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ABSTRACT
Distributed computation systems have become an impor-
tant tool for scientific simulation, and a similarly distributed
replica management system may be employed to increase the
locality and availability of storage services. While users of
such systems may have low expectations regarding the secu-
rity and reliability of the computation involved, they expect
that committed data sets resulting from complete jobs will
be protected against storage faults, accidents and intrusion.
We offer a solution to the distributed storage security prob-
lem that has no global view on user names or authentication
specifics. Access control is handled by a rendition protocol,
which is similar to a rendezvous protocol but is driven by
the capability of the client user to effect change in the data
on the underlying storage. In this paper, we discuss the
benefits and liabilities of such a system1.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection, Data warehouse
and repository

General Terms
Management, security

Keywords
GEMS, chirp, distributed access control, rendition protocol

1. INTRODUCTION
Recent years have seen an increase in deployment of dis-

tributed computation systems in which widely distributed
commodity hardware may be cataloged into a unified, high-
utilization system. Such widely distributed systems create a
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massively parallel computing infrastructure, capable of pro-
cessing vast amounts of user data to serve a variety of appli-
cations. Massive batches of such jobs will overwhelm a cen-
tralized storage service, necessitating an alternative storage
architecture that scales with the computation sites.

A variety of options exist to parallelize and distribute stor-
age over clusters or grids, but several technical and organi-
zational issues must be considered. Current computational
environments span multiple administrative domains, such as
two or more university clusters combined into a unified re-
source to increase the utilization of compute resources. A
current authorization strategy in such systems is to execute
these jobs as a nearly privilegeless anonymous user that has
access only to pre-specified remote files over the network.

Distributing storage across the compute system in such a
setting presents additional difficulties. Users may be willing
to allow the anonymous third-party system to execute jobs
on their behalf, but will need to be able to access the storage
directly upon data creation. A strategy to solve this prob-
lem would be to create a master user list and replicate it to
all storage sites, allowing user access over a pre-defined pro-
tocol. Managing users in such a system becomes extremely
burdensome as the user list would contain members from all
collaborating institutions.

More advanced methods have been proposed including
grid authentication protocols that take into account the ex-
istence of distributed administrative domains. However,
choosing one such protocol implies that all users must agree
to the protocol, and would find it difficult to fall back on
simpler, localized, pre-existing schemes.

Consider the case of an ad hoc collaboration between re-
searchers at two distant universities. Each contributes stor-
age servers to the project, and one of the researchers installs
a replica management system to synchronize data sets be-
tween the sites. This researcher may be unwilling or unable
to provide accounts for all eligible users from the other uni-
versity to interact with the management database.

Similar problems arise in many experiences with coopera-
tive computing, and the premise of the approach presented
here originates from typical assumptions and properties of
this situation. Users and authentication methods employed
are considered secondary to the ability of users to modify the
data sets and servers involved, and the ability to authenticate
via a given protocol as a given user is less important than the
ability to access a given data set at a given site. This ob-
servation motivates a system that operates at high level, in-
dependent of protocols and user names, and can stay within
its purpose: the management of distributed data sets. The



centralized service then acts as little more than a guide, co-
ordinating interaction among users and storage sites. These
user-site pairs handle security in a pairwise way, and system
changes are propagated up to the management system. The
contribution of this paper is to discuss a framework for rea-
soning about this type of access control system, present a
protocol, and discuss the implementation of the method in
ongoing scientific work.

As a solution to our considered problem, client tools could
be employed that interact with the local storage service as a
method of proving their identity to the greater system. This
allows researchers to simply administer their own machines
instead of a grid, and allows the replica system to simply
manage replicas instead of users.

In the remainder of this paper, we briefly describe the im-
portance and utility of the replica environment of interest to
this work in the following section. We then describe the ac-
cess control mechanisms available in Section 3. The specifics
of the protocol are presented in Section 4, and a brief case
study of our target application is discussed in Section 5. Re-
lated work is noted in Section 6, and we conclude in Section
7.

2. MOTIVATION FOR
COMMODITY SHARED STORAGE

Shared replica management systems have been designed
to meet the storage requirements of users requiring a va-
riety of functionality. Users benefit from increased storage
space: especially short term storage space, as the shared
workspace may increase utilization of the underlying sys-
tems. Additionally, replicated data sets are more resilient
to hardware failure or loss, as replicas may serve as backup
copies. User groups that desire to publish their data inside a
virtual organization benefit from catalogued replica systems,
which provide a searchable catalog of metadata and allow
for data sharing and reuse. Properties of the replica man-
agement system relevant to this work have been described
previously [17].

