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Abstract—Dynamic workflow management systems offer a
solution to the problem of distributing a local application by
packaging individual computations and their dependencies on-
the-fly into tasks executable on remote workers. Such inde-
pendent task execution allows workers to be launched in an
opportunistic manner to maximize the current pool of resources
at any given time, either through opportunistic systems (e.g.,
HTCondor, AWS Spot Instances), or conventional systems (e.g.,
SLURM, SGE) with backfilling enabled, as opposed to monolithic
or message-passing applications requiring a fixed block of non-
preemptible workers. However, the dynamic nature of task
generation presents a significant challenge in terms of resource
management as tasks must be allocated with some unknown
amount of resources pre-execution but are only observable at
runtime. This in turn results in potentially huge resource waste
per task as (1) users lack direct knowledge about the relationship
between tasks and resources, and thus cannot correctly specify
the amount of resources a task needs in advance, and (2)
workflows and tasks may exhibit stochastic behaviors at runtime,
which complicates the process of resource management.

In this paper, we (1) argue for the need of an adaptive resource
allocator capable of allocating tasks at runtime and adjusting to
random fluctuations and abrupt changes in a dynamic workflow
without requiring any prior knowledge, and (2) introduce Greedy
Bucketing and Exhaustive Bucketing: two robust, online, general-
purpose, and prior-free allocation algorithms capable of producing
quality estimates of a task’s resource consumption as the work-
flow runs. Our results show that a resource allocator equipped
with either algorithm consistently outperforms 5 alternative
allocation algorithms on 7 diverse workflows and incurs at most
1.6 ms overhead per allocation in the steady state.

I. INTRODUCTION

Dynamic workflow management systems are becoming in-
creasingly prevalent in supporting and executing large-scale
scientific and data analytic computations [1]–[3]. This is due
to several reasons, most notably (1) tasks’ definitions and
dependencies are generated and inferred at runtime, thus
removing the need for declaring a static DAG in advance, (2)
local computations are automatically translated and packaged
into tasks to be executed on remote workers, thus removing
unnecessary efforts and frustrations, and 3) workers can be
deployed opportunistically to maximize available resources.

Since each task is executed independently from each other,
workers can be deployed opportunistically to maximize the
available pool of resources at any given time during a work-
flow execution, as opposed to monolithic or message-passing

applications requiring a deployment of a fixed block of non-
preemptible workers and increasing the user’s wait time in the
batch queue. From the perspective of an administrator, such
opportunistic worker deployment also increases the resource
utilization of the local HPC facility, as workers can be de-
ployed by submitting many small pilot jobs to take advantage
of the backfilling strategy commonly seen in large batch sys-
tems (e.g., HTCondor [4], SLURM [5], SGE [6]) and utilize
unused resources as they become available over time. Further-
more, large cloud vendors have been offering opportunistic
resources in their data centers at an extremely low cost (up
to 91% discount) [7]–[10], thus greatly reducing the monetary
barrier and opening the door to practical utilization of a huge
amount of opportunistic computational resources with little
cost and changes to the worker deployment configuration code.

Specifying resources for each task (e.g., cores, memory,
disk) is crucial to the efficiency and performance of a workflow
as it limits the waste of resources during a task run and helps
the underlying execution system make better scheduling deci-
sions [11]. However, the inherent dynamicity of this class of
workflow system poses a significant dilemma to the process of
resource allocation: tasks must first be specified with some
unknown amount of resources in order to be scheduled
for deployment and execution, but the optimal amount of
resources is only visible to the workflow manager upon task
completion. This problem is further exacerbated as workflows
may change over each run, reflecting the evolution of applica-
tion logic, modifications to input data, updates to underlying
software libraries, or random external factors affecting the
state of a workflow system at any given time. Individual tasks
may also differ in resource consumption between runs if they
are inherently stochastic. The combination of dynamicity and
stochasticity of workflows and tasks thus makes the problem
of resource allocation challenging.

In this paper, we argue that an allocation algorithm X can
only be considered a complete solution to the above challenge
by addressing all stated problems, and thus following these 4
design goals:

• General-purpose: X should be able to run generically
with any dynamic workflow without relying on any
workflow- or task-specific feature.

• Prior-free: X should not rely on past information of a



workflow (e.g., previous traces/logs) to allocate resources
for the current run. Many works [12]–[14] apply machine
learning techniques to customize solutions to specific ap-
plications. These techniques however are costly to train,
prone to overfit, and vulnerable to substantial stochastic
changes in workflows.

• Online: since dynamic workflows generate tasks at run-
time instead of having a DAG in advance, X must operate
in an online manner, i.e., be able to collect information
and predict resource allocations as the workflow runs.

• Robust: X must be able to perform well under a variety of
distributions and unexpected changes to workflows when
compared to related works [11], [15].

We hence introduce two resource allocation algorithms,
Greedy Bucketing and Exhaustive Bucketing, that attempt
to minimize the expected resource waste of all tasks in a work-
flow. Each algorithm (1) models the expected resource waste
of tasks in a workflow, (2) collects a list of resource records of
completed tasks, and (3) carefully extracts a potential resource
specification from this list to allocate subsequent tasks in the
workflow. This design thus makes these algorithms general-
purpose (no task-specific feature is used), prior-free (only
information about completed tasks in the current workflow
run is collected), online (resource prediction is derived on
demand), and robust (resource prediction changes as the
workflow changes its behavior during its run.)

We use two production workflows, ColmenaXTB [16] and
TopEFT [17], and further generate a diverse set of 5 syn-
thetic workflows following 5 different resource distributions
(Normal, Exponential, Uniform, Bimodal, Phasing Trimodal)
to evaluate the robustness and performance of these allocation
algorithms. Our results obtained from running 7 workflows
with 20-50 workers deployed opportunistically on a local
HTCondor cluster show that the bucketing algorithms con-
sistently outperform 5 alternative algorithms and can reach
as high as 96% resource efficiency and incur at most 1.6ms
overhead per allocation prediction in the steady state, thereby
substantially reducing the resource waste and increasing the
resource efficiency on a variety of workflow’s behaviors.

