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Abstract— Today, campus grids provide users with easy access
to thousands of CPUs. However, it is not always easy for non-
expert users to harness these systems effectively. A large workload
composed in what seems to be the obvious way by a naive user
may accidentally abuse shared resources and achieve very poor
performance. To address this problem, we argue that campus
grids should provide end users with high-level abstractions that
allow for the easy expression and efficient execution of data
intensive workloads. We present one example of an abstraction
– All-Pairs – that fits the needs of several applications in
biometrics, bioinformatics, and data mining. We demonstrate that
an optimized All-Pairs abstraction is both easier to use than the
underlying system, achieves performance orders of magnitude
better than the obvious but naive approach, and is both faster
and more efficient than a tuned conventional approach. This
abstraction has been in production use for one year on a 500-
CPU campus grid at the University of Notre Dame, and has been
used to carry out a groundbreaking analysis of biometric data.

I. INTRODUCTION

MANY FIELDS of science and engineering have the po-
tential to use large numbers of CPUs to attack problems

of enormous scale. Campus-scale computing grids are now a
standard tool employed by many academic institutions to provide
large scale computing power. Using middleware such as Con-
dor [40] or Globus [21], many disparate clusters and standalone
machines may be joined into a single computing system with
many providers and consumers. Today, campus grids of about one
thousand machines are commonplace [41], and are being grouped
into larger structures, such as the 20,000-CPU Indiana Diagrid,
and the 40,000-CPU Open Science Grid. [36]

Campus grids have the unique property that consumers of the
system must always defer to the needs of the resource providers.
For example, if a desktop computer is donated to the campus
grid, then a visiting job may use it during idle times, but will be
preempted when the owner is busy at the keyboard. If a research
cluster is donated to the campus grid, visiting jobs may use it,
but might be preempted by higher priority batch jobs submitted
by the owner of the cluster. In short, the user of the system has
access to an enormous number of CPUs, but must expect to be
preempted from many of them as a normal condition.

Because of this property, scaling up an application to a campus
grid is a non-trivial undertaking. Parallel libraries and languages
such as MPI [18], OpenMP [14], and Cilk [8] are not usable in
this context, because they do not explicitly address preemption
and failure as a normal case. Instead, large workloads must be
specified as a set of sequential processes connected by files. End
users must carefully arrange the I/O behavior of their workloads.
Bad configurations can result in poor performance, outright failure
of the application, and abuse of physical resources shared by
others. All too often, an end user composes a workload that

runs correctly on one machine, then on ten machines, but fails
disastrously on a thousand machines.

Providing an abstraction is one approach to avoiding these
problems. An abstraction allows a user to declare a workload
composed of multiple sequential programs and the data that
they process, while hiding the details of how the workload
will be realized in the system. Abstracting away details hides
complications that are not apparent or important to a novice,
limiting the opportunity for disasters. Because an abstraction
states a workload in a declarative way, it can be realized within
the grid in whatever way satisfies cost, policy, and performance
constraints. Abstractions could also be implemented in other kinds
of systems, such as dedicated clusters or multicore CPUs, but we
do not address those here.

We have implemented one such abstraction – All-Pairs – for a
class of problems found in many fields. All-Pairs is the Cartesian
product of a large number of objects with a custom comparison
function. While simple to state, it is non-trivial to carry out on
large problems that require hundreds of nodes running for several
days. All-Pairs is similar in spirit to other abstractions such as
Dryad [28], Map-Reduce [16], Pegasus [17], and Swift [42], but
it addresses a different category of applications.

Our implementation of All-Pairs is currently in production use
on a 500 CPU campus grid at the University of Notre Dame,
using Condor [40] to manage the CPUs and Chirp [39] to manage
the storage. To demonstrate the performance benefits of using
an abstraction, we compare two different implementations. The
conventional implementation executes the specification by simply
submitting a series of batch jobs that use a central file server to
read data on demand and write outputs into files in the ordinary
way. The abstraction implementation exploits the information
found in the abstraction by efficiently distributing common data
in advance, choosing an optimal granularity for decomposition,
accessing local data copies, and storing the outputs in a custom
data structure. By employing these techniques, large workloads
run twice as fast using four to twelve times fewer resources
than the conventional implementation. More importantly, users
are prevented from making mistakes that harm other stakeholders.

We conclude with an example of a groundbreaking biometrics
workload that employed All-Pairs to create the largest analysis
of public biometric data to date, reducing the workload from an
estimated sequential run time of 800 days to just over 10 days
on campus grid. We conclude with a discussion of the techniques
necessary to make All-Pairs robust for long-running jobs.

This work was first presented at the IEEE IPDPS 2008 confer-
ence [32]. This extended journal paper has new material on ex-
ploiting network topology for file distribution, output management
using distributed data structures, experience and performance on
a very large biometrics run, and a discussion of fault tolerance
techniques.
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Fig. 1. The All-Pairs Problem
The All-Pairs abstraction compares all elements of sets A and B together using a custom function F, yielding a matrix M where each
cell is the result of F (A[i], B[j]). The graph on the right shows the performance of an All-Pairs problem on a single machine, on
250 CPUs when attempted by a non-expert user, and on 250 CPUs when using the optimized All-Pairs abstraction.

II. THE ALL-PAIRS PROBLEM

The All-Pairs problem is easily stated:

All-Pairs( set A, set B, function F ) returns matrix M:
Compare all elements of set A to all elements of set B
via function F, yielding matrix M, such that
M[i,j] = F(A[i],B[j]).

This abstraction is also known as the Cartesian product or
cross join of sets A and B. Variations of All-Pairs occur in
many branches of science and engineering, where the goal is
either to understand the behavior of a newly created function
F on sets A and B, or to learn the covariance of sets A and B
on a standard inner product F. The function is sometimes, but
not always, symmetric, so often it is enough to compute one
half of the matrix. We are working with several different user
communities that make use of All-Pairs computations.

