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Abstract Both distributed systems and multicore sys-

tems are difficult programming environments. Although
the expert programmer may be able to carefully tune

these systems to achieve high performance, the non-

expert may struggle. We argue that high level abstrac-

tions are an effective way of making parallel comput-

ing accessible to the non-expert. An abstraction is a
regularly structured framework into which a user may

plug in simple sequential programs to create very large

parallel programs. By virtue of a regular structure and

declarative specification, abstractions may be materi-
alized on distributed, multicore, and distributed mul-

ticore systems with robust performance across a wide

range of problem sizes. In previous work, we presented

the All-Pairs abstraction for computing on distributed

systems of single CPUs. In this paper, we extend All-
Pairs to multicore systems, and introduce the Wave-

front and Makeflow abstractions, which represent a num-

ber of problems in economics and bioinformatics. We

demonstrate good scaling of both abstractions up to 32
cores on one machine and hundreds of cores in a dis-

tributed system.

1 Introduction

Distributed systems such as clusters, clouds, and grids

are very challenging programming environments. (Here-
after, we refer to all of these systems as clusters.) A user

that wishes to execute a large workload with some in-
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herent parallelism is confronted with a dizzying array

of choices. How should the workload be broken up into
jobs? How should the data be distributed to each node?

How many nodes should be used? Will the network be

a bottleneck? Often, the answers to these questions de-

pend heavily on the properties of the system and work-

load in use. Changing one parameter, such as the size of
a file or the runtime of a job, may require a completely

different strategy.

Multicore systems present many of the same chal-
lenges. The orders of magnitude change, but the ques-

tions are similar. How should work be divided among

threads? Should we use message passing or shared mem-

ory? How many CPUs should be used? Will memory ac-
cess present a bottleneck? When we consider clusters of

multicore computers, then the problems become more

complex.

We argue that abstractions are an effective way of

enabling non-expert users to harness clusters, multicore

computers, and clusters of multicore computers. An ab-

straction is a declarative structure that joins simple
data structures and small sequential programs into par-

allel graphs that can be scaled to very large sizes. Be-

cause an abstraction is specialized to a restricted class

of workloads, it is possible to create an efficient, robust,

scalable, and fault tolerant implementation. In previous
work, we introduced the All-Pairs [12] and Classify [13]

abstractions, and described how they can be used to

solve data intensive problems in the fields of biometrics,

bioinformatics, and data mining. Our implementations
allow non-experts to harness hundreds of processors on

problems that run for hours or days using the Con-

dor [27] distributed batch system.

In this paper, we extend the concept of abstrac-

tions to multicore computers and clusters of multicore

computers. In Section 2, we present the concept of ab-
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Fig. 1 Three Examples of Abstractions
All-Pairs, Wavefront and Makeflow are examples of abstractions. All-Pairs computes the Cartesian product of two sets A and B
using a custom function F. Wavefront computes a two-dimensional recurrence relation using boundary conditions and a custom
function F as an input. Makeflow takes an array of dependencies, which could be visualized as a directed acyclic graph structured

workload, computes according to the workflow and produces a target file. Using different techniques, each can be executed efficiently
on multicore clusters.

stractions, and formally describe All-Pairs, Wavefront

and Makeflow. In Section 3, we describe a general ar-

chitecture for implementing abstractions on multicore
clusters. In Section 4, we describe the technical chal-

lenges particular to All-Pairs, Wavefront, and Make-

flow. In Section 5, we demonstrate weak scaling of each

abstractions to large numbers of cores and nodes un-
der controlled conditions. In Section 6, we discuss the

advantages of a suite of specific abstractions. In Sec-

tion 7, we demonstrate applications in bioinformatics

and economics robustly running on hundreds of cores

in an unreliable distributed system. We conclude with
a review of related work and open avenues for research.

2 Abstractions

An abstraction is a declarative framework that joins to-

gether sequential processes and data structures into a
regularly structured parallel graph. An abstraction en-

gine is a particular implementation that materializes

that abstraction on a system, whether it be a sequen-

tial computer, a multicore computer, or a distributed

system. Figure 1 shows three examples of abstractions:
All-Pairs, Wavefront and Makeflow.

All-Pairs( A[i], B[j], F(x,y) )
returns matrix M

where M[i,j] = F(A[i],B[j])

The All-Pairs abstraction computes the Cartesian

product of two sets, generating a matrix where each

cell M[i,j] contains the output of the function F on ob-

jects A[i] and B[j]. This sort of problem is found in
many different fields. In bioinformatics, one might com-

pute All-Pairs on a set of gene sequences as the first

step of building a phylogenetic tree. In biometrics, one

might compute All-Pairs to determine the accuracy of

a matching algorithm on a collection of faces. In data

mining applications, one might compute All-Pairs on a
set of documents to generate a graph of relationships.