II. PROBLEM FRAMEWORK

A. Background

Figure 1 shows the general architecture of a dynamic
workflow system. The entire software stack including the
application runs on the manager node, whereas computations
(e.g., functions) packaged as tasks are executed at remote
workers. At runtime, an application calls possibly thousands of
expensive functions, each of which is labeled as remote/asyn-
chronous and prepared for remote execution. Functions are
then packaged as tasks by marshalling its arguments, detecting
and packaging library dependencies, wrapping error handling
code, etc., and sent to the workflow manager, which resolves
tasks’ dependencies by constructing a dependency graph be-
tween tasks and passes ready tasks to the task scheduler. The
task scheduler upon receiving a ready task will provision some

Fig. 1: Dynamic Workflow System Architecture
Distributing a local application using a dynamic workflow
system involves detecting, resolving, and packaging tasks and
their dependencies at runtime. Ready tasks are then sent to
workers to execute and results are sent back to the application.

amount of resources to the task and send it to an available
worker to be executed. A worker then allocates the specified
portion of its resources to the task, executes it, records its
resource consumption, and takes proper actions if the task
exceeds its allocation. Finally, the result of the execution
is returned transparently through the software stack to the
application. Note that this paper addresses the problem
of resource allocation to tasks which happens at dispatch
time - after task dependencies are resolved and before
tasks are scheduled to workers for execution.

B. Definitions and Assumptions

Our problem space then requires the definitions of only
two entities: Task and Allocation. A task T (c,m, d, t) is an
isolated executable program that consumes at most c cores,
m MBs of memory, and d MBs of disk in t seconds when
executed. Note that the 4-tuple (c,m, d, t) is not known prior
to execution. An allocation A (ca,ma, da, ta) is a declaration
of the resource requirement for a task before execution, which
tells the workflow execution engine to allocate to the task
ca cores, ma MBs of memory, and da MBs of disk over ta
seconds. In many batch and workflow execution systems [4],
[5], [18], [19], a task is monitored for its resource consumption
using standard OS metrics and killed the moment the execution
system detects it over-consuming its allocation. We shall
follow this reasonable behavior and accordingly introduce the
following set of assumptions:

1) The optimal amount of resources to allocate to each
task is unknown prior to its execution.

2) A task can only execute if its allocation is specified.
3) A task can only consume up to its allocated amount

of resources during its execution.
4) If a task over-consumes its allocation at any given

time, its execution is terminated and the task must
be retried with a bigger allocation.

Therefore, a task executes successfully only if c ≤ ca, m ≤
ma, d ≤ da, t ≤ ta. The main problem then stems directly
from assumption (1): resource allocation is uncertain, as a



large allocation risks a large resource waste, and a small
allocation risks task failure and retry.

C. Goals and Metrics

The goal of any predictive allocation algorithm is to attain
the performance of the oracle: zero resource waste and 100%
resource efficiency. We will now give precise definitions of
these metrics, assuming that for a given resource R, a task T
is allocated with a units of resources and consumes at most c
units during its execution of t seconds.

Resource Waste: There are two types of waste that a task
can incur during its execution: Internal Fragmentation and
Failed Allocation.

1) Internal Fragmentation: This is defined to be t · (a− c),
i.e., the difference over time between a task’s allocation
and its actual consumption, given that c ≤ a. This type
of waste is minimized to 0 when the predicted resource
specification is equal to the peak resource consumption
of T, i.e., a = c.

2) Failed Allocation: When task T over-consumes its allo-
cation, i.e., c > a, then by assumption 4 in Section II-B,
T must be retried with a bigger allocation specification.
This implies that the previous allocation didn’t accom-
plish any work, and thus incurred an unavoidable waste.
Therefore, Failed Allocation is defined to be Σk

i=1(ai·ti),
where k is the number of failed allocation attempts and
each pair of (ai, ti) is the amount of allocated resource
and execution time at the ith attempt.

Combining Internal Fragmentation with Failed Allocation,
we define the resource waste for task T to be:

ResourceWaste(T ) = t · (a− c) + Σk
i=1(ai · ti)

Thus, the resource waste for task T is optimal (equal to
0) iff a = c and k = 0. Intuitively, a task incurs no resource
waste when it is allocated once and that allocation is equal
to its peak resource consumption.

Resource Efficiency: For a given type of resource R, we
introduce Absolute Workflow Efficiency (AWE), a metric that
tracks the absolute efficiency in resource usage of a workflow.
To avoid a clutter of symbols, we first define C(Ti) and A(Ti)
to be the resource consumption and total resource allocation
of task i, respectively, where

C(Ti) = ci · ti
A(Ti) = ai · ti +Σki

j=1(aij · tij)

AWE is then defined to be:

AWE({Ti}n1 ) =
Σn

i=1C(Ti)

Σn
i=1A(Ti)

,

where {Ti}n1 is a sequence of tasks from T1 to Tn in workflow
W . Intuitively, the numerator tracks the total consumption
of all tasks in W , and the denominator tracks the total
allocation of all tasks in W . Thus, this metric considers the
entire workflow as a whole and measures the ratio of total
useful resource consumption over the total resource allocation.

Furthermore, this metric is independent of the number of
available workers and thus fits well in the common situation
where dynamic workflows are run on opportunistic resources
with workers joining and leaving the worker pool over time,
and will be used as the main metric for evaluation in Section
V. Note that W is allocated optimally iff its AWE is equal
to 1, i.e., W uses all of the allocated resources.

D. Additional Problems and Solution Design

In addition to the stated problem of uncertainty in Section
II-B, we outline further issues that a complete solution must
address by breaking them down into two categories: Internal
Stochasticity and External Stochasticity.

1) Internal Stochasticity: This refers to random and/or
uncontrollable elements that are contained within a workflow’s
run, such as:

1) Arbitrary ordering of task execution: Tasks are submitted
sequentially but potentially executed in an arbitrary
order due to a variety of factors, including: data depen-
dencies between tasks, priority of tasks, data locality on
workers, available capacity of workers, etc.

2) Specialization of tasks: Tasks can be core-, memory-, or
I/O-intensive to reflect different purposes in a workflow.

