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ABSTRACT
Both distributed systems and multicore computers are diffi-
cult programming environments. Although the expert pro-
grammer may be able to tune distributed and multicore
computers to achieve high performance, the non-expert may
struggle to achieve a program that even functions correctly.
We argue that high level abstractions are an effective way of
making parallel computing accessible to the non-expert. An
abstraction is a regularly structured framework into which
a user may plug in simple sequential programs to create
very large parallel programs. By virtue of a regular struc-
ture and declarative specification, abstractions may be ma-
terialized on distributed, multicore, and distributed multi-
core systems with robust performance across a wide range of
problem sizes. In previous work, we presented the All-Pairs
abstraction for computing on distributed systems of single
CPUs. In this paper, we extend All-Pairs to multicore sys-
tems, and introduce Wavefront, which represents a number
of problems in economics and bioinformatics. We demon-
strate good scaling of both abstractions up to 32-cores on
one machine and hundreds of cores in a distributed system.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems; D.1.3 [Programming Techniques]: Concurrent
Programming

General Terms
Algorithms, Design, Performance
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1. INTRODUCTION
Distributed systems such as clusters, clouds, and grids are

very challenging programming environments. (Hereafter, we
refer to all of these systems as clusters.) A user that wishes
to execute a large workload with some inherent parallelism
is confronted with a dizzying array of choices. How should
the workload be broken up into jobs? How should the data
be distributed to each node? How many nodes should be
used? Will the network be a bottleneck? Often, the answers
to these questions depends heavily on the properties of the
system and workload in use. Changing one parameter, such
as the size of a file or the runtime of a job, may require a
completely different strategy.

Multicore systems present many of the same challenges.
The orders of magnitude change, but the questions are the
same. How should work be divided among threads? Should
we use message passing or shared memory? How many
CPUs should be used? Will memory access present a bot-
tleneck? The specific technical solutions may differ, but the
problems are the same. When we consider clusters of mul-
ticore computers, then the problems become more complex.

We argue that abstractions are an effective way of enabling
non-expert users to harness clusters, multicore computers,
and clusters of multicore computers. An abstraction is a
declarative structure that joins simple data structures and
small sequential programs into parallel graphs that can be
scaled to very large sizes. Because an abstraction is special-
ized to a restricted class of workloads, it is possible to create
an efficient, robust, scalable, and fault tolerant implemen-
tation. In previous work, we introduced the All-Pairs [12]
and Classify [13] abstractions, and described how they can
be used to solve data intensive problems in the fields of bio-
metrics, bioinformatics, and data mining. Our implementa-
tions allow non-experts to harness hundreds of processors on
problems that run for hours or days using the Condor [25]
distributed batch system.

In this paper, we extend the concept of abstractions to
multicore computers and clusters of multicore computers. In
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Figure 1: Two Examples of Abstractions
All-Pairs and Wavefront are two examples of abstractions. All-Pairs computes the Cartesian product of two sets A and B

using a custom function F. Wavefront a two-dimensional recurrence relation using boundary conditions and a custom
function F as an input. Using different techniques, each can be executed efficiently on multicore clusters.

Section 2, we present the concept of abstractions in, and for-
mally describe All-Pairs and Wavefront. In Section 3, we de-
scribe a general architecture for implementing abstractions
on multicore clusters. In Section 4, we describe the technical
challenges particular to All-Pairs and Wavefront. In Section
5, we demonstrate weak scaling of both abstractions to large
numbers of cores and nodes under controlled conditions. In
Section 6, we demonstrate applications in bioinformatics and
economics robustly running on hundreds of cores in an un-
reliable distributed system. We conclude with a review of
related work and open avenues for research.

2. ABSTRACTIONS
An abstraction is a declarative framework that joins to-

gether sequential processes and data structures into a regu-
larly structured parallel graph. An abstraction engine is a
particular implementation that materializes that abstraction
on a system, whether it be a sequential computer, a multi-
core computer, or a distributed system. Figure 1 shows two
examples of abstractions: All-Pairs and Wavefront.