Wavefront( R[i,j], F(x,y,d) )
returns matrix R

where R[i,j] = F( R[i-1,j], R[i,j-1], R[i-1,j-1] )

The Wavefront abstraction computes a recurrence

relationship in two dimensions. Each cell in the output

matrix is generated by a function F where the argu-

ments are the values in the cells immediately to the

left, below, and diagonally left and below. Once a value
has been computed at position (1,1), then values at po-

sitions (2,1) and (1,2) may be computed, and so forth,

until the entire matrix is complete. The problem can

be generalized to an arbitrary number of dimensions.
Wavefront represents a number of simulation problems

in economics and game theory, where the initial states

represent ending states of a game, and the recurrence is

used to work backwards in order to discover the effect

of decisions at each state. Wavefront also represents the
problem of sequence alignment via dynamic program-

ming in genomics.

Makeflow( R[n] )
where each rule R[i] is:

input files : output files : command

returns output files from all R[i]

The Makeflow abstraction expresses any arbitrary

directed acyclic graph (DAG). Whereas All-Pairs and

Wavefront are problems that can be decomposed into
thousands or millions of instances of the same func-

tion to be run with near-identical requirements, a DAG

workload may be structurally heterogeneous and con-
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sist of programs and files of highly variable runtime and

size. Many such problems are found in bioinformatics,

where users chain together multiple independent tools

to solve a larger problem. Below, we will show Makeflow

applied to a genomics problem.
On very small problems, these abstractions are easy

to implement. For example, a small All-Pairs can be

achieved by just iterating over the output matrix. How-

ever, many users have very large examples of these
problems, which are not easy to implement. For ex-

ample, a common All-Pairs problem in biometrics com-

pares 4000 images of 1MB to each other using a function

that runs for one second, requiring 185 CPU-days of

sequential computation. A sample Wavefront problem
in economics requires evaluating a 500 by 500 matrix,

where each function requires 7 seconds of computation,

requiring 22 CPU-days of sequential computation. To

solve these problems in reasonable time, we must har-
ness hundreds of CPUs. However, scaling up to hun-

dreds of CPUs forces us to confront these challenges:

– Data Bottlenecks. Often, I/O patterns that can

be overlooked on one processor may be disastrous in

a scalable system. One process loading one gigabyte
from a local disk will be measured in seconds. But,

hundreds of processes loading a gigabyte from a sin-

gle disk over a shared network will encounter several

different kinds of contention that do not scale lin-
early. An abstraction must take appropriate steps to

carefully manage data transfer within the workload.

– Latency vs Concurrency. Dispatching sub-prob-

lems to a remote CPU can have a significant cost in a

large distributed system. To overcome this cost, the
system may increase the granularity of the sub-prob-

lems, but this decreases the available concurrency.

To tune the system appropriately, the implemen-

tation must acquire knowledge of all the relevant
factors.

– Fault Tolerance. The larger a system becomes,

the higher the probability the user will encounter

hardware failures, network partitions, adverse pol-

icy decisions, or unexpected slowdowns. To run ro-
bustly on hundreds of CPUs, our model must accept

failures as a normal operating condition.

– Ease of Use. Most importantly, each of these prob-

lems must be addressed without placing additional
burden on the end user. The system must operate

robustly on problems ranging across several orders

of magnitude by exploring, measuring, and adapting

without assistance from the end user.

Examples of abstractions beyond the three men-
tioned above include Bag-of-Tasks [2,24], Bulk Syn-

chronous Parallel [3], and Map-Reduce [4]. None of these

models is a universal programming language, but each

is capable of representing a certain class of computa-

tions very efficiently. In that sense, programming ab-

stractions are similar to the idea of systolic arrays [11],

which are machines specialized for very specific, highly

parallel tasks. Abstractions like All-Pairs and Wave-
front are obviously than general purpose workflow lan-

guages such as DAGMan [27], Pegasus [5], Swift [30],

and Dryad [10]. But, precisely because abstractions are

regularly structured and less expressive, it is more tract-
able to provide robust and predictable implementations

of large workloads. Once experience has been gained

with specific abstractions, future work may evaluate

whether more general languages can apply the same

techniques.

3 Architecture

Figure 2 shows a general strategy for implementing ab-

stractions on distributed multicore systems. The user

invokes the abstraction by passing the input data and

function to a distributed master. This process examines

the size of the input data, the runtime of the func-
tion, consults a resource catalog to determine the avail-

able machines, and models the expected runtime of

the workload in various configurations. After choosing

a parallelization strategy, the distributed master sub-
mits sub-problems to the local batch system, which dis-

patches them to available CPUs. Each job consists of

a multicore master which examines the executing ma-

chine, chooses a parallelization strategy, executes the

sub-problem, and returns a partial result to the dis-
tributed master. As results are returned, the distributed

master may dispatch more jobs and assembles the out-

put into a compact final form.