Biometrics is the study of identifying humans from measure-
ments of the body, such as photos of the face, recordings of
the voice, or measurements of body structure. A recognition
algorithm may be thought of as a function that accepts e.g. two
face images as input and outputs a number between zero and one
reflecting the similarity of the faces. Suppose that a researcher
invents a new algorithm for face recognition, and writes the code
for a comparison function. To evaluate this new algorithm, the
accepted procedure in biometrics is to acquire a known set of
images and compare all of them to each other using the function,
yielding a similarity matrix. Multiple matrices generated on the
same dataset can be used to quantitatively compare different
comparison functions.

A typical All-Pairs problem in biometrics is to compare 4010
images of 1.25MB each from the Face Recognition Grand Chal-
lenge [35] to all others in the set, using functions that range from
1-20 seconds of compute time, depending on the algorithm in use.
This workload requires 185 to 3700 CPU-days of computation,
so it must be parallelized across a large number of CPUs in order
to make it complete in reasonable time. Unfortunately, each CPU
added to the system also needs access to the 5GB of source data.
If run on 500 CPUs, the computation alone could be completed
in 8.8 hours, but it would require 2.5TB of I/O. Assuming the

filesystem could keep up, this would keep a gigabit (125MB/s)
network saturated for 5.8 hours, rendering the grid completely
unusable by anyone else. Addressing the CPU needs with massive
parallelism simply creates a new bottleneck in I/O.

Data Mining is the study of extracting meaning from large
datasets. One phase of knowledge discovery is reacting to bias
or other noise within a set. In order to improve overall accuracy,
researchers must determine which classifiers work on which types
of noise. To do this, they use a distribution representative of the
data set as one input to the function, and a type of noise (also
defined as a distribution) as the other. The function returns a set
of results for each classifier, allowing researchers to determine
which classifier is best for that type of noise on that distribution
of the validation set.

Bioinformatics is the use of computational science methods to
model and analyze biological systems. Genome assembly [25],
[26] remains one of the most challenging computational problems
in this field. A sequencing device can analyze a biological tissue
and output its DNA sequence, a string on the set [AGTC].
However, due to physical constraints in the sequencing process,
it is not produced in one long string, but in tens of thousands
of overlapping substrings of hundreds to thousands of symbols.
An assembler must then attempt to align all of the pieces with
each other to reconstruct the complete string. All-Pairs is a natural
way of performing the first step of assembly. Each string must be
compared to all others at both ends, producing a very large matrix
of possible overlaps, which can then be analyzed to propose a
complete assembly.

Other Problems. Of course, All-Pairs is by no means a
universal solution to distributed computing, but it is a common
pattern that appears throughout science and engineering. The
reader may note that some problems that appear to be All-
Pairs may be algorithmically reducible to a smaller problem via
techniques such as data clustering or filtering. [3], [6], [20], [27]
In these cases, the user’s intent is not All-Pairs, but sorting or
searching, and thus other kinds of optimizations apply. In the
All-Pairs problems that we have outlined above, it is necessary to
obtain all of the output values. For example, in the biometric
application, it is necessary to verify that like images yield a
good score and unlike images yield a bad score. The problem
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requires brute force, and the challenge lies in providing interfaces
to execute it effectively.

III. WHY IS ALL-PAIRS CHALLENGING?
Solving an All-Pairs problem seems simple at first glance. The

typical user constructs a standalone program F that accepts two
files as input, and performs one comparison. After testing F on
small datasets on a workstation, he or she connects to the campus
grid, and runs a script like this:

foreach $i in A
foreach $j in B

submit_job F $i $j

From the perspective of a non-expert, this is a perfectly rational
way to construct a large workload, because one would do exactly
the same thing in a sequential or parallel programming language
on a single machine. Unfortunately, it will likely result in very
poor performance for the user, and worse, may result in the
abuse of shared resources. Figure 1 shows a real example of
the performance achieved by a user that attempted exactly this
procedure at our institution, in which 250 CPUs yielded worse
than serial performance.

If these workloads were to be completed on a dedicated cluster
owned by one user on a switched network, efficient use of
resources might not be a concern. However, in a large campus grid
shared by many users, a poorly configured workload will consume
resources that might otherwise be assigned to waiting jobs. If the
workload makes excessive use of the network, it may even halt
other unrelated tasks. Let us consider some of the obstacles to
efficient execution. These problems should be no surprise to the
distributed computing expert, but are far from obvious to end
users.

Number of Compute Nodes. It is easy to assume that more
compute nodes is automatically better. This is not always true.
In any kind of parallel or distributed problem, each additional
compute node presents some overhead in exchange for extra
parallelism. All-Pairs is particularly bad, because in a non-
dedicated environment the data cannot easily be split into disjoint
partitions: to complete the workload, each node needs all of the
data. Data must be transferred to that node by some means, which
places extra load on the data access system, whether it is a shared
filesystem or a data transfer service. More parallelism means
more concurrently running jobs for both the engine and the batch
system to manage, and a greater likelihood of a node failing,
or worse, concurrent failures of several nodes, which consume
the attention (and increase the dispatch latency) of the queuing
system. For many I/O intensive problems, it may only make sense
to harness ten CPUs, even though hundreds are available.

Data Distribution. After choosing the proper number of
servers, we must then ask how to get the data to each computation.
A campus grid usually makes use of an institutional file server or
the submitting machine as a file server, as this makes it easy for
programs to access data on demand. However, it is much easier
to scale up the CPUs of a campus grid than it is to scale the
capacity of a central file server. If the same input data will be re-
used many times, then it makes sense simply to store the inputs
on each local disk, getting better performance and scalability.
Many dedicated clusters provide fixed local data for common
applications (e.g. genomic databases for BLAST [2]). However, in
a shared computing environment, there are many different kinds

of applications and competition for local disk space, so the system
must be capable of adjusting the system to serve new workloads
as they are submitted.

