
Adapting Bioinformatics Applications for Heterogeneous
Systems: A Case Study

Irena Lanc
University of Notre Dame

Notre Dame, IN
ilanc@nd.edu

Peter Bui
University of Notre Dame

Notre Dame, IN
pbui@nd.edu

Douglas Thain
University of Notre Dame

Notre Dame, IN
dthain@nd.edu

Scott Emrich
∗

University of Notre Dame
Notre Dame, IN

semrich@nd.edu

ABSTRACT
The advent of new sequencing technologies has generated
extremely large amounts of information. To successfully ap-
ply bioinformatics tools to such large datasets, they need to
exhibit scalability and ideally elasticity in diverse computing
environments. We describe the application of Weaver to the
PEMer structural variation detection workflow. Because the
original workflow has an intractable sequential running time
on large datasets, it also has a batch implementation de-
signed for a shared file system. Using scripts provided by the
developers of PEMer, along with the Weaver Python mod-
ule, the Starch archive generator, and the Makeflow work-
flow engine, we have refactored PEMer for elastic scaling
on personal clouds. Our case study describes the various
challenges faced when constructing such a workflow, from
dealing with failure detection, to managing dependencies,
to handling the quirks of the underlying operating systems.
The practice of scaling bioinformatics tools is increasingly
commonplace. As such, the hands-on application of refac-
toring techniques to PEMer can serve as a valuable guide for
those looking to reconfigure other bioinformatics software.
Significantly, our customized Makeflow framework enabled
elastic deployment on a wider variety of systems while sub-
stantially reducing wall clock runtimes using hundreds of
cores.

Keywords
Bioinformatics, Distributed Systems

General Terms
Design, Performance

∗To whom correspondence should be addressed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ECMLS’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0702-4/11/06 ...$10.00.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
The explosion in the size of biological datasets has fueled

interest in exploring the boundaries of scalability for many
common bioinformatics tools. While the ability to paral-
lelize existing bioinformatics programs essentially depends
on whether the underlying problem lends itself to parallel
execution, the majority of genome-focused tools often have
an inherent ability to be performed in parallel. For exam-
ple, alignment and assembly are now frequently performed
on multiple cores using frameworks such as MPI [2] and
MapReduce [9]. Even so, there are multiple serial imple-
mentations targeted towards a particular project or even on
a specific dataset that could benefit from scaling in a produc-
tion setting. For such software it is up to users to refactor
existing code such that the functionality of the program is
conserved.

Refactoring has been historically aided by the widespread
availability of distributed, batch and now cloud computing
systems. Frameworks such as our Makeflow engine [12] pro-
vide a straightforward route for software with clear data
dependencies and simple serial execution. Because a single
bioinformatics Makeflow can be thousands of lines long, we
have shown that creating scripts and higher level programs
is the key for successful and practical parallelization. To
this end, we have shown the Weaver tool, together with the
Starch archive manager, provides a standardized framework
for relatively simple bioinformatics workflows [10].

Here, we refactor the structural variation detection tool
PEMer [5] to run on clusters, grids and clouds as a case study
for complex bioinformatics workflows. The provided PE-
Mer batch execution script executed quickly on a standard
batch system (SGE) with a shared file system (NFS). We
apply the Weaver/Starch/Makeflow application stack to ex-
tend the scalability to heterogenous systems lacking shared
resources typical of personal/ad hoc clouds. We show that
this process can be fraught with challenges and pitfalls sub-
stantially more complex than our previous results. Signifi-
cantly, we describe elastic scaling of the PEMer pipeline in
this framework and test it on hundreds of processors. Our
paper is structured as follows: Section 2 describes the PE-
Mer structural variation tool. Section 3 covers both our ap-

7

proach to implementing the PEMer pipeline as a Makeflow,
as well as the general lessons extracted from the process.
Section 4 presents the results of executing the pipeline on
different batch systems. In Section 5, we contrast our ap-
proach with the original bundled batch implementation, and
we give our conclusion in Section 6.