3) Arbitrary structure of workflows: Workflows are often
organized into phases of tasks, each of which serves a
different purpose, and thus possibly consume a different
amount of resources depending on the current phase.

4) Arbitrary moving resource distribution: This issue arises
from the combination of (1) and (2), causing a workflow
to possibly exhibit an arbitrary and moving resource
usage distribution depending on which specialized tasks
are being executed.

2) External Stochasticity: This refers to the random and/or
uncontrollable elements between executions of the same work-
flow, such as:

1) Current system state: On shared premises, the compute
cluster and storage servers are subject to arbitrary usage
from other users, which in turn affects the workflow’s
execution differently between runs and contributes to (1)
and (4) in Section II-D1 [20].

2) Evolution of workflows: Workflows may behave differ-
ently to reflect updates to the underlying software depen-
dencies of tasks, the arrival of a new input distribution,
or the changes in tasks or phases of a workflow.

3) Inherent stochasticity of tasks: Tasks may be inherently
stochastic (e.g., Monte-Carlo-based simulation or SGD-
based ML training tasks) and thus may consume re-
sources differently between runs.

3) Design Goals: The combination of uncertainty and
internal and external stochasticity substantially complicates
the problem of resource allocation. We thus believe that the
following 4 design goals are necessary conditions for an
allocation algorithm X to be considered a complete solution:

1) General-purpose: Since the goal of minimizing re-
source waste only concerns a task’s resource consump-



(a) Core consumption (b) Memory consumption (c) Disk consumption (d) Execution time
Fig. 2: Resource consumption of tasks in ColmenaXTB (top) and TopEFT (bottom).

Left to right: cores, memory, disk, execution time. Each point in a plot is a task’s peak resource consumption.

tion and allocation, X should be accordingly generic and
not rely on any workflow- or task-specific feature.

2) Prior-free: Elements in External Stochasticity discour-
age the use of prior information about a workflow, as
such information is application-specific and vulnerable
to substantial changes to a workflow.

3) Online: Element (4) in Section II-D1 directly requires X
to be an online algorithm and adapt to the ever-changing
resource distribution of tasks.

4) Robust: Elements (3) and (4) in Section II-D1 demand X
to be sufficiently robust to work with arbitrary resource
distribution and phase changes in a workflow run.

III. CASE STUDY: COLMENA-XTB AND TOPEFT

To better understand the stochastic nature of a workflow
execution, we examine the resource logs of two large-scale
production workflows, ColmenaXTB and TopEFT, and show
how several elements of stochasticity as discussed in Section
II-D appear in and impact these workflows.

A. Overview

Both ColmenaXTB and TopEFT workflows follow the ar-
chitecture in Figure 1. ColmenaXTB is an application com-
bining neural network inferences with molecular dynamics
analysis to drive large campaigns of molecular search and
design. It defines two functions: (1) evaluate mpnn, which
takes in a list of candidate molecules and outputs a rank-
ing of those molecules, and (2) compute atomization energy,
which computes the energy values from top-ranked molecules.
ColmenaXTB runs on top of a suite of distributed execution
frameworks, including: (1) Colmena [16], a Python library
driving the molecular search campaign by carefully submitting
tasks and examining returned results (2) Parsl [1], a Python-
native workflow manager that constructs a task dependency
graph on the fly and send ready tasks to (3) Work Queue [18], a
manager-worker distributed programming library that handles

the allocation, deployment, and execution of tasks, along
with result collection and worker management on various
underlying distributed systems.

TopEFT structurally operates in the same manner. Its goal
is to apply the effective field theory (EFT) to detect new
physics by processing a large quantity of events produced
by the Large Hadron Collider (LHC). TopEFT defines three
functions: (1) preprocessing, which scans through a list of
metadata files to find relevant event datasets, (2) processing,
which analyzes a given quantity of events, and (3) accumulat-
ing, which merges processed results into a complex multi-level
histogram. It passes these functions down to Coffea [21], a
high-performance data processing library. Coffea first submits
all preprocessing tasks to fetch metadata files and identify
relevant event datasets, then logically divides events between
processing tasks or partially accumulated results between
accumulating tasks. All tasks generated by Coffea are sent
to Work Queue for remote execution, as described above.

B. Workflows’ Resource Consumption

Figure 2 shows the resource consumption of tasks in Colme-
naXTB (top row) and TopEFT (bottom row). Within each row,
from left to right, we vary the resource types from cores, mem-
ory, disk, to execution time. Within each plot, the x-axis tracks
the order of task submission (each submitted task gets an
incremental ID from 0) and the y-axis displays the magnitude
of a given resource type. Each point in a plot is then a given
task’s peak resource consumption. ColmenaXTB has 228 eval-
uate mpnn tasks and 1000 compute atomization energy tasks,
and TopEFT has 363 preprocessing tasks, 3994 processing
tasks, and 212 accumulating tasks.

Specialization of tasks: For both workflows we can clearly
see major differences in resource consumption between tasks
of different categories, especially in memory consumption. In
ColmenaXTB, while evaluate mpnn tasks use from 1 GB to
1.2 GBs of memory, compute atomization energy tasks only



(a) Overview (b) Deriving allocation predictions (c) Greedy Bucketing Example
Fig. 3: Bucketing algorithms

(a) Interactions between the bucketing manager with relevant components. (b) Resource predictions are probabilistically
derived from a set of computed buckets. (c) Example: Greedy Bucketing greedily and recursively computes a set of buckets.

hover around 200 MBs, suggesting that different categories of
tasks need different amount of resource allocations. However,
preprocessing and accumulating tasks in TopEFT consume
an almost equivalent amount of memory (around 180 MBs),
suggesting that different categories of tasks should instead be
allocated independently from each other, as different categories
don’t necessarily show a correlation in resource consumption.

Arbitrary structure of workflows: We also see the phasing
behavior arising in both workflows due to internal application
logic, which is most obviously seen in the memory con-
sumption of ColmenaXTB tasks. ColmenaXTB first submits
only evaluate mpnn tasks to rank all molecules, and then
submits only compute atomization energy tasks to process
top-ranked molecules. This phase change suggests that phases
of a workflow must be detected and tasks must be allocated
accordingly at different points in time.