Dispatch Latency. The cost to dispatching a job within a
campus grid is surprisingly high. Dispatching a job from a queue
to a remote CPU requires many network operations to authenticate
the user and negotiate access to the resource, synchronous disk
operations at both sides to log the transaction, data transfers
to move the executable and other details, not to mention the
unpredictable delays associated with contention for each of these
resources. When a system is under heavy load, dispatch latency
can easily be measured in seconds. For batch jobs that intend
to run for hours, this is of little concern. But, for many short
running jobs, this can be a serious performance problem. Even if
we assume that a system has a relatively fast dispatch latency of
one second, it would be foolish to run jobs lasting one second: one
job would complete before the next can be dispatched, resulting
in only one CPU being kept busy. Clearly, there is an incentive to
keep job granularity large in order to hide the worst case dispatch
latencies and keep CPUs busy.

Failure Probability. On the other hand, there is an incentive
not to make individual jobs too long. Any kind of computer
system has the possibility of hardware failure, but a campus grid
also has the possibility that a job can be preempted for a higher
priority task, usually resulting in a rollback to the beginning of the
job on another CPU. Short runs provide a kind of checkpointing,
as a small result that is completed need not be regenerated. Long
runs also magnify heterogeneity in the pool. For instance, jobs that
should take 10 seconds on a typical machine but take 30 seconds
on the slowest aren’t a problem if batched in small sets. The other
machines will just cycle through their sets faster. But, if jobs are
chosen such that they run for hours even on the fastest machine,
the workload will incur a long delay waiting for the final job to
complete on the slowest. Another downside to jobs that run for
many hours is that it is difficult to discriminate between a healthy
long-running job and a job that is stuck and not making progress.
An abstraction has to determine the appropriate job granularity,
noting that this depends on numerous factors of the job and of
the grid itself.

Resource Limitations. Campus grids are full of unexpected
resource limitations that can trip up the unwary user. The major
resources of processing, memory, and storage are all managed
by high level systems, reported to system administrators, and
made known to end users. However, systems also have more
prosaic resources. Examples are the maximum number of open
files in a kernel, the number of open TCP connections in a
network translation device, the number of licenses available for
an application, or the maximum number of jobs allowed in a
batch queue. In addition to navigating the well-known resources,
an execution engine must also be capable of recognizing and
adjusting to secondary resource limitations.

Semantics of Failure. In any kind of distributed system,
failures are not only common, but also hard to define. If a program
exits with an error code, who is at fault? Does the program have
a bug, or did the user give it bad inputs, or is the executing
machine faulty? Is the problem transient or reproducible? Without
any context about the workload and the execution environment,
it is almost impossible for the system to take the appropriate
recovery action. But, when using an abstraction that regulates the
semantics of each job and the overall dataflow, correct recovery
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When using a conventional computing cluster, the user partitions the workload into jobs, then a batch queue distributes jobs to CPUs
where they access data from a central file server on demand. When using an abstraction like All-Pairs, the user states the high level
structure of the workload, the abstraction engine partitions both the computation and the data access, transfers data to disks in the
cluster, and then dispatches batch jobs to execute on the data in place.

is straightforward, as we show in Section VI below.

IV. AN ALL-PAIRS IMPLEMENTATION

To avoid the problems listed above, we propose that users
of campus grids should be given an abstraction that accepts a
specification of the problem to be executed, and an engine that
chooses how to implement the specification within the available
resources. In particular, an abstraction must convey the data needs
of a workload to the execution engine.

Figure 2 shows the difference between using a conventional
cluster and computing with an abstraction. In a conventional
cluster, the user specifies what jobs to run by name. Each job
is assigned a CPU, and does I/O calls on demand with a shared
file system. The system has no idea what data a job will access
until jobs actually begin to issue system calls. When using an
abstraction like All-Pairs, the user specifies both the data and
computation needs, allowing the system to partition and distribute
the data in a structured way, then dispatch the computation
according to the data distribution.

We have constructed a prototype All-Pairs engine that runs on
top of the Condor [40] distributed computing system and exploits
the local storage connected to each CPU. The user invokes All-
Pairs as follows:

AllPairs SetA SetB Function Matrix

where SetA and SetB are text files that list the set of files to
process, Function is the function to perform each comparison,
and Matrix is the name of a matrix where the results are to
be stored. Function is provided by the end user, and may be
an executable written in any language, provided that is has the
following calling convention:

Function SetX SetY

where SetX and SetY are text files that list a set of files to
process, resulting in a list of results on the standard output that
name each element compared along with the comparison score:

A1 B1 0.53623
A1 B2 2.30568

A1 B3 9.19736
...

Note that we require the user’s function be essentially a single-
CPU implementation of All-Pairs. This is good for performance,
because the actual execution time of of a single comparison could
be significantly faster than the time needed to invoke an external
program. It also improves usability, because the user may easily
transition from a small job run on a workstation to a large job
run on the campus grid.

Our implementation of All-Pairs operates in four stages: Mod-
eling the system, distributing input data, managing batch jobs,
and collecting the results. We describe each stage in turn.

A. Modeling the System

In order to decide how many CPUs to use and how to
partition the work, we must have an approximate model of system
performance. In a conventional system, it is difficult to predict
the performance of a workload, because it depends on factors
invisible to the system, such as the detailed I/O behavior of each
job, and contention for the network. Both of these factors are
minimized when using an abstraction that exploits initial efficient
distribution followed by local storage access instead of remote
network access.

We hasten to note that our goal in modeling is not to achieve
optimal performance. This is essentially impossible in a large
dynamic heterogeneous system where nothing is under our direct
control. Rather, the best we can hope for is to avoid disasters by
choosing the configuration that is optimal within the model.

The engine measures the input data to determine the size s of
each input element and the number of elements n in each set (for
simplicity, we assume here that the sets have the same number
and size elements). The provided function is tested on a small
set of data to determine the typical runtime t of each function
call. Several fixed parameters are coded into the abstraction by
the system operators: the bandwidth B of the network and the
dispatch latency D of the batch software. Finally, the abstraction
must choose the number of function calls c to group into each
batch job, and the number of hosts h to harness.
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Fig. 3. Three Workloads Modeled
This graph compares the modeled runtime of three workloads
that differ only in the time (t) to execute each function. In some
configurations, additional parallelism has no benefit.