AllPairs( A[i], B[j], F(x,y) )
returns matrix M
where M[i,j] = F(A[i],B[j])

The All-Pairs abstraction computes the Cartesian product
of two sets, generating a matrix where each cell M[i,j] con-
tains the output of the function F on objects A[i] and B[j].
This sort of problem is found in many different fields. In
bioinformatics, one might compute All-Pairs on a set of gene
sequences as the first step of assembling an entire genome.
In biometrics, one might compute All-Pairs to determine the
accuracy of a matching algorithm on a collection of faces. In
data mining applications, one might compute All-Pairs on a
set of documents to generate a graph of relationships.

Wavefront( R[i,j], F(x,y,d) )
returns matrix R
where R[i,j] = F( R[i-1,j], R[i,j-1], R[i-1,j-1] )

The Wavefront abstraction computes a recurrence rela-
tionship in two dimensions. Each cell in the ouput matrix
is generated by a function F where the arguments are the

values in the cells immediately to the left, below, and di-
agonally left and below. Once a value has been computed
at position (1,1), then values at positions (2,1) and (1,2)
may be computed, and so forth, until the entire matrix is
complete. The problem can be generalized to an arbitrary
number of dimensions. Wavefront represents a number of
simulations problems in economics and game theory, where
the initial states represent ending states of a game, and the
recurrence is used to work backwards in order to discover
the effect of decisions at each state. It also represents the
problem of sequence alignment via dynamic programming in
genomics.

On very small problems, both All-Pairs and Wavefront
are easy to implement: one may simply write a nested loop
to iterate over the output matrix in the proper order. How-
ever, many users have very large examples of these problems,
which are not so easy to implement. For example, a com-
mon All-Pairs problem in biometrics compares 4000 images
of 1MB to each other using a function that runs for one sec-
ond, requiring 185 CPU-days of sequential computation. A
sample Wavefront problem in economics requires evaluating
a 500 by 500 matrix, where each function requires 7 sec-
onds of computation, requiring 22 CPU-days of sequential
computation. To solve these problems in reasonable time,
we must harness hundreds of CPUs. However, scaling up to
hundreds of CPUs forces us to confront these challenges:

• Data Bottlenecks. Often, I/O patterns that can be
overlooked on one processor may be disastrous in a
scalable system. One process loading one gigabyte
from a local disk will be measured in seconds. But,
hundreds of processes loading a gigabyte from a sin-
gle disk over a shared network will encounter several
different kinds of contention that do not scale linearly.
An abstraction must take appropriate steps to care-
fully manage data transfer within the workload.

• Latency vs Concurrency. Dispatching a sub-problem
to a remote CPU can have a significant cost in a large
distributed system. To overcome this cost, the sys-
tem may increase the granularity of the sub-problem,
but this decreases the available concurrency. To tune
the system appropriately, the implementation must ac-
quire knowledge of all the relevant factors.
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Figure 2: Distributed Multicore Implementation
All-Pairs, Wavefront, and other abstractions can be executed on multicore clusters with a hierarchical technique. The user

first invokes the abstraction, stating the input data sets and the desired function. The distributed master process measures the
inputs, models the system, and submits sub-jobs to the distributed system. Each sub-job is executed by a multicore master,
which dispatches functions, and returns results to the distributed master, which collects them in final form for the user.

• Fault Tolerance. The larger a system becomes, the
higher the probability the user will encounter hard-
ware failures, network partitions, adverse policy deci-
sions, or unexpected slowdowns. To run robustly on
hundreds of CPUs, our model must accept failures as
a normal operating condition.

• Ease of Use. Most importantly, each of these prob-
lems must be addressed without placing additional bur-
den on the end user. The system must operate robustly
on problems ranging across several orders of magni-
tude by exploring, measuring, and adapting without
assistance from the end user.