For ease of use and implementation, both the dis-

tributed and multicore masters are contained in a single

executable and invoked in the same way. Both All-Pairs
and Wavefront are invoked by stating directories con-

taining the input data and the name of the executable

that implements the function:

allpairs function.exe Adir Bdir

wavefront function.exe Rdir

Without arguments, the distributed master will au-

tomatically choose how to partition the problem. When

dispatching a sub-problem to a CPU, the distributed

master simply invokes the same executable with op-
tions to select multicore mode on a given sub-problem,

for example:

wavefront -M -X 15 -Y 20 -W 5 -H 5

function.exe Rdir
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Fig. 2 Distributed Multicore Implementation
All-Pairs, Wavefront, and other abstractions can be executed on multicore clusters with a hierarchical technique. The user first

invokes the abstraction, stating the input data sets and the desired function. The distributed master process measures the inputs,
models the system, and submits sub-jobs to the distributed system. Each sub-job is executed by a multicore master, which dispatches

functions, and returns results to the distributed master, which collects them in final form for the user.

Of course, this assumes that the necessary files are

available on the executing machine. The distributed

master is responsible for setting this up via direct file

transfer, or specification through the batch system. Note
that this architecture allows for more than two levels

of hierarchy – a global master could invoke distributed

masters on multiple clusters – but we have not explored

this idea yet.
The user may specify the function in several dif-

ferent ways. The function is usually a single executable

program, in which case the input data is passed through

files named on the command line, and the output is

written to the standard output. This allows the end user
to choose whatever programming language and environ-

ment they are most comfortable with, or even use an

existing commercial binary. For example, the All-Pairs

and Wavefront functions are invoked like this:

allpairs_func.exe Aitem Bitem > Output

wavefront_func.exe Xitem Yitem Ditem > Output

Invoking an external program might have unaccept-

able overhead if the execution time is relatively short.

To overcome this, the user may also compile the func-
tion into a threaded shared library with interfaces like

this:

void * allpairs_function(

const void *a, int alength,

const void *b, int blength );

void * wavefront_function(

const void *x, int xlength,

const void *y, int ylength,

const void *d, int dlength );

Regardless of how the code is provided, we use the

term function in the logical sense: a discrete, self-con-

tained piece of code with no side effects. This property

is critical to achieving a robust, usable system. The dis-

tributed master relies on its knowledge of the function

inputs to provide the necessary data to each node. If
the function were to read or write unexpected data,

the system would not function.

As the results are returned from each multicore mas-

ter, the distributed master assembles them into a suit-
able external form. In the case of Wavefront, it is not

realistic to leave each output in a separate file (al-

though the batch system may deposit them that way),

because the result would be millions of small files. In-

stead, the distributed master stores the results in an
external sparse matrix. This provides efficient storage

as well as checkpointing: after a crash, the master reads

the matrix and continues where it left off.

The distributed master does not depend on the fea-
tures of any particular batch system, apart from the

ability to submit, track, and remove jobs. Our current

implementation interfaces with both Condor [27] and

Sun Grid Engine (SGE) [8], and expanding to other

systems is straightforward. The distributed master also
interfaces with a custom distributed system called Work

Queue, which we will motivate and describe later.

To use Makeflow, a user needs to create a Makeflow

script that describes the workflow of his workload. This
language is very similar to traditional Make [31]: each

rule states a program to run, along with the input files

needed and the output files produced. Here is a very

simple example:

part1 part2: input.data split.py

./split.py input.data

out1: part1 mysim.exe

./mysim.exe part1 >out1
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out2: part2 mysim.exe

./mysim.exe part2 >out2

Like All-Pairs and Wavefront, Makeflow can run an

entire workload on a local multicore machine, or sub-

mit jobs to Condor, SGE, or Work Queue. However,
it does not have a hierarchical implementation: only

single jobs are dispatched to remote machines. This is

because graph partitioning is algorithmically complex,

and impractical for heterogeneous workloads where run-

time prediction is unreliable. Put simply, Makeflow has
greater generality, but this comes at the cost of imple-

mentation efficiency, as we will emphasize below.

4 Building Blocks

Our overall argument is that highly restricted abstrac-
tions are an effective way of constructing very large

problems that are easily composed, robustly executed,

and highly scalable. To evaluate this argument, we will

begin by examining several questions about each ab-

straction at the level of microbenchmarks, then evalu-
ate the system has a whole.

4.1 Threads and Processes

It is often assumed that multicore machines should be

programmed via multithreaded libraries or compilers.
Our technique instead employs processes, because they

are more easily adapted to distributed systems. How

does this decision affect performance at the level of a

single machine?

As a starting point, we constructed simple bench-

marks to measure the time to dispatch a null task using

various techniques. Each measurement is repeated one

thousand times, and the average is shown. (Unless oth-
erwise noted, the benchmark machine is a 1GHz dual

core AMD Opteron model 1210 with 2GB RAM run-

ning Linux 2.6.9.) Table 1 shows the results. pthread

creates and joins a standard POSIX thread on an empty
function, fork creates and works for a process which

simply calls exit, exec forks and executes an exter-

nal program, and popen and system create new sub-

processes invoked through the shell.