Inherent stochasticity of tasks: Tasks’ core consumption in
ColmenaXTB shows another interesting behavior where tasks
of the same category don’t consume a similar amount of
resources. compute atomization energy tasks in ColmenaXTB
are not consistent in their core consumption at all, ranging
from 0.9 to 3.6 cores. The memory consumption of processing
tasks in TopEFT shares the same behavior but in a puzzling
way, where tasks can seemingly be separated into two clusters
of tasks in terms of memory consumption (one around 580
MBs and the other around 450 MBs). The core consumption
of TopEFT tasks shows another aspect of task stochasticity:
outliers. While most tasks, irrespective of their categories,
use one core or less during execution, some tasks go as
high as three cores, risking execution failure due to resource
exhaustion if a static allocation was made.

This case study on ColmenaXTB and TopEFT demonstrates
several elements of stochasticity in both workflows and shows
that the resource allocation problem for dynamic workflows
is indeed practical and challenging. As the structure of these
workflows is quite common, we further believe that the above
stochastic elements aren’t just restricted to ColmenaXTB and
TopEFT but are generalizable to other large-scale and possibly
more complex production workflows. This case study thus
validates both the design goals of a complete solution as stated

in Section II-D3 and a practical need for a resource allocation
algorithm conforming to such goals.

IV. BUCKETING ALGORITHMS

In this section, we introduce two novel allocation algorithms
forming the basis of an adaptive resource allocator, Greedy
Bucketing and Exhaustive Bucketing, that rely on the principle
of the bucketing approach. We first give the general idea of
the bucketing approach, describe how Greedy Bucketing and
Exhaustive Bucketing operate within this framework, and then
detail a few heuristics to incorporate these algorithms into a
resource allocator. Most importantly, we will show that these
algorithms directly match the design goals stated at the end
of Section II-D3.

A. The Bucketing Approach

Figure 3a shows a quick overview of the bucketing ap-
proach. (1) The workflow manager sends a ready task T
to the task scheduler to be deployed and executed. (2) The
task scheduler asks the bucketing manager for the amount of
resources to allocate T. (3) The bucketing manager maintains
a separate state for each resource type, queries each state for
a value, and sends back a suggested resource allocation A
for T. (4) The task scheduler sends T with allocation A to a
worker for execution. (5) The worker returns the completed
task with result and resource record R and (6)(7) sends R
to both the bucketing manager and the workflow manager
to update their respective states. Note how the bucketing
approach revolves around a bucketing manager that solely
interacts with the task scheduler to perform two operations:
respond to an allocation request upon a ready task and update
its internal states upon a completed task. As Greedy Bucketing
and Exhaustive Bucketing only diverge on how to update the
internal bucketing states and share the resource prediction
approach, we will now explain the prediction approach and
delay state updates to Sections IV-B and IV-C.

As each resource type is managed independently, we will
focus on one resource for simplicity. Figure 3b shows an
example of how the bucketing approach predicts a new task’s
allocation based on a given bucketing state. Assume that we
have a synthetic workflow containing 2,000 tasks of the same



Algorithm 1 Greedy Bucketing

procedure GREEDYBUCKETING(lo, hi, L)
if lo == hi then return [lo]
min cost, break idx = ∞, None
for i = lo to hi do

cost = compute greedy cost(lo, i, hi, L)
if cost < min cost then

min cost, break idx = cost, i
if break idx == hi then return [hi]
lo indices = GreedyBucketing(lo, break idx, L)
hi indices = GreedyBucketing(break idx+1, hi, L)
return lo indices.concat(hi indices)

end procedure

category, each of which’s memory consumption in GBs is
sampled from the normal distribution N (8, 2). Further assume
that the application decides to submit another task of the
same category immediately after all 2000 task executions
in this workflow, which requires the resource allocator to
specify some amount of memory. As the first 2000 tasks
execute successfully and return to the application, the resource
allocator has access to these tasks’ resource consumption
records. It then sorts these records by resource value and tries
to find if there are potential clusters among these values, each
representing a group of tasks consuming a similar amount of
resources. For now assume that these clusters are found to be
three intervals (0, v1] , (v1, v2], and (v2, vmax]. The allocator
then breaks the sorted list of records based on v1 and v2
into three buckets accordingly, where each bucket contains all
records in the respective interval. Each bucket is then reduced
to two elements: the representative value and the probability
value. Let B be the set of all buckets, and Bi be the ith bucket,
then the representative value of Bi is the maximum value of
all records in a bucket:

Bi.rep = max
r∈Bi.records

(r.value),

and the probability value of Bi is the ratio of the number of
records contained in Bi:

Bi.prob =
#records ∈ Bi

ΣBj∈B#records ∈ Bj

Upon a request to allocate a new task, the allocator ran-
domly chooses a bucket among the list of buckets based on
the probability values defined above and returns the chosen
bucket’s representative value. This value doesn’t guarantee
that the next task will not exceed its resource allocation
however, so when that task returns with a resource exhaustion
status, the allocator only considers buckets that have the
representative values greater than that of the previously chosen
bucket. If there are no such buckets, implying that the previous
bucket’s representative value is the greatest one seen so far,
then the allocator doubles the task’s previous peak resource
consumption until the task succeeds.

It is straightforward to see why the bucketing approach
so far follow the design goals listed in Section II-D3. The
bucketing approach (1) operates using only the resource

records of tasks, making it general-purpose, (2) uses only
resource records of tasks completed in the current workflow
run, making it prior-free, and (3) derives allocation predictions
on demand from the task scheduler, making it online. To
partially address the robust design goal, we observe that
when workflows make abrupt changes and exhibit the phasing
behavior, more recent task records serve as a better guidance
to allocate subsequent tasks and should contribute more to
the probability values of buckets than older ones. To build
this observation into the bucketing approach, we add into
each record of a task a significance value, and the higher the
value the more recent or significant the task record is (we will
briefly discuss how to set this value in Section V.) Thus, the
probability value of each bucket Bi is now updated to:

Bi.prob =
Σr∈Bi.recordsr.sig

ΣBj∈BΣr∈Bj .recordsr.sig

where r.sig is the significance value of record r.
It’s quite challenging to address the arbitrary moving re-

source distribution aspect of the robust design goal, and this is
where Greedy Bucketing and Exhaustive Bucketing diverge on
the method to capture and model the problem’s complexity.
While Greedy Bucketing attempts to find a bucketing state
that minimizes the expected resource waste in a greedy and
recursive manner, Exhaustive Bucketing computes the expected
resource waste of all possible combinations of buckets and
chooses the one with the lowest waste.