All-Pairs and Wavefront are two examples of many pos-
sible abstractions. Other examples include Bag-of-Tasks [1,
3], Map-Reduce [4], and Bulk Synchronous Parallel [2]. None
of these models is a universal programming language, but
each is capable of representing a certain class of computa-
tions very efficiently. In that sense, programming abstrac-
tions are similar to the idea of systolic arrays [11], which are
machines specialized for very specific, highly parallel tasks.
Abstractions are obviously less expressive than general pur-
pose workflow languages such as DAGMan [25], Pegasus [5],
Swift [27], and Dryad [10]. But, precisely because abstrac-
tions are regularly structured and less expressive, it is more
tractable to provide robust and predictable implementations
of very large workloads. Once experience has been gained
with specific abstractions, future work may evaluate whether
more general languages can apply the same techniques.

3. ARCHITECTURE
Figure 2 shows a general strategy for implementing ab-

stractions on distributed multicore systems. The user in-
vokes the abstraction by passing the input data and func-
tion to a distributed master. This process examines the size
of the input data, the runtime of the function, consults a
resource catalog to determine the available machines, and
models the expected runtime of the workload in various con-
figurations. After choosing a parallelization strategy, the
distributed master submits sub-problems to the local batch
system, which dispatches them to available CPUs. Each job

consists of a multicore master which examines the execut-
ing machine, chooses a parallelization strategy, executes the
sub-problem, and returns a partial result to the distributed
master. As results are returned, the distributed master may
dispatch more jobs and assembles the output into a compact
final form.

For ease of use and implementation, both the distributed
and multicore masters are contained in a single executable
and invoked in the same way. Both All-Pairs and Wave-
front are invoked by stating directories containing the input
data and the name of the executable that implements the
function:

allpairs function.exe Adir Bdir

wavefront function.exe Rdir

Without arguments, the distributed master will automat-
ically choose how to partition the problem. When dispatch-
ing a sub-problem to a CPU, the distributed master simply
invokes the same executable with options to select multicore
mode on a given sub-problem, for example:

wavefront -M -X 15 -Y 20 -W 5 -H 5 function.exe Rdir

Of course, this assumes that the necessary files are avail-
able on the executing machine. The distributed master is
responsible for setting this up via direct file transfer, or spec-
ification through the batch system. Note that this architec-
ture allows for more than two levels of hierarchy – a global
master could invoke distributed masters on multiple clusters
– but we have not explored this idea yet.

The user may specify the function in several different
ways. The function is usually a single executable program,
in which case the input data is passed through files named
on the command line, and the output is written to the stan-
dard output. This allows the end user to choose whatever
programming language and environment they are most com-
fortable with, or even use an existing commercial binary. For
example, the All-Pairs and Wavefront functions are invoked
like this:

allpairs_func.exe Aitem Bitem > Output

wavefront_func.exe Xitem Yitem Ditem > Output



Invoking an external program might have unacceptable
overhead if the execution time is relatively short. To over-
come this, the user may also compile the function into a
threaded shared library with interfaces like this:

void * allpairs_function(

const void *a, int alength,

const void *b, int blength );

void * wavefront_function(

const void *x, int xlength,

const void *y, int ylength,

const void *d, int dlength );

Regardless of how the code is provided, we use the term
function in the logical sense: a discrete, self-contained piece
of code with no side effects. This property is critical to
achieving a robust, usable system. The distributed master
relies on its knowledge of the function inputs to provide the
necessary data to each node. If the function were to read or
write unexpected data, the system would not function.

As the results are returned from each multicore master,
the distributed master assembles them into a suitable exter-
nal form. In the case of Wavefront, it is not realistic to leave
each output in a separate file (although the batch system
may deposit them that way), because the result would be
millions of small files. Instead, the distributed master stores
the results in an external sparse matrix. This provides ef-
ficient storage as well as checkpointing: after a crash, the
master reads the matrix and continues where it left off.

The distributed master does not depend on the features
of any particular batch system, apart from the ability to
submit, track, and remove jobs. Our current implementa-
tion interfaces with both Condor [25] and Sun Grid Engine
(SGE) [8], and expanding to other systems is straightfor-
ward. The distributed master also interfaces with a custom
distributed system called Work Queue, which we will moti-
vate and describe below.