The replica management system involved in this work is
designed to operate on a network of storage sites that corre-
sponds to a rough overlay of the available computation sites.
Client tools include a virtual filesystem adapter which allows
for the user to choose the compute site, the input source site,
and the output destination site independently. The replica
management system may be combined with these compute
tools to locate data sources, find sites to safely store output,
and recommend a computation site. Once a computation
site has been chosen, user-supplied cluster topology infor-
mation may be used to obtain local or nearby access to data
services.

Such systems have a certain typical set of user require-
ments and assumptions. First, users must basically trust
the machines that they are borrowing, the network, and
the administrators from whom they obtain these resources.
Specifically, our architecture assumes that if a user is will-
ing to delegate computation to a site, then that site may
be trusted to serve the output data. Additionally, there
is an assumption that the system will be in a partial fail-
ure state at all times, with some machines unavailable for
a variety of reasons. Middleware computation systems at-
tempt to build this fragile infrastructure into a useful re-
source through fault-tolerant checkpointing and job restarts;

storage solutions such as ours presented here attempt to cre-
ate a viable, scalable, and secure storage solution through
replication and replica management. Finally, the data sets
involved are of relatively low value, for example, data trans-
mission is typically performed in the clear. Note that this
does not allow us to assume that the data sets are intended
to be publically readable. The protocol described in this
paper attempts to utilize this fundamentally unreliable and
uncontrollable resource fabric into a secure system for com-
munication between previously unauthenticable users and a
replica management database while keeping data secure and
providing exceptional flexibility.

3. PROPERTIES OF ACCESS CONTROL IN
A REPLICA MANAGEMENT SYSTEM

Our relevant system architecture consists of a network of
storage devices widely distributed and independently main-
tained. The storage sites may be configured in various ways,
deploying different subsets of the available connection proto-
cols. The storage providers desire to collaborate - to obtain
the benefits of a replica system - and thus allow limited
access to a centralized service replica management system,
or RMS. Users may be able to authenticate to some sub-
set of the available storage sites using one or more proto-
cols. The set of users may be multiplied in a set of pairs
(protocol , name), called the set of subjects. Each real-world
user corresponds to multiple subjects, based on the accounts
and account types available. However, the RMS is not aware
of any global list of subjects in advance. Additionally, users
may desire to access the data that they may store in the
system over more than one protocol.

Centrally, the RMS catalogs a large number of storage
devices as they advertise their resources to the system, but
cannot manage the lists of users from various domains. The
services offered are unable to authenticate users over the
network. The immediate result is a simple read-only lookup
service that guides users to data sources.

The storage sites implement a variety of authentication
protocols, and are drawn from multiple administrative do-
mains. Users may access data in the system by following
a metadata lookup to the RMS with a connection to an
appropriate replica site, after which they may obtain the
required data file. In a large, multiple organization system,
users desire to gain access to multiple domains using mul-
tiple protocols, which is acceptable because the user/server
relationships may be defined by the users.

To effect change in the system, such as to delete a record
or to modify a metadata entry for a record, two systems must
be protected: the metadatabase and the servers. This rep-
resents a challenge to the multiple domain model, because
the metadatabase and the storage server may have different
conceptions of who the user is. For example, a user may be
able to authenticate to a nearby storage site that contains
a replica of a data set that the user wishes to delete, but
the user is unable to authenticate to the centralized server-
a necessary ability to delete a replica set that may be owned
by another user and distributed widely.

No global list of users is available to the RMS, since the
RMS is unable to implement an authentication test for each
subject. However, a user may demonstrate the ability to
modify a stored data set by interacting with a storage site.
Since the RMS is able to observe such interaction, an indi-
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Figure 1: Read-only access controlled independently

by local storage servers.

rect method of authentication is possible. By demonstrating
the ability to change the storage system, the user has au-
thenticated in a meaningful way to the RMS.