B. Greedy Bucketing

The question Greedy Bucketing tries to answer is straight-
forward: given a list of records, should it break that list into
exactly two sublists or not, and if yes, where exactly is the
break point? Assume the answer is yes and the break point
is v1. Greedy Bucketing first breaks the list from one interval
(0, vmax] into two: (0, v1] and (v1, vmax], forming two buckets
Bv1 and Bvmax

. Given this configuration, and assume that the
next task T follows the resource consumption behaviors of
completed tasks, then T has a probability of Bv1 .prob to con-
sume an amount of resources in the interval of (0, Bv1 .rep],
and a probability of Bvmax .prob to consume an amount of
resources in the interval of (Bv1 .rep,Bvmax

.rep]. Since the
bucketing approach probabilistically chooses a bucket to allo-
cate the next task, it will choose bucket Bv1 with a probability
of Bv1 .prob and Bvmax with a probability of Bvmax .prob.
Assume the resource consumption of T is vlo if it falls within
Bv1 and vhi if it falls within Bvmax

, then four cases can occur:
1) T falls within Bv1 and Greedy Bucketing chooses

Bv1 : this happens with a probability of Bv1 .prob
2

and incurs an expected resource waste of Wlo,lo =
Bv1 .prob

2(Bv1 .rep− vlo).
2) T falls within Bv1 and Greedy Bucketing chooses

Bvmax
: this happens with a probability of Bv1

.prob ·
Bvmax .prob and incurs an expected resource waste of
Wlo,hi = Bv1 .prob ·Bvmax .prob(Bvmax .rep− vlo).

3) T falls within Bvmax
and Greedy Bucketing chooses

Bv1 : this happens with a probability of Bvmax
.prob ·



Algorithm 2 Exhaustive Bucketing

procedure EXHAUSTIVEBUCKETING(L)
min cost, break indices = ∞, None
for k = 0 to L.length-1 do

for P in combinations(k, L) do
cost = compute exhaust cost(P, L)
if cost < min cost then

min cost, break indices = cost, P
return break indices

end procedure

Bv1 .prob and incurs an expected resource waste of
Whi,lo = Bvmax

.prob·Bv1 .prob(Bv1 .rep+Bvmax
.rep−

vhi), as T exhausts Bv1 .rep amount of resources and
thus retries with Bvmax

.rep amount of resources.
4) T falls within Bvmax and Greedy Bucketing chooses

Bvmax : this happens with a probability of Bvmax .prob
2

and incurs an expected resource waste of Whi,hi =
Bvmax

.prob2· (Bvmax
.rep− vhi).

Thus, the expected resource waste of the next task under
Greedy Bucketing is W = Wlo,lo +Wlo,hi +Whi,lo +Whi,hi.

As Greedy Bucketing doesn’t know the actual value of vlo
or vhi of T , it estimates these values using a weighted average
of values of records that fall in the same bucket, as follows:

vlo =
Σr∈Bv1

.recordsr.value ∗ r.sig
Σr∈Bv1

.recordsr.sig

vhi =
Σr∈Bvmax .records

r.value ∗ r.sig
Σr∈Bvmax .records

r.sig

This is the gist of Greedy Bucketing and represented by
the procedure compute greedy cost in Algorithm 1. As we
don’t know where v1 is at, Greedy Bucketing scans through the
list of records and computes each record’s expected resource
waste as if it is the break point. It then chooses the record
incurring the minimum amount of resource waste and outputs
that record as a break point. However, if vmax is chosen, then
Greedy Bucketing stops its computation and returns no break
point as having only one bucket containing all records yields
the minimum amount of waste.

The final technique of Greedy Bucketing is shown in the
last 4 lines of Algorithm 1, where it recursively calls itself
on two portions of the records and finds possibly more break
points. Figure 3c shows an example of this behavior as Greedy
Bucketing first finds a break point v1, then recursively calls
itself on smaller portions of the list of records to find v2
and v3, yielding a list of break points [v1, v2, v3] and the
final configuration of 4 buckets, guaranteeing that each call
to Greedy Bucketing finds the local optimum that minimizes
the expected local resource waste.

C. Exhaustive Bucketing

Algorithm 2 shows how Exhaustive Bucketing, instead of
finding buckets greedily like Greedy Bucketing, considers
all possible configurations of buckets in a list of records,
computes the expected resource waste produced by each

configuration, and chooses the best one. Let L be a list of
records of tasks. Since each record can form its own bucket,
there can be at least 1 bucket and at most L.length buckets.
Thus, the outer for loop runs from 0 to L.length− 1 as there
can be at least 0 break point and at most L.length− 1 break
points that separate these buckets. The inner for loop then
considers all combinations of break points of length k that
can be drawn from list L and returns the one that yields the
lowest expected resource waste. We now focus on the gist of
Exhaustive Bucketing: the procedure compute exhaust cost.