The time to perform one transfer is simply the total amount of
data divided by the bandwidth. Distribution by a spanning tree
(described below) has a time complexity of O(log2(h)), so the
total time to distribute two data sets is:

Tdistribute =
2ns

B
log2(h)

The total number of batch jobs is n2/c, the runtime for each
batch job is D + ct, and the total number of hosts is h, so the
total time needed to compute on the staged data is:

Tcompute =
n2

c (D + ct)

h

However, because the batch scheduler can only dispatch one
job every D seconds, each job start will be staggered by that
amount, and the last host will complete D(h − 1) seconds after
the first host to complete. Thus, the total turnaround time is:

Tturnaround =
2ns

B
log2(h) +

n2

ch
(D + ct) + D(h − 1)

Now, we may choose the free variables c and h to minimize
the turnaround time. Some constraints on c and h are necessary.
Clearly, h cannot be greater than the total number of batch jobs or
the available hosts. To bound the cost of eviction in long running
jobs, c must be either a multiple or even divisor of a result row, to
simplify job partitioning. c is further constrained to ensure that no
batch job runs longer than one hour. This is also helpful to enable
a greater degree of scheduling flexibility in a shared system where
preemption is undesirable.

Figure 3 shows the importance of modeling the orders of mag-
nitude within the abstraction. Suppose that All-Pairs is invoked
for a biometric face comparison of 1000x1000 objects of 1.25MB
each, on a gigabit ethernet (125MB/s) network. Depending on the
algorithm in use, the comparison function could have a runtime
anywhere between 0.1s and 10s. If the function takes 0.1 seconds,
the optimal number of CPUs is 38, because the expense of moving
data and dispatching jobs outweighs the benefit of any additional
parallelism. If the function takes one second, then the system
should harness several hundred CPUs, and if it takes ten, all
available CPUs.

B. Distributing the Data

Each partition of the workload must have some method for
getting its input data. Batch systems are usually coupled with a
traditional file system, such that when a job issues I/O system
calls, the execution node is responsible for pulling data from the
storage nodes into the compute node. Because the abstraction is
given the data needs of the workload in advance, it can implement
I/O much more efficiently. To deliver all of the data to every
node, we can build a spanning tree which performs streaming
data transfers and completes in logarithmic time. By exploiting
the local storage on each node, we avoid the unpredictable effects
of network contention for small operations at runtime.

A file distributor component is responsible for pushing all data
out to a selection of nodes by a series of directed transfers forming
a spanning tree with transfers done in parallel. Figure 4 shows
the algorithm, which is a greedy work list. The data is pushed to
one node, which then is directed to transfer it to a second. Two
nodes can then transfer in parallel to two more, and so on. Each
node in the system runs a lightweight fileserver called Chirp [39]
which provides the access interface, performs access control, and
executes directed transfers.

Dealing with failures is a significant concern for pushing
data. Failures are quite common and impossible to predict. A
transfer might fail outright if the target node is disconnected,
misconfigured, has different access controls or is out of free space.
A transfer might be significantly delayed due to competing traffic
for the shared network, or unexpected loads on the target system
that occupy the CPU, virtual memory, and filesystem. Delays
are particularly troublesome, because we cannot tell whether a
problem will be briefly resolved or delay forever.

A greedy work list is naturally fault tolerant. If any one transfer
fails outright or is delayed, the remaining parallel branches of the
spanning tree will reach other parts of the campus grid. We have
found it most effective to simply give the distributor a goal of h

hosts, and then let it operate until that number is reached, cancel
any outstanding transfers, and then list the hosts actually reached.

Of course, a campus grid does not have a uniform network
topology. Transfers may be fast between machines on one switch,
but become slower as transfers reach across routers and other
network elements. In the worst case, the file distributor might
randomly arrange a large number of transfers that saturate a
shared network link, rendering the system unusable to others.

To prevent this situation, we allow the system administrator to
provide the abstraction with a simplified topology in the form
of a “network map”, which simply states which machines are
connected to the same switch. The file distributor algorithm is
slightly refined in two ways. First, the distributor will prefer to
transfer data between clusters before transferring within clusters,
assuming that the former are slower and thus should be performed
sooner so as to minimize the makespan. Second, the distributor
will not allow more than one transfer in or out of a given cluster
at once, so as to avoid overloading shared network links.

The performance of file distribution is shown in Figure 4. Here,
a 500MB dataset is transferred to the first 200 available hosts
in our campus grid, recording the elapsed time at which each
single transfer is complete. Each of three distribution techniques
is performed ten times, and the average at each host is shown.
Sequential distribution takes 8482 seconds to complete. A fully
random spanning tree takes 585 seconds, while a topology aware
tree takes 420 seconds.
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An efficient way to distribute data to many nodes of a system is to build a spanning tree. In the example on the right, a file distributor
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Is it really necessary to distribute all of the data to every node?
We could simply distribute the minimum amount of data to allow
each node to run its job. As we will show, distributing all of the
data via spanning tree is faster than distributing the minimum
fragment of data from a central server, and it also improves the
fault tolerance of the system. Table I summarizes the result.

Proof: Consider a cluster of h reliable hosts with no possibility
of preemption or failure. The fragment method minimizes the
amount of data sent to each host by assigning each host a square
subproblem of the All-Pairs problem. Each subproblem requires
only a fragment of data from each set to complete. So, both data
sets are divided into into f fragments, where f =

√

h. Each host
then needs n/f data items of size s from each set delivered from
the central file server. Dividing by the bandwidth B yields the
total time to distribute the data fragments:

Tfragment =
2nsh

Bf
=

2ns

B

√

h

Compare this to the spanning tree method described above:

Tdistribute =
2ns

B
log2(h)

Because log2(h) <<
√

h, the spanning tree method is faster
than the minimum fragment method for any number of hosts
in a reliable cluster without preemption or failure. Of course,
the total amount of data transferred is higher, and the dataset
must fit entirely on a sufficient number of disks. However, as
commodity workstation disks now commonly exceed a terabyte
and are typically underutilized [19], this has not been a significant
problem.