2. AN INTRODUCTION TO PEMER
The PEMer pipeline [5] consists of four core steps that

work together to discover structural variants given a ref-
erence genome and a set of mated pair sequence queries.
The general outline of this process is given in Figure 1.
This pipeline is trivial to execute sequentially on small tasks
but requires significant resources to complete; running PE-
Mer with approximately 136000 mated pair sequences on a
small 230 million nucleotide arthropod genome [1] quickly
exhausted 32 GB of RAM and would have required weeks
of compute time executed sequentially. PEMer serves as a
model complex workflow for distributed execution, given the
large number of steps involved and their myriad of depen-
dencies, which provide a significant challenge to adapt for
heterogenous systems. While it can be implemented on one
machine easily, and executes quickly using a shared file sys-
tem, it proved to be both a challenge and a significant learn-
ing experience to adapt for execution on a personal cloud. In
this case study, we will share the useful information gleaned
during this process. As the practice of scaling even small,
customized programs becomes more commonplace given the
deluge of available biological data, it is certain that other
users will encounter similar challenges. We provide guidance
on some necessary adjustments using PEMer as an example.

3. METHODS AND DATA
The effort to scale PEMer began with identifying the steps

that would lend themselves well to clusters, grids and clouds.
We established that all of the most significant serial steps in
the PEMer workflow could be successfully refactored in our
established Weaver/Makeflow framework [10] while allevi-
ating the massive memory requirements that had swamped
the sequential version. This framework was employed as
Weaver is already an extension of the popular programming
language Python, which has numerous well-developed re-
sources and a more familiar syntax than a newer language
like Swift. In addition, the Weaver stack is already tailored
to the resources at our disposal, specifically SGE, Condor
and WQ, and so additional installation of tools such as CoG
Karajan was avoided. Finally, Weaver did not require any
adaptation or expansion of functionality to work, as we did
not need to define data types or do any XML, reducing the
time needed to develop and test the pipeline.

Given that the abstractions Weaver provides related well
to those in PEMer (Figure 1), we found it relatively easy
to refactor them into a Makeflow [12]. A sample of the
code to do this is given in Table 1. Next, it was neces-
sary to ensure appropriate dependencies when executing re-
motely. This was achieved using Starch [10], an applica-
tion manager that allows users to encapsulate all dependen-
cies, executables, environment variables and even multiple
commands needed to run a standalone application into sim-
ple files called archives. This greatly simplified the Make-
flow construction by allowing multiple steps to be executed
within what is, at face value, a single command and its asso-

ciated archive. This not only ensured a clean abstraction of
the required executables, but also removed the need for the
complicated data management strategies usually required in
a remote environment typical of personal clouds.

Once the Makeflow script was generated, it was distributed
using the Condor batch computing system for testing using
both the Makeflow and Work Queue frameworks. The flow
of control in the program is illustrated in Figure 2. Each
oval represents a job to be executed on the Condor grid; the
DAG structure maintains proper execution order, ensuring
that input/output dependencies are handled prior to fur-
ther execution. Condor provides access to a highly hetero-
geneous collection of remote machines, though it maintains
a reasonably high level of fault tolerance by retrying failed
jobs and logging execution information and failure states.
Makeflow and Work Queue provide similar functionality as
frameworks for performing distributed computing on diverse
systems, but differ slightly in how they execute remote jobs.
This allowed us to test the flexibility of our Makeflow un-
der varying distributed computing models for clusters, grids
and clouds. For completeness, we also prepared the PEM-
mer batch script and our own pipeline for execution on SGE
using Weaver/makeflow to collect comparable runtimes.

Note, however, that execution on SGE also afforded us
benefits of a shared file system. Under this scenario there
was no longer a need to construct Starch archives contain-
ing the supplemental scripts, data files, and environmental
variables needed to support remote execution. Further, this
reduced runtime, as the archives would not be unpackaged
each time one of the programs would run. To ensure compa-
rability of runtime results our SGE modifications were made
to the original Weaver script, and consisted of simply replac-
ing the names of archives with the names of the programs
they encapsulated.

PEMer requires mate pair reads, a mate-pair information
file, and a reference genome in order to execute. We used
a 2.0 GB file of trimmed mate pair reads that, when com-
bined with the mate-pair information file, created a 231 MB
file formatted for input to PEMer. For reference, we used
the completed D. pulex genome, 222 MB in size. It can be
expected that most research into structural variation would
use data sets of a similar size or larger. Given that this data
set proved large enough to warrant investigation into alter-
natives to sequential execution, our successful parallelization
is sure to have positive repercussions for projects an order
of magnitude larger such as locating structural variation be-
tween humans (e.g. [8]) important in recent diversity and
cancer analyses.