4. BUILDING BLOCKS
Our overall argument is that highly restricted abstrac-

tions are an effective way of constructing very large prob-
lems that are easily composed, robustly executed, and highly
scalable. To evaluate this argument, we will begin by exam-
ining several questions about each abstraction at the level
of microbenchmarks, then evaluate the system has a whole.

4.1 Threads and Processes
It is often assumed that multicore machines should be

programmed via multithreaded libraries or compilers. Our
technique instead employs processes, because they are more
easily adapted to distributed systems. How does this deci-
sion affect performance at the level of a single machine?

As a starting point, we constructed simple benchmarks
to measure the time to dispatch a null task using various
techniques. Each measurement is repeated one thousand
times, and the average is shown. (Unless otherwise noted,
the benchmark machine is a 1GHz dual core AMD Opteron
model 1210 with 2GB RAM running Linux 2.6.9.) Table 1
shows the results. pthread creates and joins a standard
POSIX thread on an empty function, fork creates and works
for a process which simply calls exit, exec forks and exe-
cutes an external program, and popen and system create
new sub-processes invoked through the shell.

Table 1: Time to Dispatch a Task
Method Time
pthread 6.3 µs
fork 253 µs
exec 830 µs
popen 2500+ µs
system 2500+ µs

It is no surprise that creating a thread is several orders
of magnitude faster than creating a process. However, it
is not so obvious that popen and system are considerably
more expensive than exec, and often vary in cost from user
to user. This is because these methods invoke the user’s
shell along with their complex startup scripts, which can
have unbounded execution time and create troubleshooting
problems. If we are careful to avoid these methods, then ex-
ecuting an external program can be made reasonably fast.
Moreover, it is only necessary for the execution time to dom-
inate the invocation time: a task in an abstraction running
for a second or more is sufficient.

4.2 Concurrency and Data in All-Pairs
Of course, within a real program, we must weigh invoca-

tion time against more complex issues such as synchroniza-
tion, caching, and access to data. To explore the boundaries
of these issues, we studied the All-Pairs multicore master
running in sequential mode on a single machine, comparing
1MB randomly generated files. A simple comparison func-
tion counts the number of bytes different in each object.
From a systems perspective, this is similar to a biometrics
problem, and provides a high ratio of data to computation.
Any realistic comparison function would be more CPU in-
tensive, so these tests explore the worst case.

In this scenario, we vary several factors. First, we vary
the invocation method of the function: create a thread to
run an internal function (thread) or create a process to ex-
ecute an external program (process). The author of a func-
tion is free to choose their own I/O technique, so we also
compare buffered I/O byte-by-byte (fgetc), block-by-block
(fread), and memory-mapped I/O (mmap). A naive im-
plementation would simply iterate over the output matrix
in order, causing cache misses at all levels on every access.
A more effective method shown in Figure 3 is to choose a
smaller block of cells and iterate over those completely be-
fore proceeding to the next block. The width of the block
is called the block size. (This technique is sufficient for our
purposes, but see Frigo et al [7] for more clever methods.)

Figure 4 shows the relative weight of all these issues. Each
curve shows the runtime of a 1000x10 comparison over var-
ious block sizes. The two slowest curves are thread and pro-
cess, both using fgetc. The two middle curves are process
using fread and mmap, and the fastest is thread with mmap.
All curves show significant slowdown when the block size
exceeds physical memory.

Clearly, threads with mmap execute twice as fast as the
next best configuration. If the user is willing to write a
thread-safe function for use with the abstraction, they should
do so. However, the use of processes is only twice as slow
in this artifical worst case and will not fare as poorly with
a more CPU-intensive function. Moreover, the appropri-
ate use of virtual memory by the abstraction and the I/O
technique chosen by the function are much more significant
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factors than the difference between threads and processes.
We conclude that using processes to exploit parallelism is a
reasonable tradeoff if it improves the usability of the system.