As we have noted above, a campus grid is a highly unreliable
environment. The fragment method is even worse when we
consider failures. Because it delivers the minimum amount of
data to any one host, there is no other location a job can run
if the data is not available. With the spanning tree method, any
job can run on any node with the data, so the solution is more
naturally fault tolerant.

C. Dispatching Batch Jobs

After transferring the input data to a suitable selection of nodes,
the All-Pairs engine then constructs batch submit scripts for each

TABLE I
COMPARISON OF DATA DISTRIBUTION TECHNIQUES

Distribution Total Data Fault
Method Time Transferred Tolerant?
Fragment (ns/B)

√

h ns
√

h No
Spanning Tree (ns/B)log2(h) nsh Yes

of the grouped jobs, and queues them in the batch system with
instructions to run on those nodes where the data is available.
Each batch job consists of the user’s function and the All-Pairs
wrapper, shown in Figure 5. The wrapper is responsible for
executing the user’s function on the appropriate partition of the
job and writing the results in batch to the output matrix, described
in detail below.

Although we rely heavily on the batch system to manage the
workload at this stage, the framework still has two important
responsibilities: local resource management and error handling.

The All-Pairs engine is responsible for managing local re-
sources on the submitting machine. If a workload consists of
hundreds of thousands of partitions, it may not be a good idea
to instantly materialize all of them as batch jobs for submission.
Each materialized job requires the creation of several files in the
local filesystem, and consumes space in the local batch queue.
Although Condor is capable of queueing hundreds of thousands of
jobs reliably, each additional job slows down queue management
and thus scheduling performance. When jobs complete, there
is the possibility that they produce some large error output or
return a core dump after a crash. Instead of materializing all jobs
simultaneously, the engine throttles the creation of batch jobs
so that they queue only has twice as many jobs as CPUs. As
jobs complete, the engine deletes the output and ancillary files to
manage the local filesystem.

The engine and the wrapper together are responsible for han-
dling a large number of error conditions. Again, Condor itself can
silently handle problems such as the preemption of a job for a
higher priority task or the crash of a machine. However, because
it has no knowledge of the underlying task, it cannot help when
a job fails because the placed input files have been removed, the
execution machine does not have the dynamic libraries needed by
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wrapper
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into matrix M

(M,0,2,10,2,data)

matrix_create ( host, path, width,
height, itemsize, nhosts );

matrix_open ( host, path );
matrix_set_cell ( matrix, i, j, data );
matrix_set_row ( matrix, i, data );
matrix_set_col ( matrix, j, data );
matrix_set_range ( matrix, i, j,

width, height, data );
matrix_close ( matrix );
matrix_delete ( host, path );

Fig. 5. Detail of Local Job Execution
The engine runs on the submitting node, directing each working node to compute a subset of the All-Pairs problem. On each node,
a wrapper invokes the users function, buffers the results in memory, and then updates the distributed data structure with the results.

the function, or a brief network outage prevents writing results
to the matrix. Although events like this sound very odd, they
are all too common in workloads that run for days on hundreds
of machines. To address this, the wrapper itself is responsible
for checking a number of error conditions and verifying that the
output of the function is well formed. If the execution fails, the
wrapper informs the engine through its exit code, and the engine
can resubmit the job to run on another machine.

The engine can also handle the problem of jobs that run for too
long. This may happen because the execution machine has some
hardware failure or competing load that turns a 30 minute job into
a 24 hour job. Although the runtime of an arbitrary batch job is
impossible to predict in the general case, the engine has access
to a model of the workload, as well as a distribution of runtimes,
so it can cancel and resubmit jobs that fall far out of the range
of normal execution times. To improve the “long tail” of jobs at
the end of an execution, it could also submit duplicate jobs as
in Map-Reduce [16], although we have not yet implemented this
feature.

D. Collecting the Output

The output produced by an All-Pairs run can be very large. In
our largest biometrics workload, a 60,000 by 60,000 comparison
will produce 3.6 billion results. Each result must, at a minimum,
contain an eight-byte floating point value that reflects the similar-
ity of two images, for a total of 28.8GB of unformatted data. If we
store additional data such as troubleshooting information for each
comparison, the results may balloon to several hundred gigabytes.
Our users run many variations of All-Pairs, so the system must
be prepared to store many such results.

Although current workstation disks are one terabyte and larger,
and enterprise storage units are much larger, several hundred
gigabytes is still a significant amount of data that must be handled
with care. It is not likely to fit in memory on a workstation
and applying improper access patterns will result in performance
many orders to magnitude slower than necessary. A user that
issues many All-Pairs runs will still fill up a disk quite quickly.

The non-expert user who applies existing interfaces in the
most familiar way will run into serious difficulties. We have
encountered several non-expert users whose first inclination is to
store each result as a separate file. Of course, this is a disastrous
way to use a filesystem, because each eight byte result will

consume one disk block, one inode, and one directory entry. If
we store each row of results in a separate file in the function’s
text output format, we are still storing several hundred gigabytes
of data, and still have a sufficiently large number of files that
directory operations are painfully slow. Such a large amount
of data would require the user to invest in a large storage and
memory intensive machine in order to manipulate the data in real
time.

Instead, the abstraction must guide users toward an appropriate
storage mechanism for the workload. Output from All-Pairs jobs
goes to a distributed data structure provided by the system. The
data structure is a matrix whose contents are partitioned across
a cluster of reliable storage nodes maintained separately from
the campus grid. Data in the matrix is not replicated for safety,
because the cluster is considered an intermediate storage location
in which results are analyzed and then moved elsewhere for
archival. In the event of failure leading to data loss, the All-Pairs
run can easily be repeated.

The matrix is named by the location of an index file that
indicates the dimensions of the array and the location of each
of the data files. It is accessed through a library interface shown
in Figure 5. Each chunk of the matrix is a subset of complete
rows, stored in row-major order. Clearly, row-major access is
most efficient: A row read or write results in a single sequential
I/O request to one host. Column-major access is still possible: A
column read or write results in a strided read or write performed
on all hosts in parallel. This is unavoidably inefficient on a
single disk, because the underlying filesystem will only access
a few bytes in each disk block, but can take advantage of the
hardware parallelism. Individual cell reads are also possible, but
are inefficient for the same reason. Regardless, I/O performance
of all access methods is improved by access to parallel I/O and
memory capacity.