3.1 LESSONS LEARNED
Several changes and modifications had to be implemented

to achieve better scalability and overcome certain inherent
limitations. The challenges encountered during this Makeflow-
based case study led us to extract several general principles
that can guide the adaptation to personal clouds:

I: Determine optimal granularity.

II: Understand remote path conventions.

III: Be aware of the scalability of native OS utilities.

IV: Identify semantic differences between the batch
system and local programs.

8

Figure 1: The PEMer pipeline: (A) Preprocessing creates mate pairs given the list of paired sequences and associated set
of reads. (B) Mate pair ends independently aligned to reference using Megablast or MAQ. (C) Optimal placement of mate
pair reads according to alignments that seek to minimize the occurence of outliers. (D) Identification of mate pair outliers.
(E) Sets of outlier mate pairs are categorized as structural variations if N or more independent paired ends can be clustered
according to each variation.

hits2placement = StreamFunction(’Hits2PlacementScore_GB.py ,cmd_format=’exe input args input.needle.placement: input.fa.200.fa-needle Hits2PlacementScore_GB.py my_config.py

> output’, cmd_args= ’-d %s -c %s’ % (’placement.discards’, my_config]) Hits2PlacementScore_GB.py input.needle -d placement.discards

hits2placement_output = Map(hits2placement, needle_input) -c my_config.py > input.needle.placement

Table 1: Sample code: The Weaver instructions on the left generate the Makeflow instruction on the righthand side.

V: Establish the execution patterns of the pro-
gram or pipeline.

I. Determine optimal granularity
Striking a good balance between the size of each individual
job and the total number of jobs can allow users to optimize
the trade-off between transmission and execution time. For-
mal analysis has shown that careful selection of job size can
yield distinct performance benefits [6]. A very small job size,
whose transmission time exceeds its execution time, can pre-
vent the workflow from reaching full capacity. Jobs that are
too large can result in eviction of jobs from remote machines,
especially in a highly heterogeneous system such as Condor.

The primary configuration script for PEMer was modified
to allow for the splitting function to create appropriately
sized subsets of files because extremely small jobs incurred
extremely long execution times, and therefore did not scale.
Several job sizes were attempted in this study before a size
that yielded a reasonable runtime was found.

II. Understand remote path conventions.
The idiosyncrasies of batch systems can result in unexpected
interpretations of file names and paths on remote machines.
This problem becomes more pronounced with the addition
of multiple dependency files and programs. Evaluating the
required format for input to remote jobs can reveal unex-
pected formatting requirements that prevent even properly
specified files from being correctly transferred and executed
on remote machines.

For our PEMer makeflow, the rules were modified to in-
clude the full path of needed files because soft links were not
interpreted correctly on our remote machines. The syntax

requirements were such that the names of all files drawn from
higher directories needed to replace forward slashes with un-
derscores. This is not by any means a common feature of
other distributed system frameworks, but is illustrative of
surprises that can manifest themselves in ad hoc/personal
clouds based on even the most well-implemented systems.

III. Be aware of the scalability of native OS utili-
ties.
Scripts will oftentimes make use of UNIX functions such as
cat, redirect, pipe and find to handle simple data manip-
ulation. While these utilities have well-understood behavior
within a local system, they may pose problems when inte-
grated into a cloud. The usage of these commands in a paral-
lel environment has been explored in the context of enabling
functionality across distributed resources [3]. However, they
are also susceptible to errors when applied to extremely large
datasets of the kind generated during large-scale, sequence-
based bioinformatics. These errors can manifest themselves
in the form of line length or argument limits on functions
such as cat. It is best to avoid this issue entirely by making
use of exec or xargs in any case where it is suspected the
number of arguments may exceed system capacity. File lim-
its in folders also pose a potential problem. Extremely large
distributed workflows may run up against such constraints
in filesystems such as AFS or NFS, potentially hobbling the
scalability of the pipeline if executed from that space. Users
should be mindful of these limits prior to execution.