Assume the next task’s resource consumption vi falls within
the bucket Bi in a list of buckets B of length N . As Exhaustive
Bucketing doesn’t know vi, it estimates this value in a similar
way to how Greedy Bucketing estimates vlo and vhi:

vi =
Σr∈Bi.recordsr.value ∗ r.sig

Σr∈Bi.recordsr.sig

Note that the bucketing approach randomly chooses a bucket
according to its probability value. Since a task can be any-
where in N buckets and the allocator can choose any of the
N buckets, we have N2 cases to handle. Let T [i, j] be the
expected resource waste when the next task falls within bucket
Bi and Exhaustive Bucketing chooses bucket Bj . If i ≤ j, then

T [i, j] = Bj .rep− vi,

as the allocation from Bj is sufficient for the next task’s
execution. Otherwise,

T [i, j] = Bj .rep+ΣN
k=j+1

Bk.prob

ΣN
m=j+1Bm.prob

∗ T [i][k]

To see this, note that Bj .rep is the resource waste from
Failed Allocation as bucket j’s representative value is less
than the amount of consumed resource of the next task. As
described above, Exhaustive Bucketing now only considers
higher buckets from j+1 to N , and probabilistically chooses
one of these buckets to re-allocate the task. As the pool
of buckets is reduced to [j + 1, N ], Bk.prob

ΣN
m=j+1Bm.prob

simply
renormalizes the probability value of bucket Bk. T [i][k] is
defined as above, and thus T [i][j] is intuitively equal to the
sum of the current resource waste of the next task plus the
expected resource waste of that task’s next allocation. If j < i
and j < k, then T [i][j] depends on T [i][k]. Therefore, the table
T should be filled from the last column to the first column per
row. After computing T , the expected resource waste of a list
of buckets B is then:

WB = ΣN
i=1Σ

N
j=1Bi.prob ∗Bj .prob ∗ T [i][j],

as there’s a probability of Bi.prob ∗ Bj .prob that the next
task falls within Bi and Exhaustive Bucketing chooses Bj .
As mentioned above, the algorithm’s job now is to apply
compute exhaust cost to every configuration of buckets and
choose the best one.



(a) Normal
N(8, 1)

(b) Uniform
U(6, 10)

(c) Exponential
E(6)

(d) Bimodal
N1(4, 1), N2(12, 2)

(e) Phasing Trimodal
N1(4, 1), N2(12, 2),

N3(8, 1)

Fig. 4: Memory consumption of tasks in five synthetic workflows.
x-axis: Task execution order, numbered from 1 to 1000. y-axis: amount of memory used in MBs.

D. Integrating Bucketing Algorithms

Additional refinements are needed to integrate these algo-
rithms into a resource allocator. Both Greedy Bucketing and
Exhaustive Bucketing assume the existence of a list of records.
To get these records in the first place, an allocator runs in the
exploratory mode for a while and allocates each task some
predefined amount of resources until the it collects an enough
number of records (Details are delayed to Section V.)

As discussed in Section III-B, an allocator treats each
category of tasks independently and uses a separate instance of
a bucketing manager per category. Within each category, the
bucketing manager maintains a separate instance of a resource
state that follows either the Greedy Bucketing or the Exhaustive
Bucketing algorithm. Thus, an adaptive resource allocator
would more or less adhere to the following pseudocode:

c l a s s A l l o c a t o r :
d e f i n i t ( s e l f , work f low metada t a ) :

# i n i t i a l i z e t h e l i s t o f b u c k e t i n g i n s t a n c e s ,
# one p e r c a t e g o r y

d e f add ( s e l f , t a s k r e c o r d ) :
# add t a s k r e c o r d t o t h e a p p r o p r i a t e
# b u c k e t i n g i n s t a n c e

d e f p r e d i c t ( s e l f , t a s k c a t e g o r y ) :
# c a l l t h e a p p r o p r i a t e b u c k e t i n g i n s t a n c e
# t o compute t h e l i s t o f b u c k e t s and a l l o c a t e
# t h e n e x t t a s k a c c o r d i n g l y

To conclude this section, we now address the call to
combinations in Algorithm 2. There are N !

k!(N−k)! ways to
choose k records out of N records, which grows exponentially
as the allocator continues to accumulate tasks and increases N
over time. To avoid this computational problem and spread the
number of considered records evenly, a call to combinations(k,
L) instead operates as follows:

1) form a list of k−1 candidate break points L to break the
space of records evenly, so L[i] = vmax∗i

k for i = 1 to
k−1, where vmax is the maximum value in all records.

2) for each candidate break point, map its value to the
closest record that has a lower value than it and remove
all duplicate or empty mappings.

3) return newly found records as a list of break points to
be considered.

V. EVALUATION

We begin this section by describing the settings that Greedy
Bucketing and Exhaustive Bucketing use in all experiments.
To understand and evaluate the performance and robustness of
these algorithms, we additionally generate five synthetic work-
flows along with ColmenaXTB and TopEFT. We conclude
this section by presenting our analysis on these workflows’
performance under 7 allocation algorithms, and thus show that
the allocation predictions made by the bucketing algorithms
are performant and reliable1.

A. Settings

We implement the bucketing algorithms in the core sched-
uler of Work Queue [18] to minimize changes to all workflow
applications. For each experiment, we run the corresponding
workflow on opportunistic workers with 16 cores, 64 GBs
of memory, and 64 GBs of disk. The number of workers
varies from 20 to 50 depending on the availability of the local
HTCondor cluster. Algorithm-wise, there are many ways to
set the significance value of a task record. In all experiments
we simply set it to the task ID, so the task’s record with ID
1 has a significance value of 1, and so on. For Exhaustive
Bucketing, it is from our experience running both algorithms
that the number of buckets rarely exceeds 10 at any given
time, so we restrict k to at most 10 in the outer for loop of
Algorithm 2. In the exploratory mode of both algorithms, we
allocate each task 1 core, 1 GB of memory, and 1 GB of disk
until 10 records are retrieved. If a task exhausts any type of
resources during this phase, it is simply retried by doubling
the amount of respective resources.

To evaluate the performance of the bucketing algorithms,
we use 2 naive algorithms, Whole Machine and Max Seen,
and 3 alternative algorithms that align to our design goals, Min
Waste, Max Throughput, and Quantized Bucketing. Naive al-
gorithms are straightforward: Whole Machine simply allocates
each task a whole worker and thus serves as our baseline, and
Max Seen allocates each task the maximum resource value
seen so far in the current workflow run. On the other hand,
Min Waste and Max Throughput follow the description of
respective algorithms in [15], and Quantized Bucketing follows

1All logs are available at https://github.com/tphung3/ipdps2024-resource-
paper.

https://github.com/tphung3/ipdps2024-resource-paper
https://github.com/tphung3/ipdps2024-resource-paper
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Fig. 5: Absolute Workflow Efficiency in cores, memory, and disk of 7 workflows across 7 allocation algorithms.