Figure 6 shows the performance of this distributed data struc-
ture on a cluster of 32 nodes with 2GB of RAM and 24 GB of
disk, connected by gigabit ethernet. A benchmark program creates
a matrix on a set of nodes, fills it with data, and then times 1000
row reads, followed by row writes, column reads and writes, and
single cell reads and writes. Write operations are flushed to disk
before the clock is stopped. The results show the data throughput
for all access modes for matrices of double precision floating
point values ranging from 1K square (8MB of data total) to 64K
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Fig. 6. Scalability and Performance of a Distributed Results Matrix.
These graphs show the throughput a single client can achieve while accessing a distributed matrix in varying configurations on a cluster
of 32 nodes each with 2GB of RAM and 24GB of disk. A benchmark program creates a matrix of a given size and then measures the time
to read and write rows, columns, and single cells at random. Each cluster of bars shows the performance where the matrix is partitioned
across 1, 2, 4, 8, 16, and 32 nodes. Bars in gray indicate configurations where the matrix is sufficiently large that it does not fit in main
memory. For example, the marked example shows the performance of reading rows from a 64K by 64K matrix of double-precision values (a
total of 32GB of data) configured on 1-32 hosts. By distributing the matrix across a large number of hosts, the data structure can be kept
in memory rather than disk, improving performance by several orders of magnitude.

square (32GB of data total). Each cluster of bars shows how the
performance varies on 1, 2, 4, 8, 16, and 32 nodes. The bars
shown in gray indicate cases where the matrix does not fit in
aggregate memory. (Note that the case of a 64Kx64K array on
a single node is marked with an ’X’, because it cannot fit on a
single disk in this system.)

If we consider row reads, we observe that harnessing multiple
hosts improves performance dramatically when it allows the
matrix to reside entirely in memory. Increasing the number of
hosts beyond the memory threshold results in no benefit or a slight
decrease because each read must block until the requested data
is available. Row writes see some benefit from increasing beyond
the memory limit because multiple writes can be pipelined into
each local buffer cache, so additional hosts add I/O bandwidth.
Column and single cell reads and writes naturally see much
worse performance than row operations, but the pattern is the
same: multiple hosts improve read performance up to the memory
threshold, and improve write performance beyond.

By requiring the use of distributed data structure, several goals
are accomplished at once: the user is forced to employ an efficient
storage representation, the results may scale to sizes much larger
than possible on any one disk, and performance is improved to
the point where real-time data analysis becomes feasible.

V. EVALUATION

Environment. To evaluate the concept of using abstractions for
data intensive computing on a campus grid, we have constructed
an All-Pairs engine and employed it with biometric, data mining,

and bioinformatics applications at the University of Notre Dame.
Our campus grid consists of about 500 CPUs connected to 300
disks. We use Condor [40] to manage the CPUs and the Chirp [39]
user level filesystem to manage and access all of the local disks.

This is a highly shared computing environment consisting of
a mix of research clusters, personal workstations, student lab
workstations, and classroom display systems, all connected by
shared gigabit Ethernet that serves many more machines for
general Internet access. Figure 7 also shows that it is highly
heterogeneous. New machines are added to the system and old
machines are removed on a daily basis. As a result, both CPU
and disk performance vary widely, with no simple correlation.

Configurations. We evaluate two implementations of All-Pairs.
The first is labelled abstraction, which is exactly the implemen-
tation described above. In this mode, the implementation takes
advantage of its knowledge of the I/O structure of the workload
to model the system, distribute the data, and collect the outputs.
As a tradeoff, this mode can only take advantage of nodes where
the entire input data set will fit on disk. As the data sizes become
larger, fewer CPUs become available.

We compare this to conventional mode, which is the traditional
cluster architecture with a central filesystem. In this mode, the
abstraction simply partitions the workload into the same sized jobs
as above, but then just submits them all to the batch system, where
they access data on demand from a central shared fileserver. For
this configuration, the central file server was a dedicated 2.4GHz
dual-core Opteron machine with 2GB of RAM, also running a
Chirp fileserver.
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Fig. 7. Performance Variance in a Campus Grid
A campus grid has a high degree of heterogeneity in available resources. (a) shows the distribution of CPU speed, ranging from
1334 to 5692 MIPS. (c) shows the distribution of disk bandwidth, as measured by a large sequential write, ranging from 2 MB/s
(misconfigured controller) to 55 MB/s. (b) shows the weak relationship between CPU speed and disk bandwidth. A fast CPU is not
necessarily the best choice for an I/O bound job.
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Fig. 8. Challenges in Evaluating Grid Workloads
Evaluating workloads in a campus grid is troublesome, because of the variance of available resources over time. 8(A) shows the
CPUs assigned to two variants of the same 2500x2500 All-Pairs problem run in conventional and abstraction modes. 8(B) shows the
distribution of job run times for each workload. In this case, the abstraction mode is significantly better, but a quantitative evaluation
is complicated by the variance in number of CPUs and the long tail of runtimes that occurs in a distributed system. To accommodate
this variance, we also compute the resource efficiency metric described in the text.

Note that we cannot compare against a kernel-level distributed
filesystem like NFS [37]. This campus grid spans multiple admin-
istrative domains and firewalls; gaining access to modify kernel
level configurations is impossible in this kind of environment.
Both configurations use the exact same software stack between the
end user’s application and the disk, differing only in the physical
placement of jobs and data. In any case, the precise filesystem
hardware and software is irrelevant, because the conventional
configuration saturates the gigabit network link.

Metrics. Evaluating the performance of a large workload
running in a campus grid has several challenges. In addition to the
heterogeneity of resources, there is also significant time variance
in the system. The number of CPUs actually plugged in and
running changes over time, and the allocation of those CPUs to
batch users changes according to local priorities. In addition, our
two different modes (abstraction and conventional) will harness
different numbers of nodes for the same problem. How do we
quantitatively evaluate an algorithm in this environment?