(We re-emphasize that each abstraction can accept either
an external program or a threaded internal function. So far,
none of our users have chosen to use threads.)

Next we consider how to carry out All-Pairs on a mul-
ticore machine. Although there are many possible ways,
we may consider two basic strategies. One is to generate
N contiguous subproblems, and allow each core to run in-
depdendently. The other is to write an explicit multicore
master that proceeds through the entire problem coherently,
dispatching individual functions to each core. Figure 5 com-
pares both of these against a simple sequential approach. As
can be seen, the sub-problem approach performs far worse,
because it does not coordinate access to data, and caches at
all levels are quickly overwhelmed. Thus, we have shown it
is necessary to have a deliberate multicore implementation,
rather than treating each core as a separate node.

4.3 Control Flow in Wavefront
As we have shown, the primary problem in efficient All-



Pairs is managing data access. However, in Wavefront the
problem is almost entirely control flow. The first task of
the problem is sequential. Once completed, two tasks may
run in parallel, then three, and so forth. If there is any
delay in dispatching or completing a task, this will have
a cascading effect on dependent adjacent tasks. We will
consider two control flow problems: dispatch latency and
run-time variance.

Figure 6 models the effect of latency on a Wavefront prob-
lem. This simple model assumes a 1000x1000 problem where
each task takes one second to complete. On the X axis, block
size indicates the size of sub problem dispatched to a pro-
cessor. Each curve shows the runtime achieved for a system
with dispatch latency ranging from zero (e.g. a multicore
machine) to 30 seconds (e.g. a wide area computing grid).

As block size increases, the sub-problem runtime increases
relative to the dispatch latency, but less parallelism is avail-
able because the distributed master must wait for an entire
sub-problem to complete before dispatching its neighbors.
The result is that for very high dispatch times, a modest
block size improves performance, but cannot compete with
a system that has lower dispatch latency. So, the key to the
problem is to minimize dispatch latency.

Although Wavefront can submit jobs to Condor and SGE
batch systems directly, the dispatch latency of these systems
when idle is anywhere from ten to sixty seconds, depending
on the local configuration. For short-running functions, this
will not result in acceptable performance, even if we choose
a large block size. (This is not an implementation error in
either system, rather it is a natural result of the need to ser-
vice many different users within complex policy constraints.)

To address this, we borrowed the idea of a fast dispatch
execution system as in Falkon [16]. We built a simple sys-
tem called Work Queue that consists of lightweight worker
processes that can be submitted to a batch system. Each
contacts the distributed master, and provides the ability to
upload and execute files. This allows for task dispatch times
measured in milliseconds instead of seconds. Workers may
be added or removed from the system at any time, and the
master will compensate by assigning new tasks, or reassign-
ing failed tasks.

However, even if we solve the problem of fixed dispatch
latency, we must still deal with the unexpected delays that
occur in distributed systems. When Work Queue runs on a
Condor pool, a running task may still be arbitrarily delayed
in execution. It may be evicted by system policy, stalled due
to competition for local resources, or simply caught on a very
slow machine. To address these problems, the Work Queue
scheduler keeps statistics on the average execution time of
successful jobs and the success rate of individual workers.
It makes assignments preferentially to machines with the
fastest history, and proactively aborts and re-assigns tasks
that have run longer than three standard deviations past the
average. These techniques are collectively called Fast Abort.

Figure 7 shows the impact of Fast Abort on starting up
a 1000x1000 Wavefront on 180 CPUs. Without Fast Abort,
stuck jobs cause the workload to however around twenty
tasks running at once. With Fast Abort, the stragglers are
systematically resolved and the concurrency increases lin-
early until all CPUs are in use. Figure 8 shows this behavior
from another perspective. The distributed master periodi-
cally produces a bitmap showing the progress of the run.
Colors indicate the state of each cell: red is incomplete,

Figure 8: Asynchronous Progress in Wavefront
A progress display from a Wavefront problem. Each cell
shows the current state of a portion of the computation: the
darkest gray in the lower left corner indicates incomplete,
the lighter gray in the upper right indicates complete, and
the light cells in between are currently running. The irreg-
ular progress is due to heterogeneity and asynchrony in the
system.

green is running, and blue is complete. Due to the het-
erogeneity of the underlying machines, the wave proceeds
irregularly. Although an NxN problem should use N CPUs
at maximum, this perfect diagonal is rarely seen.