For example, we encountered a concatenation step fail-
ure due to a limit on the line length limit on arguments in
UNIX. This problem did not manifest on small test sam-

9

Figure 2: Representing the PEMer pipeline as a set of directed acyclic graphs.

ples; however, as we scaled up the size of the dataset this
issue became apparent through the continued failure of a
specific step. As suggested above, this was solved by mod-
ifying the original concatenation step using find with the
-exec option, allowing the cat command to run on each file
separately. While this is not the most efficient approach,
in practice it executes very quickly. This particular error
illustrates the importance of performing tests on small and
large datasets. Between a small, successful deployment and
a production-scale job can lie a blind spot where unexpected
errors may appear.

IV. Identify semantic differences between the batch
system and local programs.
The goals of users implementing distributed pipelines can
differ both practically and philosophically from those of batch
systems. What a batch system may define to be successful
completion of a program can differ substantially from the
expectations of the user. This disparity between user ex-
pectation and system behaviour is seen in other large-scale
distributed systems such as AFS, where files that have been

written but not yet closed are only visible to the local ma-
chine [4]. In the context of the Makeflow framework, “suc-
cess” is defined as returning a file to the master node, re-
gardless of the file’s content. In a pipeline where there are
output dependencies between steps, this can pose a signif-
icant problem, as users expect correct data to be fed into
subsequent steps. Such conflicts of interest can be avoided
by working to align the user’s priorities with that of the sys-
tem. This can be as simple as adding a test condition to
change the meaning of a job’s return status.

In the case of PEMer, a subtle error appeared that circum-
vented the regular error-correcting mechanisms. Occasion-
ally, empty files from failed instances of the megablastOut2-
Needle step were returned, but because they had the correct
name they were interpreted as having finished successfully.
This would ultimately lead to missing data and incorrectly
completed steps later in the pipeline. To avoid painstakingly
finding, removing and re-running these steps, we modified
the remote job to test completion within our novel Starch
executable command line framework. Specifically, we used

10

the simple UNIX system call stat to check whether the re-
turned file was of a valid size, indicating a non-empty file.
If not, the status of the job was returned as 1 to indicate
failure, and 0 otherwise. This ensured that only successfully
completed jobs were returned.

V. Establish the execution patterns of the program
or pipeline.
Analysis of program structure for the purpose of paralleliza-
tion is an established area of research, with studies focused
on bioinformatics-specific applications emerging within the
last decade [9, 11]. Recognizing possible abstraction, deter-
mining granularity, and analyzing data flow are all neces-
sary for successfully adapting programs for scalable execu-
tion. Adapting a program for a workflow framework such
as Makeflow relies on the assumption that it will be execut-
ing a preset number of known workflow tasks. Some steps,
however, hinge on the results of previously processed data
in such a way that it is impossible to know a priori the
number of commands that need to be executed later. In its
current form, the Starch/Weaver/Makeflow stack is meant
to create a workflow whose format is known ahead of time.
While the static nature of this system ultimately proved to
be a manageable limitation, it showed that identifying parts
of the pipeline where such data dependencies can interfere
with the static generation of the Makeflow is vital. When
users identify these decision points, they are better able to
plan alternate approaches to their workflows to avoid such
problems.

We identified four steps of the pipeline that could be suc-
cessfully executed as independent computational units, and
applied the Map abstraction in Weaver to handle certain
large subsets of the data. We also implemented a solution
that allowed us to adapt generation of Makeflows to the con-
ditional flow of data. The final step of the PEMer pipeline
relies on knowing the number of output files created in pre-
vious steps. This cannot be determined initially, as it is a
function of the particular biological properties of the data
set. Given that there is no current way to dynamically gener-
ate makeflows based on the results of earlier steps, we wrote
a secondary Weaver script for the final step based on re-
sults generated by the first script. When this is compiled, it
generates a new Makeflow that then completes the last step
of the PEMer pipeline in parallel. Though this approach is
not ideal, it does enable the entire pipeline to benefit from
clusters, clouds and grids.

4. RESULTS
The application of our scalable, distributed pipeline proved

to be successful in speeding up PEMer’s execution (Table 2).
We found that the program scaled well, was easy to execute,
and provided definite advantages on both the Makeflow and
Work Queue frameworks. For Makeflow, we performed dis-
tributed execution under two different conditions, varying
the number of remote jobs allowed to execute at a given
time from 100 to 300. In both cases, a 12-core machine with
12 GB of RAM was used for makeflow submission. This
generic machine was open to all students on campus, and
frequently had multiple users on it. Our speedup was cal-
culated by dividing the goodput, or total CPU time devoted
to successfully completed jobs, by the total wall clock time
required to complete execution.