It is no surprise that creating a thread is several or-

ders of magnitude faster than creating a process. How-

ever, it is not so obvious that popen and system are

considerably more expensive than exec, and often vary
in cost from user to user. This is because these methods

invoke the user’s shell along with their complex startup

scripts, which can have unbounded execution time and

Table 1 Time to Dispatch a Task

Method Time

pthread 6.3 µs

fork 253 µs

exec 830 µs

popen 2500+ µs

system 2500+ µs

create troubleshooting problems. If we are careful to

avoid these methods, then executing an external pro-

gram can be made reasonably fast. Moreover, it is only

necessary for the execution time to dominate the in-
vocation time: a task in an abstraction running for a

second or more is sufficient.

4.2 Concurrency and Data in All-Pairs

Of course, within a real program, we must weigh invo-

cation time against more complex issues such as syn-
chronization, caching, and access to data. To explore

the boundaries of these issues, we studied the All-Pairs

multicore master running in sequential mode on a single

machine, comparing 1MB randomly generated files. A

simple comparison function counts the number of bytes
different in each object. From a systems perspective,

this is similar to a biometrics problem, and provides a

high ratio of data to computation. Any realistic com-

parison function would be more CPU intensive, so these
tests explore the worst case.

In this scenario, we vary several factors. First, we

vary the invocation method of the function: create a

thread to run an internal function (thread) or create
a process to execute an external program (process).

The author of a function is free to choose their own

I/O technique, so we also compare buffered I/O byte-

by-byte (fgetc), block-by-block (fread), and memory-
mapped I/O (mmap). A naive implementation would

simply iterate over the output matrix in order, causing

cache misses at all levels on every access. A more effec-

tive method shown in Figure 3 is to choose a smaller

block of cells and iterate over those completely before
proceeding to the next block. The width of the block

is called the block size. (This technique is sufficient for

our purposes, but see Frigo et al [7] for more clever

methods.)

Figure 4 shows the relative weight of all these issues.

Each curve shows the runtime of a 1000×10 compari-

son over various block sizes. The two slowest curves

are thread and process, both using fgetc. The two mid-
dle curves are process using fread and mmap, and the

fastest is thread with mmap. All curves show significant

slowdown when the block size exceeds physical memory.
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The modeled runtime of a 1000×1000 Wavefront where each
function takes one second to complete, with varying block size
and dispatch latency. As dispatch time increases, the system
must increase block size to overcome the idle time.

Clearly, threads with mmap execute twice as fast as

the next best configuration. If the user is willing to write

a thread-safe function for use with the abstraction, they
should do so. However, the use of processes is only twice

as slow in this artificial worst case and will not fare as

poorly with a more CPU-intensive function. Moreover,

the appropriate use of virtual memory by the abstrac-
tion and the I/O technique chosen by the function are

much more significant factors than the difference be-

tween threads and processes. We conclude that using

processes to exploit parallelism is a reasonable tradeoff

if it improves the usability of the system.

(We re-emphasize that each abstraction can accept

either an external program or a threaded internal func-

tion. So far, none of our users has chosen to use threads.)

Next we consider how to carry out All-Pairs on a

multicore machine. Although there are many possible

ways, we may consider two basic strategies. One is to

generate N contiguous sub-problems, and allow each
core to run independently. The other is to write an ex-

plicit multicore master that proceeds through the entire

problem coherently, dispatching individual functions to

each core. Figure 5 compares both of these against a

simple sequential approach. As can be seen, the sub-
problem approach performs far worse, because it does

not coordinate access to data, and caches at all levels

are quickly overwhelmed. Thus, we have shown it is nec-

essary to have a deliberate multicore implementation,
rather than treating each core as a separate node.

4.3 Control Flow in Wavefront

As we have shown, the primary problem in efficient All-
Pairs is managing data access. However, in Wavefront

the problem is almost entirely control flow. The first

task of the problem is sequential. Once completed, two
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tasks may run in parallel, then three, and so forth. If
there is any delay in dispatching or completing a task,

this will have a cascading effect on dependent adjacent

tasks. We will consider two control flow problems: dis-

patch latency and run-time variance.

Figure 6 models the effect of latency on a Wavefront

problem. This simple model assumes a 1000×1000 prob-
lem where each task takes one second to complete. On

the X axis, block size indicates the size of sub problem

dispatched to a processor. Each curve shows the run-

time achieved for a system with dispatch latency rang-
ing from zero (e.g. a multicore machine) to 30 seconds

(e.g. a wide area computing grid).

As block size increases, the sub-problem runtime in-

creases relative to the dispatch latency, but less paral-

lelism is available because the distributed master must

wait for an entire sub-problem to complete before dis-
patching its neighbors. The result is that for very high

dispatch times, a modest block size improves perfor-

mance, but cannot compete with a system that has

lower dispatch latency. So, the key to the problem is

to minimize dispatch latency.