Figure 8(A) shows this problem. Here we compare an All-
Pairs run of 2500x2500 on a biometric workload. The conven-
tional mode uses all available CPUs, while the abstraction mode
chooses a smaller number. Both vary considerably over time, but
it is clear that abstraction completes much faster using a smaller

number of resources. Figure 8(B) shows the distribution of job run
times, demonstrating that the average job run time in abstraction
is much faster, but the long tail rivals that of conventional.

To accommodate this, we present two quantitative results. The
turnaround time is simply the wall clock time from the invocation
to completion. The resource efficiency is the total number of cells
in the result (the number of function invocations), divided by the
cumulative CPU-time (the area under the curve in Figure 8(A).
For both metrics, smaller numbers are better.

Results. Figure 9 shows a comparison between the two im-
plementations for a biometric comparing face images of 1.25MB
each in about 1s each. For workload above 1000x1000, the ab-
straction is twice as fast, and four times more efficient. Figure 10
shows a data mining application comparing datasets of 700KB in
about 0.25s each. Again, the execution time is almost twice as
fast on large problems, and seven times more resource efficient
on the largest configuration. We also constructed a synthetic
application with a heavier I/O ratio: items of 12.5MB with 1s
of computation per comparison. Although this application is
synthetic, chosen to have ten times the biometric data rate, it
is relevant as processor speed is increasing faster than disk or
network speed, so applications will continue to be increasingly
data hungry. Figure 11 shows for this third workload another
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Fig. 9. Performance of a Biometric All-Pairs Workload
The biometric face comparison function takes 1s to compare two 1.25MB images.
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Fig. 10. Performance of a Data Mining All-Pairs Workload
The data mining function takes .25 seconds to compare two 700KB items.
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This function takes 1s for two 12.5MB data items, 10 times the data rate of the biometric workload.
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The results of All-Pairs on 58,639 iris codes. The gray indicates
comparison of irises from the same person (match). The black
indicates comparison of irises from different people (nonmatch).

example of the abstraction performing better than the conventional
mode on all non-trivial data sizes.

For comparison, we also show the execution time predicted by
the model for the abstraction. As expected, the actual implemen-
tation is often much slower than the modeled time, because it
does not take into account failures, preemptions, competition for
resources, and the heterogeneity of the system.

For small problem sizes on each of these three applications,
the completion times are similar for the two data distribution
algorithms. The central server is able to serve the requests from
the limited number of compute nodes for data sufficiently to
match the data staging step in the application.

For larger problem sizes, however, the conventional algorithm
is not as efficient because the aggregate I/O rate (hs/t) exceeds
the capacity of the network link to the central file server, which
has a theoretical maximum of 125 MB/s. If we assume that
exactly 300 CPUs are in use at once, the aggregate I/O rate is
375 MB/s in Figure 9, 820 MB/s in Figure 10, and 3750 GB/s in
Figure 11. To support these data rates in a single file server would
require a massively parallel storage array connected to the cluster
by a high speed interconnect such as Infiniband. Such changes
would dramatically increase the acquisition cost of the system.
The use of an abstraction allows us to exploit the aggregate I/O
capacity of local storage, thereby achieving the same performance
at a much lower cost.

VI. PRODUCTION WORKLOAD

Our implementation of All-Pairs has been used in a production
mode for about one year to run a variety of workloads in biomet-
rics, which is the study of identifying humans from measurements
such as fingerprints, face images, and iris scans. Our tool has
been used to explore matching algorithms for 2-D face images,
3-D face meshes, and iris images. Our largest production run
so far explored the problem of matching a large body of iris
images. To motivate the problem, we will briefly describe how
iris biometrics are performed. A more detailed overview is given
by Daugman [15].

Failure Type Observer Count
Job killed with signal 15. engine 4161
Job killed with signal 9. engine 372
Inputs not accessible. wrapper 5344
Failed to store output. wrapper 17
Dynamic linking failed. wrapper 45
Function returned 255. wrapper 20
Function returned 127. wrapper 300
Job preempted. batch system 14560

TABLE II
SUMMARY OF FAILURES IN PRODUCTION RUN

A conventional iris biometric system will take a grayscale iris
image and extract a small binary representation of the texture in
the iris, called an iris code [9]. The iris code is a small (20KB)
black and white bitmap designed to make comparisons as fast as
possible. To compare two iris codes, we compute the normalized
Hamming distance, which is simply the fraction of the bits that
differ. Two random binary strings would likely differ in about
half of their bits, and would therefore have a Hamming distance
score around 0.5. Two iris codes corresponding to two different
images of the same person’s eye would not differ in as many bits,
and thus have a Hamming distance closer to 0. A comparison
between two different images of the same iris is called a match,
and comparison between images of two different eyes is called
a nonmatch. Ideally, all match comparisons should yield lower
Hamming distance scores than all nonmatch comparisons.

Our largest run computed Hamming distances between all
pairs of 58,639 20KB iris codes from the ICE 2006 [33] data
set, which is to be released to the public shortly. The next
largest publically available iris data set is CASIA 3 [10], about
three times smaller, on which no results have been published on
complete comparisons. To our knowledge, this will be the largest
such result ever computed on a publically available dataset.

Figure 12 show the end result of this workload. A histogram
shows the frequency of Hamming distances for matching irises
(different images from the same person) and non-matching irises
(images from different people.) As can be seen, the bulk of
each curve is distinct, so an online matching system might use a
threshold of about 0.4 to determine whether two irises represent
different people. However, these results also indicate a group of
non-matching comparisons that significantly overlap the matches.
In examining these comparisons, they discovered that these low
scores occur when one of the images in the comparison is partially
occluded by eyelids so that only a small amount of iris is visible
and available for the comparison. This observation will drive
future work that must identify and account for occluded irises
specifically. Without the ability to easily perform large scale
comparisons, such an observation could not have been made.