10 200 1000 2000 5000
GB 11.2 586.4 14588.2 62207.2 441050.7
EB 14.4 76.5 323.5 567.8 1632.0

TABLE I: Average time (in µs) to compute a new bucketing
state and derive a new allocation.

(Columns) The total number of records in the record list
(Rows) GB: Greedy Bucketing, EB: Exhaustive Bucketing

the description in [11]. Our main metric here is Absolute
Workflow Efficiency (AWE) as it measures the efficiency of
the workflow as a whole and is independent from the variable
number of workers arising from the use of opportunistic
resources as discussed in Section II-C. Note that an optimal
algorithm that attains 100% resource efficiency and zero
resource waste is not realistic as the resource allocation
problem is online: tasks are generated and required a
resource allocation at runtime but the optimal allocation
value is only observable at the end of their executions.

B. Synthetic Workflows
We generate five synthetic workflows (Normal, Uniform,

Exponential, Bimodal, and Phasing Trimodal) to evaluate
the bucketing algorithms’ performance under a variety of
workflow’s behaviors. Each workflow contains 1000 tasks of
the same category to account for the worst-case scenario
where there’s a large discrepancy between tasks’ resource
consumption within a category. Figure 4 shows the memory
consumption of tasks in these workflows, where each task’s
consumption is sampled from the respective distribution (we
skip cores and disk to save space as disk shares the same
distribution with memory and cores have a slightly different
distribution.) Each synthetic workflow is designed to capture
a certain possible stochastic behavior of a dynamic workflow:
Normal and Uniform for common randomness, Exponential
for outliers, Bimodal for specialization of tasks, and Phasing
Trimodal for moving resource distribution from phases. Figure
5 shows the Absolute Workflow Efficiency in different resource

types of these workflows under 7 allocation algorithms. A
quick look shows that different distributions reflect different
levels of resource efficiency as the amount of resource saved
depends on the ”hardness” of respective distributions (e.g., it is
easier to allocate the Uniform workflow than the Exponential
workflow as there are more extreme outliers in the latter.) We
can additionally see that Whole Machine performs very poorly,
as expected. Max Seen performs fairly well across different
resource types and synthetic workflows, but is usually 5-25%
less efficient than the best algorithm depending on the config-
uration. Min Waste and Max Throughput perform comparably
well against Max Seen but the performance advantage doesn’t
appear frequently across configurations. Quantized Bucketing
trails behind these two algorithms, but significantly excels at
the Exponential workflow. This is because it separates the
buckets at the 50th quantile, which reduces the number of
retries on average and thus reduces the effect of outliers on
the resource waste.

The two novel bucketing algorithms perform well and
consistently better than alternative algorithms, except for the
(Cores-Normal) and (Trimodal-Cores) configurations. For the
Normal and Uniform workflows, bucketing algorithms perform
well, reaching 60-80% efficiency. Additional built-in varia-
tions from the Bimodal and Trimodal workflows reduce the
efficiency of bucketing algorithms to 40-50%, as tasks can
come from any mode with its own variance. Both bucketing
algorithms struggle against the Exponential workflow, where
only around 20% efficiency is achieved and is only slightly
better than the Whole Machine baseline. This workflow poses
the most resource waste as it is easy to incur a large internal
fragmentation waste to small tasks and a large failed allocation
waste to the occasionally large tasks. However, our analysis
on these workflows’ performance reinforces that the bucketing
algorithms excel in most variations of workflows’ behaviors
and don’t produce catastrophic waste in corner cases.
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Fig. 6: Resource Waste in cores, memory, and disk of 7 workflows across 6 allocation algorithms.

C. Production Workflows

The Absolute Workflow Efficiency of ColmenaXTB and
TopEFT is shown in Figure 5 (last two columns). We can
see in Figure 5 that while Min Waste, Max Throughput,
and Quantized Bucketing are more efficient by 20-30% than
Greedy Bucketing and Exhaustive Bucketing in allocating cores
to tasks in TopEFT (we believe the first few outliers cause this
issue, which can be mitigated by running Quantized Bucketing
initially then switching over), the bucketing algorithms are
consistently more efficient in other resource types, reaching
close to 100% disk efficiency and 80% memory efficiency for
TopEFT. While TopEFT tasks always consume 306 MBs of
disk, other predictive algorithms fail to achieve an efficiency
close to 100% due to several reasons: (1) contrary to the
conservative exploratory strategy of the bucketing algorithms
in subsection V-A, other algorithms allocate a whole machine
instead (16 cores, 64 GBs of memory and disk), trading an
expensive exploratory cost with a guarantee of successful task
execution, and (2) MaxSeen allocates resources to task using a
histogram with the bucket size of 250, resulting in a rounded-
up 500-MB disk allocation for a 306-MB disk consumption in
the steady state. Due to the low disk consumption of tasks in
ColmenaXTB (around 10 MBs as shown in Figure 2) and the
policy of allocating 1 GB of disk to tasks in the exploratory
mode, the Absolute Workflow Efficiency of ColmenaXTB in
disk goes extremely low to single-digit efficiency for all
allocation algorithms.

Table I shows the average time for both bucketing algo-
rithms to compute a new bucketing state and a new allocation
with varying sizes of the list of records. Greedy Bucketing is
quite expensive later on (almost half a second to compute an
allocation at 5000 records) due to the recursions at the end
of each iteration. On the other hand, Exhaustive Bucketing,
despite its name, runs quite fast and uses around a millisecond
to compute a new allocation at 5000 records. This is due to the

optimization as discussed at the end of Section IV, as Exhaus-
tive Bucketing doesn’t have to search for buckets but instead
applies a compute function to every given configuration of
buckets. Note that Table I assumes the worst-case scenario
that each task requires a re-computation of the bucketing state,
which is not necessarily the case. As shown in Figure 3a, a
sequence of ready tasks can share the same bucketing state if
there’s no completed tasks in-between (no resource record to
update), and a sequence of completed tasks can be batched
into a large update if there’s no ready tasks in-between (no
need to update until there’s a resource request).