We observed that there was considerable improvement in
runtime, and, as expected, scaling to more processors was

Implementation Wall Clock Time CPU Time Speedup
Sequential > 2 weeks N/A N/A
Makeflow (100) 0+19:15:32 73+10:29 91.5
Makeflow (300) 0+08:49:57 71+12:43:27 194.36
Work Queue (100) 0+23:44:24 84+17:21:57 85
Work Queue (300) 0+11:5:47 84+17:21:57 169
Work Queue (scaled) 0+10:10:49 73+15:37:24 173
SGE original (100) 0+1:16:33 5+2:9:37 95.7
SGE new (100) 0+18:31:21 73+12:8:54 95.2

Table 2: Runtimes of the various PEMer implementations

limited mostly by the ability of the submitting machine to
keep up with more workers [7]. We also executed the pipeline
via Work Queue using 100 workers, 300 workers, and a dy-
namic scaling approach where the number of available work-
ers was gradually increased over the course of two and a
half hours. The pipeline was begun with 10 workers, and
40 additional workers were added after an hour. Another
half-hour after that, 50 workers were again added, and fi-
nally 200 workers were started after one more hour. The
number of submitted and completed jobs remained low un-
til the addition of the final 200 workers, at which point the
rate of completion and submission increase noticeably, and
it remained steady for hours.

We attempted to perform a sequential execution of the
pipeline, using an 8-core 32 GB machine with similar user
contention as the machine used to submit makeflows. We
ran the pipeline for more than a week and a half and were
unable to move past the third step of the pipeline. Un-
fortunately, due to time constraints and disproportionate
resource consumption, the job could not be completed. In
contrast, all distributed instances of the pipeline managed
to complete in under a day, on machines that were being
periodically utilized by multiple other individuals.

The visualizations of runtime behaviour for the Condor
(Fig 3.) and Work Queue (Fig. 4) implementations of the
pipeline indicate that number of jobs submitted and jobs
completed during execution follow a similar pattern. Both
follow each other closely, and show a steady increase over
time, eventually reaching a plateau where all jobs have been
submitted, but some remain to be completed. It can be seen
from Fig.4 that the submission and maintenance of 300 con-
current workers results in a uneven number of running jobs.
Running at this scale results in more competition across the
available resource pool, a larger risk of being evicted by the
machine’s owner in a shared model, or experiencing machine
failure. Regardless of this fluctuation, the runtime for the
300-worker instance (9 hours) represents a significant im-
provement over both the 100-job and sequential executions
using a highly heterogenous, volunteered cloud environment.

The scaled Work Queue implementation (Fig 4) displayed
much more consistent behaviour as expected. once work-
ers established themselves they continuously field demands
for job execution. Thus, they are represented as being con-
stantly running, rather than being subject to the fluctua-
tions of a regular makeflow in a contentious resource pool.
The steep tail of running jobs that begins at 1:00 represents
the rapid scaling down that occurs when the majority of jobs
have finished, unused workers die out, and all that is left are
jobs with abnormally long running times. These may have
landed on busy machines, though their influence on total
runtime can be mitigated by use of the fast abort option

11

 0

 5000

 10000

 15000

 20000

 25000

30/11
22:00

30/11
23:00

01/12
00:00

01/12
01:00

01/12
02:00

01/12
03:00

01/12
04:00

01/12
05:00

01/12
06:00

01/12
07:00

01/12
08:00

 0

 50

 100

 150

 200

 250

 300

Jo
bs

 S
ub

m
itt

ed
 /

C
om

pl
et

e

Jo
bs

 R
un

ni
ng

Submitted
Running

Complete

Figure 3: A timeline of execution using Makeflow with Condor, with a maximum of 300 jobs running at a given time.

 0

 5000

 10000

 15000

 20000

 25000

21/01
16:00

21/01
17:00

21/01
18:00

21/01
19:00

21/01
20:00

21/01
21:00

21/01
22:00

21/01
23:00

22/01
00:00

22/01
01:00

22/01
02:00

22/01
03:00

 0

 50

 100

 150

 200

 250

 300

Jo
bs

 S
ub

m
itt

ed
 /

C
om

pl
et

e

Jo
bs

 R
un

ni
ng

Submitted
Running

Complete

Figure 4: A timeline of execution using Work Queue on Condor, where the number of running workers is gradually scaled up
over the course of two and half hours.

of Work Queue. Here, we employed a fast-abort multipier
of 300, which was high enough to ensure that all jobs had
ample time to complete.