5. PUTTING IT ALL TOGETHER
In a well-defined dedicated environment in which the dis-

tributed master knows exactly which resources will be used
a model can partition work to the resources in such a way
as to optimize the workload [26]. This applies to multi-
core environments as well – the distributed master could
build multicore assumptions into the model to optimize a
workload. However, this finely-tuned partitioning does not
adapt well to heterogeneous environments or resource un-
availability. Previous work derived a more realistic solution
for modeling the turnaround time of an All-Pairs workload
in a cluster [12]. Is it possible to use the multicore version of
the All-Pairs abstraction transparently beneath the cluster
abstraction?

If the abstraction is to use the multicore master trans-
parently, then it must continue to exclude considerations
of the number of cores per node from the model . If the
workload is benchmarked on a single-core system or with
a single-threaded executor, then the model will choose ap-
propriate resources to run the workload efficiently assum-
ing single-threaded operation. Adding multicore execution
to this workload, then, will only serve to make the batch
jobs complete faster on the multicore resources. It does not
change the overall workload any more than having bench-
marked on a slow node would: the success of the model in
avoiding disasterous cases is maintained, the faster resources
(in this case multicore nodes) will account for a greater por-
tion of the batch jobs than their “fair share”, and any long-
tail from slow nodes would extend out at most to the same
duration as without any multicore nodes.

So it is possible, but this is little solace if there is a clearly
better solution for modeling a distributed All-Pairs workload
using multicore resources. Another option is to integrate the
multicore master (instead of the original single-threaded ex-
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Figure 9: Accuracy of the All-Pairs Model on Multicore and Cluster
The real and modeled performance of a wavefront benchmark of varying sizes on a 8-core machine (left) and an 64-core cluster
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Figure 10: Accuracy of the Wavefront Model on Multicore and Cluster
The real and modeled performance of a wavefront benchmark of varying sizes on a 32-core machine (left) and an 180-core
cluster (right).
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Figure 11: Selecting An Implementation Based on the Model
These graphs overlay the modeled multicore and cluster performance on problems of various sizes for All-Pairs (left) and
Wavefront (right). The dots indicate actual performance for the selected problem size. As can be seen, the modeled performance
is not perfect, but it is sufficient to choose the right implementation.



ecutor) into the benchmarking process for the model. If the
function runtime is benchmarked using the multicore mas-
ter, then the function execution time (computed as the av-
erage time per function over a small set of executions) will
be comparable to the expected execution of batch jobs on
the same number of cores. This is a good approach for sub-
mitting to homogeneous clusters of resources in which the
same number of cores are available for every batch job. In a
heterogeneous environment, however, this only serves to ex-
acerbate the model’s assumption that the benchmark node
reflects the cluster’s resources. Whereas the original model
conceded that individual resources might be perhaps a gen-
eration newer (faster) or older (slower) than the benchmark
node, the inclusion of multicore uncertainty into the bench-
marking increases the potential range of resource capabilities
and thus the potential for long-tail effects in a workload.

Another option would be to include a coefficient of the av-
erage number of cores within the model. Because the model
includes a component for the time to complete a single batch
job, an adjustment for the number of cores could be made
by dividing the the batch job execution time in the model
by this average. This retains the same prerequisite mea-
surements (plus the calculation of the average number of
cores), however it has several limitations. First, the pool of
resources must be well-defined so that the average number
of cores may be determined; but because the model is used
to select the appropriate number of resources, the exact set
of hosts is not known a priori. Thus, the average number of
cores available for each host is a pool average rather than one
specific to the actual resources used. Further, contention for
resources means that not all hosts will be utilized equally or
predictably, which presents the same problem in trying to
include a factor of the number of cores in the turnaround
time model. This is especially problematic as we move be-
yond workstations with at most a few cores: unavailability
of a machine with dozens of cores significantly changes the
average number of cores of the available machines.