Although Wavefront can submit jobs to Condor and
SGE batch systems directly, the dispatch latency of

these systems when idle is anywhere from ten to sixty

seconds, depending on the local configuration. For short-

running functions, this will not result in acceptable per-
formance, even if we choose a large block size. (This is

not an implementation error in either system, rather it

is a natural result of the need to service many different

users within complex policy constraints.)

To address this, we borrowed the idea of a fast dis-

patch execution system as in Falkon [17]. We built a
simple system called Work Queue that uses lightweight

worker processes that can be submitted to a batch sys-

tem. Each contacts the distributed master, and provides

Fig. 8 Asynchronous Progress in Wavefront
A progress display from a Wavefront problem. Each cell shows
the current state of a portion of the computation: the darkest
gray in the lower left corner indicates incomplete, the lighter
gray in the upper right indicates complete, and the light cells in
between are currently running. The irregular progress is due to
heterogeneity and asynchrony in the system.

the ability to upload and execute files. This allows for
task dispatch times measured in milliseconds instead of

seconds. Workers may be added or removed from the

system at any time, and the master will compensate by

assigning new tasks, or reassigning failed tasks.

However, even if we solve the problem of fixed dis-

patch latency, we must still deal with the unexpected
delays that occur in distributed systems. When Work

Queue runs on a Condor pool, a running task may still

be arbitrarily delayed in execution. It may be evicted

by system policy, stalled due to competition for local

resources, or simply caught on a very slow machine.
To address these problems, the Work Queue scheduler

keeps statistics on the average execution time of suc-

cessful jobs and the success rate of individual workers. It

makes assignments preferentially to machines with the
fastest history, and proactively aborts and re-assigns

tasks that have run longer than three standard devia-

tions past the average. These techniques are collectively

called Fast Abort.

Figure 7 shows the impact of Fast Abort on start-

ing up a 1000×1000 Wavefront on 180 CPUs. Without
Fast Abort, stuck jobs cause the workload to however

around twenty tasks running at once. With Fast Abort,

the stragglers are systematically resolved and the con-

currency increases linearly until all CPUs are in use.

Figure 8 shows this behavior from another perspective.
The distributed master periodically produces a bitmap

showing the progress of the run. Colors indicate the

state of each cell: red is incomplete, green is running,

and blue is complete. Due to the heterogeneity of the
underlying machines, the wave proceeds irregularly. Al-

though an N×N problem should use N CPUs at maxi-

mum, this perfect diagonal is rarely seen.
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4.4 Greater Generality with Makeflow

Makeflow provides a different type of building block for

large multicore workflows with abstractions. Makeflow

combines many functions together (instead of many in-

stances of the same function) to express more complex

series of operations.

Makeflow uses a syntax very similar to traditional
Make, but it differs in one critical way: each rule of a

Makeflow must exactly state all of the files consumed or

created by the rule. (In traditional Make, one can often

omit files, or add dummy rules as needed to affect the

control flow.) Makeflow is more strict, but this allows
it to accurately generate batch jobs, exploit common

patterns of work, and schedule jobs to where their data

is located. This allows Makeflow to run correctly on

both local multicore machines as well as a distributed
system.

The Makeflow abstraction can be configured to use
different numbers of cores. Figure 9 shows the turn-

around times varying the number of cores used with

two different options for executing a genomics work-

load on 1-24 cores. The top curve (“cluster”) presents

Makeflow using Work Queue, with workers submitted
to remote machines as Condor jobs. The bottom curve

(“multicore”) executes all work as Makeflow-controlled

local processes, in which Makeflow automatically takes

advantage of multiple cores on the submitting machine.
Makeflow jobs running locally outperform jobs tasked

to remote workers and scale well up to the number of

available cores.

5 Putting it All Together

In a well-defined dedicated environment in which the

distributed master knows exactly which resources will

be used, a model can partition work to the resources
in such a way as to optimize the workload [28]. This

applies to multicore environments as well – the dis-

tributed master could build multicore assumptions into

the model to optimize a workload. However, this finely-
tuned partitioning does not adapt well to heteroge-

neous environments or resource unavailability. Previ-

ous work derived a more realistic solution for modeling

the turnaround time of an All-Pairs workload in a clus-

ter [12]. Is it possible to use the multicore version of the
All-Pairs abstraction transparently beneath the cluster

abstraction?

If the abstraction is to use the multicore master

transparently, then it must continue to exclude consid-

erations of the number of cores per node from the model

. If the workload is benchmarked on a single-core sys-

tem or with a single-threaded executor, then the model
will choose appropriate resources to run the workload

efficiently assuming single-threaded operation. Adding

multicore execution to this workload, then, will only

serve to make the batch jobs complete faster on the
multicore resources. It does not change the overall work-

load any more than having benchmarked on a slow node

would: the success of the model in avoiding disastrous

cases is maintained, the faster resources (in this case

multicore nodes) will account for a greater portion of
the batch jobs than their “fair share”, and any long-tail

from slow nodes would extend out at most to the same

duration as without any multicore nodes.