D. Resource Waste Analysis

Figure 6 shows the resource waste of all 3 resource types
for 7 workflows with 6 allocation algorithms broken down into
Internal Fragmentation and Failed Allocation (we remove the
baseline Whole Machine algorithm for better visualization).

For the synthetic workflows, we see that the Max Seen
algorithm performs according to its strategy and mostly over-
estimates resource allocations to tasks. The same trend applies
to other algorithms except Quantized Bucketing with varying
degrees, showing that the predictive algorithms favor over-
estimation over under-estimation. This is a behavior consistent
with the goal of minimizing waste, as an under-allocation not
only incurs resource waste from a failed allocation, but also
carries the same risk of an over-estimation as the failed task
has to be allocated again. Greedy Bucketing and Exhaustive
Bucketing penalize the under-allocation closely to Max Seen,
whereas Min Waste and Max Throughput allow a 20-30% of
resource waste to come from failed allocations.

For the ColmenaXTB workflow, waste from failed allo-
cations dominates the proportion of the total waste in most
algorithms, except Max Seen. This can be explained by the
diverse resource distribution in each type of resource in
the workflow. Such diverse resource distributions in multiple
resource dimensions can trickle a loop of failed allocations,



as the algorithms have to predict exactly how much resource
a task needs and an under-prediction in any resource at any
attempt will cause the task to be under-allocated and thus must
be retried with a bigger allocation. In contrast, the TopEFT
workflow shows a somewhat less diverse resource distributions
in all 3 resource dimensions, especially in disk and cores. This
helps the algorithms to narrow down that only the memory
dimension needs to be closely tracked and thus makes it easier
for the algorithms to predict the allocations, resulting in the
fact that most allocations from the predictive algorithms are
over-allocations.

E. Summary

The ability of the novel bucketing algorithms to consistently
make quality predictions in a diverse set of combinations of
workflow’s behaviors and resource types therefore demon-
strates that the bucketing approach accurately models the
problems outlined in Sections II-B, II-C, II-D and follows the
design goals in Section II-D3 and that the core strategies in
Greedy Bucketing and Exhaustive Bucketing are effective at
finding useful buckets in a given list of task records. Since
the Exhaustive Bucketing algorithm delivers higher resource
consumption efficiency than alternative approaches in most
cases (comparable to the Greedy Bucketing algorithm) and
much faster time to compute a new allocation (computation
time grows linearly with the amount of completed tasks as
demonstrated in Table I), it is the recommended algorithm to
allocate unknown workflows and tasks.

VI. RELATED WORKS

A large quantity of algorithms, strategies, and heuristics on
improving workload’s resource consumption efficiency have
been produced, tracked, and compiled over time by a number
of research groups. Witt et al. [13] provide an extensive survey
on the approach of modeling tasks’ resource consumption
using black-box machine learning models. We argue that while
machine learning is a promising approach, it requires a large
quantity of labeled data and takes a long time to train and
infer, and thus needs careful design to work as an online
algorithm. Pupykina et al. [22] focus on the management of
only memory consumption of tasks in HPC systems, and thus
doesn’t account for cores and disk.

Other papers focus on different objectives to improve a
workflow’s execution. Zhang et al. [12] leverage reinforcement
learning techniques and present a scheduling inspector module
that optimizes the average task wait time. Thekkepurayil et.
al. [23] schedule workflows in cloud systems according to a
variety of objectives, including optimal resource consumption,
quality of services, load balancing, etc. Li et al. [24] instead
focus on scheduling decisions that make sure workflows
are fault-tolerant and data are placed efficiently across geo-
distributed data centers. Several groups focus on the problem
of minimizing the energy consumption of workflows in clouds
with a budget constraint, as presented by Choudhary et al.
[25] and Taghinezhad-Niar et al. [26]. In this paper, we

model the problem of resource consumption in a general way

with only two entities: Task and Allocation, and thus believe
that our solution can be applied to both cloud and HPC systems
and incorporated into these work independently.

Other research groups, while also attempt to reduce the re-
source waste of workflows, extract workflow- or task-specific
information. Rodrigo et al. [27] optimize the turnaround time
of a workflow by analyzing the task dependency graph. Tanash
et al. [28] use metadata of tasks to train several machine
learning models and predict a task’s memory consumption.
Witt et al. [29] instead use the input size of each task as a
parameter to infer tasks’ resource consumption. Rodrigues et
al. [30] use a machine learning model to process and infer a
task’s memory consumption based on its LSF job specification.

Many papers also extract information from a chronological
list of resource records accumulated during a workflow’s
execution. Tovar et al. [15] present two strategies that aim to
minimize waste and maximize throughput, each relying on the
policy of at-most-once retry. Our bucketing algorithms instead
relax the policy of at-most-once retry by using a bounded
list of buckets. Phung et al. [11] study the heterogeneity
of tasks and allocate tasks based on their categories using
the k-means and quantile clustering methods. Fan et al. [14]
train a reinforcement learner to schedule tasks based on the
availability of the local cluster instead of predicting tasks’
resource consumption.

VII. CONCLUSION AND FUTURE WORKS

The nature of executing dynamic workflows on opportunis-
tic resources complicates the process of resource management,
as tasks are generated dynamically at run time and consume an
unknown amount of resources but must be specified a resource
allocation in advance. To avoid potentially huge resource
waste due to over- or under-allocation, this paper presents
two allocation algorithms, Greedy Bucketing and Exhaustive
Bucketing, that are designed to be general-purpose, online,
prior-free, and robust to allocate tasks on-the-fly. Results show
that the bucketing algorithms perform well on a diverse set of
workflows and outperform alternative algorithms, showing that
the algorithmic design of the bucketing algorithms is correct
in addressing potential stochasticity of workflow’s behaviors
and useful in predicting tasks’ resource consumption.

In the future, we target to evaluate our algorithms on even
larger workflows (> 10,000 tasks). We hypothesize that the
bucketing algorithms should perform even better on larger
workflows since they are shown to perform well and quickly
converge to a steady state on workflows of around 4,500 tasks.

Other future works include: potential optimizations of the
bucketing algorithms, an extension to additional resource
types, and exploring other approaches and deriving alternative
solutions to the problem of resource allocation.
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