With that said, can we accurately model the performance
of our abstractions?

Figure 9 shows the modeled performance of All-Pairs work-
loads of varying sizes running on an 8-core machine and a
64-core cluster. Figure 10 shows the modeled performance
of Wavefront workloads running on a 32-core machine and a
180-core cluster. In both cases, the multicore model is highly
accurate, due to a lack of competing users and other compli-
cations of distributed systems. Both models are sufficiently
accurate that we may use them to choose the appropriate
implementation at runtime based on the properties given
to the abstraction. Figure 11 compares the multicore and
cluster models for the previous two examples, and demon-
strates the actual performance achieved when selecting the
implementation at runtime.

6. APPLICATIONS
(In a previous paper [12], we demonstrated a number of

applications of All-Pairs, so here we will focus on applica-
tions of Wavefront.)

Our example applications run on an open Condor pool of
approximately 600 CPUs, consisting of heterogeneous desk-
top machines, homogeneous research clusters, and multicore
servers ranging from 4-32 CPUs. Clock speeds range from
500MHz to 4GHz. The number of CPUs changes unpre-
dictably as desktop users come and go, and other workloads
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Figure 12: 100x100 Wavefront in Bioinformatics
A timeline of a 100x100 Wavefront problem implement-
ing sequence alignment running on non-dedicated multicore
Condor pool. 80 cores were available at the peak of the exe-
cution. An overall speedup of 38X is achieved, the maximum
possible is 50X.

enter and leave the system. Thus, these results show that
our system achieves reasonable performance under adverse
conditions on real applications.

We use the term speedup with the usual definition: se-
quential runtime divided by actual runtime. However, note
that the maximum possible speedup is not the number of
processors. Consider an idealized machine with P proces-
sors running an NxN problem where P >= N . In the first
timestep, one task will run, then two, and so forth, until
the diagonal is reached in N steps. Then, N − 1 tasks run
simultaneously and so on down to one task, giving a parallel
runtime of (2N−1) timesteps. The sequential runtime is N 2,
so the best possible speedup is N2/(2N − 1) or N/2. But, if
P << N , then the system will quickly reach a steady state
of P tasks running, and the runtime will approach N 2/P
with a speedup of P . We will see both cases below.

6.1 Bioinformatics
Sequence alignment is one of the most important tasks in

bioinformatics and is used in a variety of applications. Com-
mon variants of pairwise sequence alignment can be solved
using dynamic programming [14] and each requires time pro-
portional to the product of the two sequences considered.
Prior parallel implementations have been motivated by ei-
ther the need to compare a single pair of large sequences [17]
or the need to compare many small sequences [15] for tasks
such as phylogenetic inference and genome assembly. Pre-
vious algorithms have implemented the wavefront problem
on dedicated clusters and parallel architectures such as the
Cell [22]. Our implementation achieves similar speedups,
but requires only sequential coding, and can execute on un-
reliable, loosely coupled machines.

In less than a day, we wrote a single process function in 156
lines of C++ that performed alignment on a substring and
propagated the required data for later steps. Distributed
sequence alignment was then tested on two large bacteria
genomes using wavefront: a non-virulent lab strain of An-
thrax (Bacillus anthracis str. Ames; Genbank NC 003997)
and its virulent ancestor strain (Bacillus anthracis str. ’Ames
Ancestor’; Genbank NC 007530). Each genome is approx-
imately 5.3 million characters long, and the score of an
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Figure 13: 500x500 Wavefront in Economics
A timeline of a 500x500 Wavefront problem in economics
running on non-dedicated multicore Condor pool. Because
many of the remote CPUs were faster than the submitting
CPU, the overall speedup of 180X is greater than the number
of CPUs.

optimal suffix-prefix alignment was computed using only
linear-space. An actual alignment (i.e., the path through
the dynamic programming matrix) is also attainable based
on the divide-and-conquer Hirschberg technique [22], which
requires twice as much computation and a more complicated
strategy.