So it is possible, but this is little solace if there is a

clearly better solution for modeling a distributed All-

Pairs workload using multicore resources. Another op-

tion is to integrate the multicore master (instead of the
original single-threaded executor) into the benchmark-

ing process for the model. If the function runtime is

benchmarked using the multicore master, then the func-

tion execution time (computed as the average time per
function over a small set of executions) will be compara-

ble to the expected execution of batch jobs on the same

number of cores. This is a good approach for submitting

to homogeneous clusters of resources in which the same

number of cores are available for every batch job. In a
heterogeneous environment, however, this only serves to

exacerbate the model’s assumption that the benchmark

node reflects the cluster’s resources. Whereas the origi-

nal model conceded that individual resources might be
perhaps a generation newer (faster) or older (slower)

than the benchmark node, the inclusion of multicore

uncertainty into the benchmarking increases the poten-
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Fig. 10 Accuracy of the All-Pairs Model on Multicore and Cluster
The real and modeled performance of an All-Pairs benchmark of varying sizes on a 8-core machine (left) and an 64-core cluster
(right).
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Fig. 11 Accuracy of the Wavefront Model on Multicore and Cluster
The real and modeled performance of a Wavefront benchmark of varying sizes on a 32-core machine (left) and an 180-core cluster
(right).
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Fig. 12 Accuracy of the Makeflow Model on Multicore and Cluster

The real and modeled performance of a Makeflow benchmark of varying sizes on a 24-core machine(left) and a 60-core cluster(right).

tial range of resource capabilities and thus the potential

for long-tail effects in a workload.

Another option would be to include a coefficient of

the average number of cores within the model. Because

the model includes a component for the time to com-

plete a single batch job, an adjustment for the number
of cores could be made by dividing the the batch job ex-

ecution time in the model by this average. This retains

the same prerequisite measurements (plus the calcula-

tion of the average number of cores), however it has

several limitations. First, the pool of resources must be

well-defined so that the average number of cores may

be determined; but because the model is used to select
the appropriate number of resources, the exact set of

hosts is not known a priori. Thus, the average number

of cores available for each host is a pool average rather

than one specific to the actual resources used. Further,
contention for resources means that not all hosts will
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Fig. 13 Selecting An Implementation Based on the Model
These graphs overlay the modeled multicore and cluster performance on problems of various sizes for All-Pairs (left) and Wavefront
(right). The dots indicate actual performance for the selected problem size. As can be seen, the modeled performance is not perfect,
but it is sufficient to choose the right implementation.

be utilized equally or predictably, which presents the

same problem in trying to include a factor of the num-

ber of cores in the turnaround time model. This is es-

pecially problematic as we move beyond workstations
with at most a few cores: unavailability of a machine

with dozens of cores significantly changes the average

number of cores of the available machines.

With that said, can we accurately model the perfor-

mance of our abstractions? Figure 10 shows the mod-
eled performance of All-Pairs workloads of varying sizes

running on an 8-core machine and a 64-core cluster.

Figure 11 shows the modeled performance of Wavefront

workloads running on a 32-core machine and a 180-core

cluster. In both cases, the multicore model is highly ac-
curate, due to a lack of competing users and other com-

plications of distributed systems. Both models are suf-

ficiently accurate that we may use them to choose the

appropriate implementation at runtime based on the
properties given to the abstraction. Figure 12 shows the

modeled performance of Makeflow workloads running

on a 24-core machine and a 60-core cluster. Figure 13

compares the multicore and cluster models for the pre-

vious All-Pairs and Wavefront examples, and demon-
strates the actual performance achieved when selecting

the implementation at runtime.

6 Why Multiple Abstractions?

With the Makeflow abstraction for arbitrary DAG work-

flows, could we choose to use it as a general tool in-

stead of implementations of the specific abstractions

mentioned above? In our experience, the answer is that
we could, but in doing so we lose many of the problem-

specific advantages given by the less general abstrac-

tions. We carry out All-Pairs on a 24-core machine using
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Fig. 14 Solving All-Pairs with Makeflow and All-Pairs
This figure shows the time to complete an All-Pairs problem of
various sizes using the general Makeflow tool and the specific All-
Pairs tool. The more general tool is considerably more expensive,
because it uses files for output storage, and is unable to dispatch
sub-problems to multicore processors.

both the all-pairs multicore abstraction and the Make-

flow abstraction.

We vary the size of the workloads from creating a

10×10 matrix to creating a 1000×1000 matrix. Each
matrix cell is computed by comparing two 20KB files.

With the Makeflow abstraction, each cell value depends

on a comparison and the cell value is stored in a file

after it is computed. And we have to write an addi-

tional program, which depends on all the cell value files,
to extract all cell values from generated files and put

them into the target matrix. The running time of both

abstractions on different workloads are shown in Fig-

ure 14. It is easy to see that the All-Pairs multicore
abstraction scales almost linearly as the workload in-

creases. However, the Makeflow abstraction is several

orders of magnitude slower at this problem, because it



11

uses files for output storage, and is unable to manage

work in organized blocks.