4. SYSTEM SPECIFICS
In this section, we develop the specific capabilities of the

software components relevant to this work. The system lay-
out consists of a centralized replica management system that
can acts as an active replica controller [18], as well as ad-
mit and evict storage resources, respond to storage failures,
allocate space for new data sets intelligently, propagate and
maintain access control lists (ACLs), respond to user queries
regarding metadata tags that are associated with all data
sets, and act as a replica location service, since replica lo-
cations may migrate for a variety of reasons. The storage
layer [15] stores the raw data files supplied by the user in
the directory structure originally given, enforces the ACLs
supplied by the RMS, authenticates users over a variety of
protocols. Client tools are provided to perform elementary
operations with the system as a unified resource, such as
put, get, match, etc.

The data structure of a data set stored in the system is
shown as a diagram in Figure 2. Each data set, or config,
is indexed by a numeric key, but is commonly accessed by a
unique metadata lookup query. Configs have an owner and
ACL as shown: owners always have full access to the con-
fig and may grant full or limited access to other subjects.
The config consists of any number of files with their path
information, as in an archive. The storage map indicates
which storage sites are eligible to receive and serve the data
files. Additionally, the map indicates the cluster topology
to the replication service. The replication service uses this
information to split replica locations among available clus-
ters. The map is also used when retrieving data to obtain
a nearby replica. This structure increases the performance
of data access, and increases data survivability when whole
clusters may be offline.

The map takes on critical importance in the security of
the data set. Users may use the replica servers as rendezvous
locations when gaining access to the config in question, so
the servers must be trusted by the specific user to enforce
the ACLs appropriately.

The system allows the users to create virtual workspaces
in which they create storage and grant access control to
other users. The benefit of the methods described in this

Metadata Config Key Config Entry

4321
name=Abe
sim=chem
p=3

}
owner (UNIX,Abe)

jims_cluster

map my_cluster
abe*

jim01
jim02

acl (Other,Jim,read)

bin/chem

data/stats
abe01

jim01
jim02

(3)

(2)
abe01
jim02

files

{

Figure 2: Metadata layout in a replica management

system. A user-specified number of copies of each

file are stored across the storage map.

paper is that the centralized service does not have to main-
tain a list of these users, or even be able to authenticate
them directly over their desired protocol.

Different operations require different types of authentica-
tion in this system. There are four authentication methods
that are implemented by the RMS server.

• none, to access the public search facility;

• insert, to insert a new config into the system;

• config, to modify or delete a config;

• admin, to rewrite the configuration of the entire sys-
tem.

The most common use of an archival system is to consume
data from it to perform new computation. While the data
files are protected on the storage servers, locating this data
is a publically available service. Searches may be used to
map metadata to configs, or configs to file replica locations.
This is equivalent to simply observing a resource catalog.

Data insertion is performed by client tools after authenti-
cation using the rendition protocol. The client simply con-
tacts the metadatabase with a request for a challenge, and
specifies an desired authentication method. The response
to the challenge takes is a rendezvous location on a storage
server that the metadatabase administrator and the user
trust to allow insertion into the system. The rendezvous lo-
cation takes the form of a tuple containing an appropriate
storage server, a new config key to uniquely identify this data
set, and randomly generated code number for this transac-
tion: (host , config , code). The server creates a directory on
the given host named /<config>/RDVS/<code>, and sets the
ACL on this directory to allow the client write access. The
client then contacts the storage server and creates a marker
file at the given path. Upon completion, the metaserver
is notified over the channel, the result is verified, and the
channel may be thought of as authenticated.

One the config has been created, the ACL is generalized
to meet the owner’s request allowing access to other eligible
subjects. Such subjects do not need to authenticate to the



centralized service as described above. The replication pro-
cess, coordinated by the metadatabase, propagates the ACL
to other eligible storage sites along with the data files.

Metadata modification or config deletion is performed upon
satisfaction of the config rendition protocol. In this protocol,
the client contacts the metadatabase server and indicates
which config is to be affected. The reply takes the form
given above, but the host given is selected from the storage
servers that currently contain replicas of the stored data.
Additionally, the rendezvous directory is placed within the
directory allocated for that config. Thus the protocol takes
on an element of realism: clients that can demonstrate ac-
cess to the stored data files are granted access to modify the
metadata associated with the config.

The authenticated subject is not a full representation of
the user subject in the traditional sense of a login. Since
the subject has been authenticated for a certain config, the
authenticated subject must be considered a limited subject
(protocol , name, config), as access has only been granted by
the system for the config in question.