Figure 12 shows a timeline of this alignment running using
a 100x100 partition of the problem. Each task takes about
117 seconds to run on a 1GHz CPU. On the Condor pool, a
maximum of 80 tasks running simultaneously was achieved.
The overall runtime was reduced from 13 days sequential
to 8.3 hours with a speedup of 38X out of the maximum
possible 50X.

6.2 Economics
The wavefront abstraction can represent a number of dy-

namic economic problems. Consider, for example, the com-
petition between two microprocessor vendors. Each firm
produces microprocessors and engages in R&D to improve
the clock speed. That game ends when they reach limits
imposed by physics. Economic models examining such dy-
namic games would discretize the problem by assuming that
there are N possible efficiencies and each firm begins with
efficiency level 1. The state of a two-player game is denoted
by the vector of efficiencies, (i,j). At each such state, each
firm competes for sales of the chips of those efficiencies but
each firm also wants to improve its efficiency. When the
game reaches the state (N,N) the dynamics are done and
we have reached a static situation which can be computed
directly. If the state of the game is (N-1,N) then firm 1 still
works to improve its efficiency and its incentives to work on
R&D are affected by the anticipated profits it receives when
the game goes to (N,N). This is also true for player 2 in
the state (N,N-1). Hence, the solution at (N,N) allows us to
solve (N-1,N) and (N,N-1). Similarly, those solutions allow
us to solve (N-2,N), (N-1,N-1) and (N,N-2). The wavefront
abstraction sweeps through the states until we have solved
the dynamic game at all states (i,j), 1 <= i,j <= N.

This kind of game arises in many dynamic economic prob-
lems. See [9, 24, 23] for original papers on the learning
curve, [18, 20, 19, 6] for examples of dynamic R&D races,

and [21] for an example from the exhaustible resources lit-
erature. All of these results are limited in scope because a
sequential implementation dramatically limits the number
of parameters. For example, the learning and R&D papers
assume only two firms and a small number of steps. This is
an unreasonable assumption since there are many firms in
each industry, particularly at the early stages where innova-
tion is rapid and many firms are competing to be one of the
few survivors. These models are essential for a serious ex-
amination of antitrust policies that limit how fiercely firms
may compete and tax policies that are supposedly designed
to encourage innovation

Using the wavefront abstraction, we can easily carry out
problems many orders of magnitude larger than have been
attempted before. With less than a day of coding, we ported
a Nash equilibrium function for two players with four param-
eters from Mathematica into a 77-line C program usable
with Wavefront. On a single input, this function requires
about 7.6 seconds to complete on a 1-GHz CPU.

Figure 13 shows a timeline of this workload running on
the Condor pool. The workload quickly reached the max-
imum available parallelism of between 120 and 160 CPUs.
An overall speedup of 182X was achieved, reducing the se-
quential runtime from 22 days to 2.9 hours. The speedup
achieved was faster than ideal because many of the remote
CPUs were faster than the submitting machine on which the
function was benchmarked.

7. CONCLUSION
We have demonstrated how simple high level abstractions

can be used to scale regularly structured problems up to
clusters of multicore computers. We have made the following
key observations:

• Processes are a realistic alternative to threads for pro-
gramming multicore systems, even on I/O intensive
tasks.

• It is feasible to accurately model the performance of
large scale abstractions across a wide range of config-
urations, allowing for the rational selection of appro-
priate resources.

• Abstractions are easy for non-experts to program, pro-
vided there is a good match between the application
structure and tbe application.

• The All-Pairs and Wavefront abstractions can be scaled
up to hundreds of cores, achieving good performance
even under adverse conditions.

There are many avenues of future work. We have outlined
a two-level hierarchy of implementations for abstractions,
but the system could be generalized to support solving very
large problems across the wide area with deeper nesting.
Additional implementations of abstractions on specialized
architectures such as FPGAs or the Cell might be effective
ways of transparently adding such devices to large compu-
tations.
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