The increased generality of Makeflow has a signifi-

cant price, so we conclude that there is a great benefit

to retaining specific abstractions such as All-Pairs and

Wavefront for specialized problems.

7 Applications

In a previous paper [12], we demonstrated a number

of applications of All-Pairs, so here we will focus on

applications of Wavefront and Makeflow.

Our example applications run on an open Condor

pool of approximately 600 CPUs, consisting of hetero-
geneous desktop machines, homogeneous research clus-

ters, and multicore servers ranging from 4-32 CPUs.

Clock speeds range from 500MHz to 4GHz. The number

of CPUs changes unpredictably as desktop users come

and go, and other workloads enter and leave the system.
Thus, these results show that our system achieves rea-

sonable performance under adverse conditions on real

applications.

We use the term speedup with the usual definition:

sequential runtime divided by actual runtime. How-

ever, note that the maximum possible speedup is not
the number of processors. Consider an idealized ma-

chine with P processors running an N×N problem with

P≥N . In the first timestep, one task will run, then

two, and so forth, until the diagonal is reached in N
steps. Then, N − 1 tasks run simultaneously and so on

down to one task, giving a parallel runtime of (2N − 1)

timesteps. The sequential runtime is N 2, so the best

possible speedup is N2/(2N − 1) or N/2. But, if P <<

N , then the system will quickly reach a steady state of
P tasks running, and the runtime will approach N 2/P

with a speedup of P . We will see both cases below.

7.1 Bioinformatics

Sequence alignment is one of the most important tasks
in bioinformatics and is used in a variety of applica-

tions. Common variants of pairwise sequence alignment

can be solved using dynamic programming [14] and

each requires time proportional to the product of the

two sequences considered. Prior parallel implementa-
tions have been motivated by either the need to com-

pare a single pair of large sequences [18] or the need

to compare many small sequences [15] for tasks such as

phylogenetic inference and genome assembly. Previous
algorithms have implemented the wavefront problem

on dedicated clusters and parallel architectures such

as the Cell [23]. Our implementation achieves similar
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Fig. 15 100×100 Wavefront in Bioinformatics
A timeline of a 100×100 Wavefront problem implementing se-
quence alignment running on non-dedicated multicore Condor
pool. 80 cores were available at the peak of the execution. An
overall speedup of 38X is achieved, the maximum possible is 50X.

speedups, but requires only sequential coding, and can

execute on unreliable, loosely coupled machines.

In less than a day, we wrote a single process func-

tion in 156 lines of C++ that performed alignment on

a substring and propagated the required data for later
steps. Distributed sequence alignment was then tested

on two large bacteria genomes using wavefront: a non-

virulent lab strain of Anthrax (Bacillus anthracis str.

Ames; Genbank NC 003997) and its virulent ancestor
strain (Bacillus anthracis str. ’Ames Ancestor’; Gen-

bank NC 007530). Each genome is approximately 5.3

million characters long, and the score of an optimal

suffix-prefix alignment was computed using only linear-

space. An actual alignment (i.e., the path through the
dynamic programming matrix) is also attainable based

on the divide-and-conquer Hirschberg technique [23],

which requires twice as much computation and a more

complicated strategy.

Figure 15 shows a timeline of this alignment run-
ning using a 100×100 partition of the problem. Each

task takes about 117 seconds to run on a 1GHz CPU.

On the Condor pool, a maximum of 80 tasks running

simultaneously was achieved. The overall runtime was

reduced from 13 days sequential to 8.3 hours with a
speedup of 38X out of the maximum possible 50X.

We also explored the application of a heuristic for

bioinformatics problems similar to sequence alignment.

SSAHA (Sequence Search and Alignment by Hashing

Algorithm) [29] is a bioinformatics tool designed to
map one set of genetic data onto another set of data.

SSAHA is very similar to the popular bioinformatics

tool BLAST [1] because it creates a hash table for a set

of subject sequences to speed up the search of query
sequences for matches. Unlike BLAST, SSAHA com-

putes the complete mapping and therefore can be used

to discover detailed differences between sequences and
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Fig. 16 Makeflow without Fast Abort
A timeline of SSAHA execution on 100 simultaneous workers
without Fast Abort. As can be seen, the long tail is almost as
long as the peak computation period.
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Fig. 17 Makeflow with Fast Abort
A timeline of SSAHA execution on 100 simultaneous workers
with Fast Abort. Compared to the above figure, the tail is mostly
eliminated.

individuals [29]. SSAHA is a publicly available sequen-

tial application. Our implementation involves running

the sequential application many times in parallel us-

ing the Makeflow and Work Queue abstractions. This
allows us to harness the Condor pool to complete our

computation in a reasonable time.