If a certain storage site is authorized to serve replicas of
a given config, the storage site effectively acts as an au-
thentication authority for the user with respect to the con-
figs which it stores. Thus the site effectively speaks for the
user with respect to that config. As a result, users must
construct storage maps appropriately, weighing the bene-
fits gained from “wider”, more distributed maps with the
security risks involved in spreading data far and wide. In
typical cases, this is equivalent to or easier than constructing
a matchmaking script like those used in common computa-
tion systems. When the storage network is the computation
network this is elementary.

A last protocol is available to allow administrators to
modify behavior of the whole system during operation, al-
lowing for remote administration. The system configuration
specifies a rendezvous location that may be used to satisfy
the protocol, and upon satisfaction of the protocol, a new
configuration file may be fed into the server.

5. APPLICATION:
MOLECULAR DYNAMICS
ON TWO UNIVERSITY NETWORKS

The university network is a commonly used tool for scien-
tific research. Many universities have clusters or laboratories
with a variety of machines connected over a relatively fast
internal local area network. These clusters may be com-
bined into useful high throughput, high utilization systems
with the appropriate software. Here we provide an example
to motivate the usefulness of the new system.

An engineering building at the University of Notre Dame,
which contains over 200 Linux and Solaris machines, has
been combined into a Condor [9] system. The default Con-
dor installation package used on campus includes the Chirp
[15] file services, totalling over 7 TB of available distributed
storage spread over the same machines. Additionally, the
University is served by a centralized AFS [8] installation.
Users have a large pool of computing and storage resources
at their convenience, however, permanent storage and phys-
ical file location management must be handled by the indi-
vidual users.

A replica management system called GEMS [17] that im-
plements the model presented in this paper is used to com-
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Figure 4: Using a rendezvous point to authenticate

a user that the RMS cannot directly authenticate.

bine all 200 of these storage servers into a unified system.
Since all the storage hosts in question share a network file
system, the UNIX authentication protocol is a common choice.
Users will typically allow hostname authentication as a fall-
back access method, and Globus authentication is possible
via a local certificate authority.

The Condor system has been combined with Condor sys-
tems at nearby universities to increase the opportunities for
resource sharing and collaboration. To unify the storage into
a single logical system as well, users would expect to have to
be able to authenticate under some uniform protocol. How-
ever, the GEMS protocol allows users to interact with the
system by authenticating through only the subset of servers
that are relevant to the data set in question, relieving the
administrative burden of managing users in a global way.

The GEMS system allows replicas of user data sets to be
automatically replicated to remote computation sites. Users
may use a simple storage map to inform the system that the
*.nd.edu and, for example, *.purdue.edu computation and
storage resources are eligible to be used. The map would
be used to ensure that data access would be localized to a
campus network.

In practice, the GEMS installation could not be immedi-
ately configured to authenticate users from multiple univer-
sities. However, as individual stake holders allow each other
access to storage sites at their respective locales and develop
a complex system of user groups and virtual organizations,
GEMS is able to grow in parallel with the system, relying on
storage providers to serve as the authority on storage access,
which is the objective all along.

A more abstract example of the protocol in action is shown
in Figure 4. In this special case, we demonstrate the addi-
tional ability of the system to authenticate users to whom
access has been granted on a pre-existing config. In this
case, user Abe has stored a config on his server, but has
deployed an ACL that allows user Guy full access using the
“Other” protocol. Abe’s environment is capable of authen-
ticating UNIX users and Other users, however, the meta-
database is unable to authenticate Other users. The config
in question has been replicated, perhaps to other domains,
so deleting the config must be performed at the RMS level.
Since Abe has allowed Guy full access, Guy should be able
to perform deletion but is unable to gain config access at the
RMS level. However, the client tool that performs deletion
using the rendition protocol is able to render a marker file
at a rendezvous location on the storage site. This is checked



Rendition Procedure for Storage Access

Client operations Metaserver operations

1. Client obtains an anonymous secure chan-
nel to the metaserver.

2. Client requests access to config c as user n.
3. Metaserver issues a rendezvous challenge

involving a host h in the map associated
with c.

4. Client authenticates directly to host h us-
ing method m.

5. Client satisfies challenge.
6. Client notifies metaserver that challenge is

satisfied.
7. Metaserver inspects host h for completion

of challenge.
8. Metaserver notifies client that inspection

was successful; the channel is authenti-
cated as m : n for c.