Our fastest single machine can perform 50 comparisons per
second, and would take about 800 days to run the entire workload
sequentially. Our All-Pairs implementation ran in 10 days on a
varying set of 100-200 machines, for a parallel speedup of about
80. The speedup is imperfect because one cannot maintain ideal
conditions over the course of ten days. Table II summarizes all
of the failures that occurred over that period, grouped by the
component that observed and responded to the failure.

As discussed above, the Condor batch system handles a large
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fraction of the failures, which are preemptions that force the
job to run elsewhere. However, the number of failures handled
by the rest of the system is still large enough that they cannot
be ignored. All are cases that are not supposed to happen in a
well regulated system, but creep in anyhow. Despite extensive
debugging and development, the user’s function still crashes when
exposed to unexpected conditions on slightly different machines.
A number of machines were wiped and re-installed during the run,
so input files were not always found where expected. There are a
surprisingly large number of instances where the job was forcibly
killed with a signal; only a local system administrator would have
permission to do so. These data emphasize the point that anything
can and will happen in a campus grid, so every layer of system
is responsible for checking errors and ensuring fault tolerance –
this task cannot be delegated to any one component.

Despite these challenges, we have demonstrated that the All-
Pairs abstraction takes a computation that was previously infeasi-
ble to run, and makes it easy to execute in a matter of days, even
in a uncooperative environment. Using this abstraction, a new
graduate student can break new ground in biometrics research
without becoming an expert in parallel computing.

VII. RELATED WORK

We have used the example of the All-Pairs abstraction to
show how a high level interface to a distributed system improves
both performance and usability dramatically. All-Pairs is not a
universal abstraction; there exist other abstractions that satisfy
other kinds of applications, however, a system will only have
robust performance if the available abstraction maps naturally to
the application.

For example, Bag-of-Tasks is a simple and widely used ab-
straction found in many systems, of which Linda [1], Condor [29],
and Seti@Home [38] are just a few well-known examples. In this
abstraction, the user simply states a set of unordered computation
tasks and allows the system to assign them to processors. This per-
mits the system to retry failures [5] and attempt other performance
enhancements. [13]. Bulk-Synchronous-Parallel (BSP) [12] is a
variation on this theme.

Bag-of-Tasks is a powerful abstraction for computation inten-
sive tasks, but ill-suited for All-Pairs problems. If we attempt to
map an All-Pairs problem into a Bag-of-Tasks abstraction by e.g.
making each comparison into a task to be scheduled, we end up
with all of the problems described in the introduction. Bag-of-
Tasks is insufficient for a data-intensive problem.

Map-Reduce [16] is closer to All-Pairs in that it encapsulates
both the data and computation needs of a workload. This ab-
straction allows the user to apply a map operator to a set of
name-value pairs to generate several intermediate sets, then apply
a reduce operator to summarize the intermediates into one or
more final sets. Map-Reduce allows the user to specify a very
large computation in a simple manner, while exploiting system
knowledge of data locality.

Hadoop [24] is a widely-used open source implementation
of Map-Reduce. Although Hadoop has significant fault-tolerance
capabilities, it assumes that it is the primary controller of a
dedicated cluster, so it does not have the necessary policy and
preemption mechanisms necessary for a campus grid.

That said, we may ask whether we can express an All-Pairs
problem using the Map-Reduce abstraction. We can do so, but an
efficient mapping is neither trivial nor obvious. A pure Map can

only draw input from one partitioned data set, so we might itemize
the Cartesian product into a set like S = ((A1, B1), (A1, B2)...)

then invoke Map(F, S) Obviously, this would turn a dataset of
n elements into one of n2 elements, which would not be a good
use of space. If set A is smaller, we might package A with F and
define F+ = Map(F, A) and then compute Map(F +, B), relying
on the system to partition B. However, this would result in the
sequential distribution of one set to every node, which would be
highly inefficient as shown above. A more efficient method might
be to add our mechanism for data distribution alongside Hadoop,
and then use the Map-Reduce to simply invoke partitions of the
data by name.

As this discussion shows, there are many ways to express one
problem in terms of the other. In order to guide users to an
appropriate implementation, it is best to provide them with an
abstraction that closely matches the problem domain.

Clusters can also be used to construct more traditional abstrac-
tions, albeit at much larger scales. For example, data intensive
clusters can be equipped with abstractions for querying multi-
dimensional arrays [7], storing hashtables [23] and B-trees [31]
and semi-relational data [11], searching images [27], and sorting
record-oriented data [4].

The field of grid computing has produced a variety of abstrac-
tions for executing large workloads. Computation intensive tasks
are typically represented by a directed acyclic graph (DAG) of
tasks. A system such as Pegasus [17] converts an abstract DAG
into a concrete DAG by locating the various data dependencies
and inserting operations to stage input and output data. This
DAG is then given to an execution service such as Condor’s
DAGMan [40] for execution. All-Pairs might be considered a
special case of a large DAG with a regular grid structure.
Alternatively, an All-Pairs job might be treated as a single atomic
node in a DAG with a specialized implementation.

Other abstractions place a greater focus on the management
of data. Chimera [22] presents the abstraction of virtual data in
which the user requests a member of a large data set which may
already exist in local storage, be staged from a remote archive,
or be created on demand by running a computation. Swift [42]
and GridDB [30] build on this idea by providing languages for
describing the relationships between complex data sets.

VIII. CONCLUSION

We have shown how an abstraction like All-Pairs can be used
to improve the usability, performance, and efficiency of a campus
grid. By expressing the high level structure of a workload, an ab-
straction enables the runtime to choose an appropriate partitioning
strategy, exploit data re-use, and recovery cleanly from failures.
An abstraction also serves to guide the user toward an appropriate
mechanism for the task at hand, such as a distributed array for
storing results. Patterson [34] has suggested that abstractions
are the assembly language that will be used to program large
distributed systems. All-Pairs is one new instruction to add to
that set, and we suspect that there are others. Future work may
identify common patterns in large workloads, and create other
abstractions that enable new forms of discovery.
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