Our implementation mapped 11.5 million sequences

consisting of 11 billion bases onto the genome Sorghum

bicolor [16] (738.5 million bases). This is a large bioin-

formatics workload with the majority of execution time
for each job dedicated to mapping the queries and a

small portion dedicated to generating hash tables. The

abstraction split a large sequential execution into nearly

2300 smaller sequential computations that were run in

parallel on workers submitted to our Condor pool. Fig-
ure 16 shows the execution of this job on a maximum of

100 simultaneous workers without Fast Abort. There is

an extremely prominent long-tail effect that nearly dou-

bles the total execution time. Figure 17 shows the same
workload run with fast abort enabled, which nearly

eliminated the long-tail effect and more than halved our

total run time. The implementation using Fast Abort
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Fig. 18 500×500 Wavefront in Economics
A timeline of a 500×500 Wavefront problem in economics run-
ning on non-dedicated multicore Condor pool. Because many of
the remote CPUs were faster than the submitting CPU, the over-
all speedup of 180X is greater than the number of CPUs.

required 16 hours of runtime compared to the sequen-

tial runtime of 65 days with a total speedup of 92X.

7.2 Economics

The wavefront abstraction can represent a number of
dynamic economic problems. Consider, for example, the

competition between two microprocessor vendors. Each

firm produces microprocessors and engages in R&D to

improve the clock speed. That game ends when they

reach limits imposed by physics. Economic models ex-
amining such dynamic games would discretize the prob-

lem by assuming that there are N possible efficiencies

and each firm begins with efficiency level 1. The state of

a two-player game is denoted by the vector of efficien-
cies, (i,j). At each such state, each firm competes for

sales of the chips of those efficiencies but each firm also

wants to improve its efficiency. When the game reaches

the state (N ,N) the dynamics are done and we have

reached a static situation which can be computed di-
rectly. If the state of the game is (N −1,N) then firm 1

still works to improve its efficiency and its incentives to

work on R&D are affected by the anticipated profits it

receives when the game goes to (N ,N). This is also true
for player 2 in the state (N ,N − 1). Hence, the solution

at (N ,N) allows us to solve (N − 1,N) and (N ,N − 1).

Similarly, those solutions allow us to solve (N − 2,N),

(N − 1,N − 1) and (N ,N − 2). The wavefront abstrac-

tion sweeps through the states until we have solved the
dynamic game at all states (i,j), 1 ≤ i,j ≤ N .

This kind of game arises in many dynamic economic

problems. See [9,26,25] for original papers on the learn-

ing curve, [19,21,20,6] for examples of dynamic R&D
races, and [22] for an example from the exhaustible

resources literature. All of these results are limited in

scope because a sequential implementation dramatically
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limits the number of parameters. For example, the learn-

ing and R&D papers assume only two firms and a small

number of steps. This is an unreasonable assumption

since there are many firms in each industry, particu-

larly at the early stages where innovation is rapid and
many firms are competing to be one of the few sur-

vivors. These models are essential for a serious exami-

nation of antitrust policies that limit how fiercely firms

may compete and tax policies that are supposedly de-
signed to encourage innovation

Using the wavefront abstraction, we can easily carry

out problems many orders of magnitude larger than

have been attempted before. With less than a day of
coding, we ported a Nash equilibrium function for two

players with four parameters from Mathematica into a

77-line C program usable with Wavefront. On a single

input, this function requires about 7.6 seconds to com-

plete on a 1GHz CPU.

Figure 18 shows a timeline of this workload run-

ning on the Condor pool. The workload quickly reached

the maximum available parallelism of between 120 and

160 CPUs. An overall speedup of 182X was achieved,
reducing the sequential runtime from 22 days to 2.9

hours. The speedup achieved was faster than ideal be-

cause many of the remote CPUs were faster than the

submitting machine on which the function was bench-
marked.

8 Conclusion

We have demonstrated how simple high level abstrac-

tions can be used to scale regularly structured problems
up to clusters of multicore computers. We have made

the following key observations:

– Processes are a realistic alternative to threads for
programming multicore systems, even on I/O inten-

sive tasks.

– It is feasible to accurately model the performance

of large scale abstractions across a wide range of
configurations, allowing for the rational selection of

appropriate resources.

– Abstractions are easy for non-experts to program,

provided there is a good match between the appli-

cation structure and the application.
– The All-Pairs and Wavefront abstractions can be

scaled up to hundreds of cores, achieving good per-

formance even under adverse conditions.

– General abstractions, like Makeflow, are able to deal
with more kinds of application structures; however,

they might not achieve the same performance as

specific abstractions.

There are many avenues of future work. We have

outlined a two-level hierarchy of implementations for

abstractions, but the system could be generalized to

support solving very large problems across the wide

area with deeper nesting. Additional implementations
of abstractions on specialized architectures such as the

Cell or FPGAs might be effective ways of transparently

adding such devices to large computations.
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