual Workshop on Workflows in Support of Large-Scale Science,
held in conjunction with the Super Computing conference. In 1997, Dr.
Deelman received her PhD in Computer Science from the Rensselaer
Polytechnic Institute.

William E. Allcock is since 2006 a Senior Stor-
age Engineer in High Performance Computing
at the Argonne Leadership Computing Facility
(ALCF), where he holds overall responsibility for
all I/O and storage-related activities, as well as
integration of the systems software stack for the
ALCF. He joined the Distributed Systems Labo-
ratory at Argonne in 2000 where he developed
technology required for computational grids and
served as a senior member. He was a driving
force behind the Globus project. Allcock served

as liaison on many international grid projects, including the prestigious
Earth System Grid.

Douglas Thain is an Associate Professor in the
Department of Computer Science and Engineer-
ing at the University of Notre Dame. He received
the B.S. in Physics from the University of Min-
nesota - Twin Cities and the M.S. and Ph.D. in
Computer Sciences from the University of Wis-
consin - Madison, where he contributed to the
Condor distributed computing system. At Notre
Dame, he works closely with researchers in mul-
tiple fields of science and engineering to attack
scientific problems using large scale computing.

His research team creates and publishes open source software that is
used around the world to harness large scale computing systems such
as clusters, clouds, and grids.

Miron Livny is a Professor of Computer Science
at the University of Wisconsin-Madison, Princi-
pal Scientist at Core Computational Technology
of the Wisconsin Institutes for Discovery, Chief
Technology Officer of the Wisconsin Institutes for
Discovery, Director of the UW Center for High
Throughput Computing (CHTC), Director of the
Software Assurance Marketplace and the Tech-
nical Director of the Open Science Grid (OSG).
His research interests include: Distributed Pro-
cessing Systems, High Throughput Computing,

Software Assurance, Cyberinfrastructure

	Introduction
	The Basic Idea
	System Model
	The Job Sizing Problem
	Our Approach

	Resource Feedback Loop
	User-Level Monitoring Tool
	Historical Archive
	Resource Allocations
	Computing First Allocations
	Minimizing Waste
	Maximizing Throughput
	Comparing Min Waste and Max Throughput
	Practical Considerations

	Evaluation
	Offline Analysis
	Category Analysis
	Online Execution

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Benjamin Tovar
	Rafael Ferreira da Silva
	Gideon Juve
	Ewa Deelman
	William E. Allcock
	Douglas Thain
	Miron Livny