5. COMPARISON TO PROVIDED BATCH
EXECUTABLE

The authors of PEMer have provided their own version of
a distributed pipeline for their tool, part of which is incorpo-
rated into our own pipeline in the form of a splitting script.
In their version, this script is run on the pre-formatted
PEMer input file, in order to divide it into a user-defined
number of sub-files. This also generates a batch submission
script, in which a single program encapsulating the four cen-
tral steps of PEMer is run on each sub-file.

For comparison, we ran the provided pipeline in our Make-
flow framework on a shared file system and a slightly modi-
fied SGE version of our own pipeline on our personal cloud
without a shared filesystem. In support of our generic frame-
work, our Makeflow+PEMmer batch script exhibited very
good performance and efficiency; it finished in roughly an
hour with a a speedup of 95 using 100 processors (see Table
2). Our personal cloud version showed comparable speedup
with respect to total CPU time required (95x speedup) but
took about 18 hours to complete in a contentious comput-
ing environment. The large difference in time could be
attributed to the increased computational and transfer re-
quirements of running without a shared file system, which
do not scale with the number of jobs, or an increased risk of
preemption associated with attempting to running a large
number of jobs on a volunteered computing resource like
Condor.

The main advantage of refactoring traditional PEMer as

a Makeflow script could enable us to automate submission
of the script to multiple batch systems using the Makeflow
engine [12]. Further, Makeflow also keeps a detailed log of
runtime behavior and failure events, which allows analyzing
runtime behavior and error correction. This gives insight
into the scaling capabilities of the script, and allows us to
track the remote behavior of jobs at a much finer grain than
SGE alone. When we used the Work Queue engine, which
establishes consistent workers on remote machines and only
sends jobs to those workers, we gain additional advantages.
Each worker maintains its dependencies locally, which elimi-
nates the need to re-send data used in multiple jobs (the 222
MB genome in this case study, for example). Further, work-
ers can be started on any machine, even independently of
batch systems such as Condor. This gives the user even
greater degree of freedom in scaling up to more proces-
sors via this personal cloud. Significantly, by running our
scalable pipeline with both Makeflow and Work Queue we
avoided having to submit only to machines with a shared
file system. In this experiment, caching of required depen-
dancies does not significantly alter performance (Table 2),
but does give a more reliable set of persistent workers.

Secondly, and perhaps most crucially, separating the var-
ious components of PEMer into discrete steps rendered the
entire pipeline more transparent. Many errors were caught
by examining output files of each step as they were returned
to our local machine. This would be more difficult if we were
to execute all steps via the single consolidated script. Such
difficulty would be further compounded without a batch sub-
mission method or any pre-staging of work.

Our implementation also parallelizes the final step of the
pipeline that clusters found variations according to their lo-
cation on the genome. This step was not included in the

12

Attribute Provided Batch Script Makeflow
Requires Shared File System Yes No
Deployment Environment Shared file system batch system, e.g. SGE Any batch system, e.g. Condor, SGE, Work Queue

Code Encapsulation
A single script that encapsulates The pipeline consists of multiple
all four core programs discrete steps executed consecutively

Logging
Start and stop times, program log Detailed execution log, batch system log and
captured using stderr and stdout optional debugging output

Table 3: Differences between the provided batch script and the Makeflow/Work Queue implementation of the PEMer pipeline

original script because it is not as computationally intensive
in comparison to other pipeline steps. However, it provided
a valuable opportunity to explore the process of creating
nested makeflows where one or more steps is achieved using
on-the-fly internal makeflows. At present, makeflows cannot
currently be dynamically generated; the file is created users
are unable to create rules that rely on data unavailable at
runtime. In this particular case, the number of jobs required
for the last step of PEMer was dependent upon on the total
number of structural variations, which was initially an un-
known quantity. To handle this case we created a secondary
Weaver script, to be run from within the same sandbox upon
completion of the first makeflow. Our setup enables flexi-
bility as users are also able to verify the results of the first
deliverable if required.