9. Client transmits metadatabase operation
regarding config c to metaserver.

Figure 3: Outline of the Rendition Protocol

by the RMS, which authenticates over a hostname protocol.
Thus the connection between the RMS and Guy is indi-
rectly authenticated, as indicated by the italicized subject
label (Other, Guy).

6. RELATED WORK
Many grid applications currently rely on Globus [4, 7]

for security. A certificate authority model is offered by
the Globus Security Infrastructure (GSI) [5]. This model
stresses the primality of local access control mechanisms,
and maps global users to local users. An existing replica
location system offered by the Globus system is the Replica
Location Service (RLS) [3] which provides the ability to map
logical file names to physical file locations. Systems built
upon the RLS must manage user metadata externally.

The Storage Resource Broker (SRB) [11] allows for the
construction of data grids, which combine a variety of stor-
age systems into a unified grid. This system provides mul-
tiple user-configurable replication techniques. Appropriate
metadata is stored in a database [13]. Access control is man-
aged through a distributed user-password list or through
GSI.

Either of the above storage systems could be used to sup-
port users running biomolecular simulations with the con-
struction of an appropriate client to help collocate the com-
putation and data services. However, as discussed below,
the Parrot/Chirp [15] system upon which GEMS relies al-
lows for a great deal of flexibility and ease of use when ac-
tually running simulation scripts because of the location in-
dependence and virtual filesystem that Parrot creates. Ad-
ditionally, while one would expect to have to use an exter-
nal job submission system such as Condor [9], GEMS does
not require this because of the server-side execution facility
provided by Chirp. Chirp provides a comprehensive ACL
system and provides authentication for subjects over Ker-
beros [10], Globus, UNIX, and hostname.

The Legion system [16] creates a large-scale computing

resource. The data services in Legion are designed to scale,
making massive use of parallelism to provide enormous ag-
gregate bandwidth to jobs running in the object-based sys-
tem. Objects in Legion are responsible for their own access
control, which is similar to the model presented here. Legion
provides a single system image, which is different from our
model in which users specify a subset of the system to use:
thus, Legion relies heavily on encryption to protect objects
from unauthorized access.

Additionally, a great deal of security is provided by net-
work attached secure disks [6]. This technology allows a high
performance disk to perform local access control, however,
these model does not directly take into account a replica
management model in which changes must be propagated
to a higher level system.

A proposed API for distributed computing is the Generic
Authorization and Access-Control API (GAA-API) [12], which
greatly extends access control functionality and attempts to
unify authorization and authentication over various proto-
cols. For example, a unified syntax is derived to clearly
identify subjects as a combination of user type, authentica-
tion type, and user name. The system can thus understand
and authenticate each possible subject by calling the appro-
priate routine. In our model, subjects are understood in
as much as the storage sites can understand them, and the
central system simply accepts the subject as a name.

Another storage system designed for the application area
of molecular dynamics is BioSimGrid [14]. Centering on a
simulator-independent scientific database, BioSimGrid pro-
vides tools to perform analysis on its libraries of simula-
tion data. The software architecture combines a standard
database with an underlying SRB storage system. Compu-
tation in BioSimGrid is centered around application-specific
analysis tools which are run on the centralized system.



7. CONCLUSION

ren · di · tion n. 1. The act of submitting for
approval [1]; 2. An explanation of something that
is not immediately obvious [2].

The protocol in this paper results from several observa-
tions about the properties of such widely distributed replica
management systems: the wide variety of users, access meth-
ods, and administrative domains; the wall of separation be-
tween centralized metadata and user data files; and an im-
plicit trust of storage providers, that storage providers will
keep the data sets secure. The purpose of replication here is
not for security purposes but for reliability, availability, and
performance purposes. This model is consistent with the
security model of computation systems because in such sys-
tems users must trust some number of sites to create correct
data sets.

The new method presented herein attempts to authenti-
cate users in a limited way, avoiding difficulties caused by
squeezing users into a single authentication protocol, as well
as the administrative challenge of managing all users and
resources as a whole. Thus the user identity of a client con-
nection to the system is never “immediately obvious”, and
an explanation is provided in the form of a file operation
submitted for approval.

A replica management system called GEMS2 has been
constructed to improve the utility of large scale compute
and storage networks for researchers performing molecular
dynamics simulation. Such research is commonly performed
on university networks, and can be migrated to Internet
computing on volunteered resources.
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