Finally, refactoring PEMer in makeflow made this pipeline
more flexible. We were easily able to run this pipeline on
clusters, grids and clouds and with and without shared filesys-
tems without modifying our code. We believe this flexibil-
ity is needed to ensure scalability and elasticity on highly
heterogeneous systems such our campus grid and personal
clouds. Users of our new pipeline can choose to leverage
performance enhancing systems such as AFS shared files
and persistent workers using work queue but do not require
them. For a summary of the differences between the two
implementations, see Table 3.

6. CONCLUSIONS
We successfully refactored the PEMer structural variation

pipeline for execution on clusters, grids and clouds. Run
times were reduced to hours from weeks with high speedup.
Weaver proved to be a flexible tool that allowed for the adap-
tation of each program to the Makeflow in a clean and rel-
atively intuitive manner. The process of scaling this tool
was found to be susceptible to a variety of complications,
however. These were dealt with through a number of mod-
ifications, such as simple UNIX commands and additional
custom scripts. An awareness of the potential obstacles,
and some possible strategies to deal with them, can ease the
process of customizating bioinformatics software for person-
al/ad hoc clouds. This in turn will lower the barrier to scal-
able execution, allowing users to better harness the power
of heterogeneous distributed systems for their own tools.

7. ACKNOWLEDGEMENTS
We would like to acknowledge the help of Xinmeng Jas-

mine Mu and Nicholas Carriero, who contribued their time
and effort to answering questions and modifying the PEMer
source code.

This work was supported in part by National Science
Foundation grants NSF-0643229, NSF-0621434, and NSF-
08554087.

8. REFERENCES
[1] J. K. Colbourne, M. E. Pfrender, D. Gilbert, W. K.

Thomas, and others. The Ecoresponsive Genome of
Daphnia pulex . Science, 331(6017):555–561, 2011.

[2] A. E. Darling, L. Carey, and W. chun Feng. The
design, implementation, and evaluation of mpiBLAST.
In In Proceedings of ClusterWorld 2003, 2003.

[3] P. H.-P. Implementation and E. O. E. Lusk. Scalable
unix commands for parallel. In In Proceedings of the
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 410–418. Springer,
2001.

[4] M. L. Kazar. Synchronization and caching issues in
the andrew file system, 1988.

[5] J. Korbel, A. Abyzov, X. Mu, N. Carriero, P. Cayting,
Z. Zhang, M. Snyder, and M. Gerstein. PEMer: a
computational framework with simulation-based error
models for inferring genomic structural variants from
massive paired-end sequencing data. Genome Biology,
10(2):R23+, 2009.

[6] C. Moretti, J. Bulosan, D. Thain, and P. J. Flynn.
All-pairs: An abstraction for data-intensive cloud
computing. In 22nd IEEE International Symposium
on Parallel and Distributed Processing, IPDPS, pages
1–11, 2008.

[7] C. Moretti, M. Olson, S. J. Emrich, and D. Thain.
Highly scalable genome assembly on campus grids. In
Proceedings of the 2nd Workshop on Many-Task
Computing on Grids and Supercomputers, MTAGS,
2009.

[8] A. Pang, J. MacDonald, D. Pinto, J. Wei, et al.
Towards a comprehensive structural variation map of
an individual human genome. Genome Biology,
11(5):R52+, 2010.

[9] M. C. Schatz, B. Langmead, and S. L. Salzberg. Cloud
computing and the DNA data race. Nature
Biotechnology, 28(7):691–693, 2010.

[10] A. Thrasher, R. Carmichael, P. Bui, L. Yu, D. Thain,
and S. Emrich. Taming complex bioinformatics
workflows with Weaver, Makeflow, and Starch. In In
Proceedings of 5th Workshop of Workflows in Support
of Large-Scale Science 2010, 2010.

[11] O. Trelles. On the parallelisation of bioinformatics
applications. Briefings in Bioinformatics,
2(2):181–219, 2001.

[12] L. Yu, C. Moretti, A. Thrasher, S. J. Emrich, K. Judd,
and D. Thain. Harnessing parallelism in multicore
clusters with the All-Pairs, Wavefront, and Makeflow
abstractions. Cluster Computing, 13(3):243–256, 2010.

13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

