ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 1

PREPRINT: A Framework for Scalable Genome
Assembly on Clusters, Clouds, and Grids

Christopher Moretti, Andrew Thrasher, Li Yu, Michael Olson,
Scott Emrich, and Douglas Thain
Department of Computer Science and Engineering, University of Notre Dame

Abstract—Bioinformatics researchers need efficient means to process large collections of genomic sequence data. One application of
interest, genome assembly, has great potential for parallelization, however most previous attempts at parallelization require uncommon
high-end hardware. This paper introduces the Scalable Assembler at Notre Dame (SAND) framework that can achieve significant
speedup using large numbers of commodity machines harnessed from clusters, clouds, and grids. SAND interfaces with the Celera
open-source assembly toolkit, replacing two independent sequential modules with scalable parallel alternatives: the candidate selector
exploits distributed memory capacity, and the sequence aligner exploits distributed computing capacity. For large problems, these
modules provide robust task and data management while also achieving speedup with high efficiency. We show results for several
datasets ranging from 738 thousand to over 320 million alignments using resources ranging from a small cluster to more than a
thousand nodes spanning three institutions.

Index Terms—C.2.4 Distributed Systems, Bioinformatics, Genome assembly.

O

1 INTRODUCTION

THe landscape of genomics and bioinformatics researofemory of the distributed system, while the second stage
is undergoing a dramatic change. The cost of traditionadlies on the aggregate computation power. SAND is both
genome sequencing was once in the range of millions efastic and fault-tolerant, and can be run on any colleabibn
dollars and only accessible to national-scale centerssixtu machines, including high performance computers, dedicate
on the study of model organisms. Today, second genetddsters, and desktop workstations. SAND is modular, n@kin
tion sequencing devices are operating at hundreds of modiéstasy to change algorithms as the field of bioinformatics
institutions and typical sequencing costs of medium-sizedivances. Specifically, the core ideas in SAND are ideal for
genomes are on the order of tens of thousands of dolladéverse and/or error-prone data characteristic of somerskc
and will drop further with soon-to-be released third getiera. and early third generation sequencing platforms such as the
platforms [11]. Any ordinary academic or commercial lablwilPacBio instrument [11].
be able to generate gigabytes to terabytes of genomic data. To evaluate the correctness of SAND, we assemble and

However, raw data of a newly sequenced organism is of littlerify an assembly of the malaria mosquiAmopheles gam-
use until it is assembled. Genome assembly is a very cobiaederived from tens of diverse individuals [24]. To evaluate
putationally intensive task, so sequencing centers (ameene the performance, we measure the strong scalability of the
generation sequencing vendors) have historically inc@afgal system on mosquito and synthetic sorghum sequence data
high end computers into their facilities and installatioAs- on a dedicated cluster of up to 512 cores using both com-
cordingly, assembly software has been created, evaluaiggd plete prefix-suffix alignment and the common optimization of
deployed on parallel supercomputers. For example, a receanded alignment. We compare the latter to the performance
result in large scale assembly by Kalyanaraman et al. [2@f the widely used Celera assembler, showing that SAND is
employs the MPI framework on a dedicated BlueGene/L.. faster than Celera in absolute terms, but also scalabledera

As sequencing becomes inexpensive and commonplacambers of cores. Finally, we demonstrate scalability and
there will be a greater need for computational power, andbustness by assembling human sequence data on a system
utilizing a high-end computer for each device is not praadtic of over 1000 cores drawn from multiple institutions.
Instead, we argue that commodity sequencing devices can bén this paper, we provide an overview of overlap-based
well served by commodity computing systems. The typicglenome assembly and its parallelizable aspects in Section 2
researcher today has access to a wide variety of computifige overall architecture of SAND and the validation of résul
power in the form of clusters, clouds, grids. However, tare presented in Sections 3 and 4. Sections 5 and 6 describe
harness these resources requires software that can rungen lghe design, implementation and performance of the candi-
collections of non-dedicated, heterogenous machines. date selection and sequence alignment stages, respgctivel

To address this, we have created SAND - the Scalalife Section 7, we discuss our ability to scale to many cores
Assembler at Notre Dame. SAND is an framework that caand multiple institutions Section 9 in the online supplemen
operate on clusters, clouds, and grids. It consists of twwovides further details on candidate selection and sidijab
main stages that speed up assemblies: candidate selectiontachniques.
sequence alignment. The first stage depends on the aggregalenis paper is an extension of an earlier workshop paper. [27]

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 2

Number Average | Candidate | Uncomp. | Task Data | Comp. Task Data

Dataset Reads | Read Size Pairs Size Size Size | Comp. Size

Small | A. gambiae scaffold 101,617 764 738,838 80MB 684MB | 22MB 188MB

Medium | A. gambiae completé 2,586,385 763 | 12,645,128 2.5GB 13GB | 642MB 3.6GB

Large | S. bicolor simulated] 7,915,277 747 | 121,321,821 5.7GB 127GB| 1.7GB 35GB

Huge | H. sapiens complete 31,257,852 654 | 327,025,224 80GB 299GB 20GB 79GB
TABLE 1

Summary of Genome Data Used in this Paper

2 OVERVIEW OF GENOME ASSEMBLY Workers

Dispatched
_ -7 to Clusters,

Genome sequencing the laboratory process of determining - o i
- ’ ouas, an I

an organism’s DNA string (A,G,T,C) from a biological sample
However, no current sequencing process is capable of Hirect
producing an organism'’s entire string of millions or biti®

of bases. Instead, the process produces a large number of
random substrings of the sequence knownreasds Reads
can vary in length from 25 to 1000 bases, depending on
the sequencing technology [31{zenome assemblis the
computational process of arranging reads in the correatrord
to produce the largest possible contiguous strings known as
contigs There are many assemblers [7], [18], [19], [28], [30]
that solve the problem in a variety of ways. Here, we consider
three computational steps: candidate selection, aligtraed
layout + consensus.

In the candidate selectiostep, we must find all potential
overlaps between the suffix of one read and the prefix of an-
other. To ensure that enough reads will overlap, it is negssFig. 1. Architecture of SAND
to oversample by a factor of 5 to 10. In principle, every singl
read should be compared to every other read, but this would be
computationally infeasible. To reduce the problem, asserab 3 SAND

often use a method known @smer counting, in which each sAND s an open source scalable framework that replaces the
subsequence of lenghin the input is added to a hash tablgirs; several stages of an overlap-based assembler sioilar t
and any sequence pairs that share at least one exact matc, &)]f Specifically, SAND generates OVL alignment informa-
lengthk are considered to be candidates. This is a linear timig, tor the Celera Assembler (CA) [28] but can be easily
algorithm that reduces the work considerably. modified for other software. We chose CA to start because
Next, overlap regions are refined using modified versiofsjs widely used for processing whole genome shotgun data
of sequence alignmenfl7] to find differences including (e g., [39]) and is relatively modular: the top-level pragr is
sequencing errors. This step has a worse case complexitya0cript that invokes each of the stages discussed preyiousl
O(mn) wherem and n are the sizes of the two sequencegsing files to communicate between steps. The candidate
considered. Because there can be millions of Candidatss, Tgb|ection and a"gnment Steps are woven into a Sing|e modu|e
step takes the most time in existing assemblers. and can be run on a batch system such as SGE, relying on a
Finally, the assembler lays out reads in an estimated @hared filesystem to communicate the sequence data.
der, creates contiguous sequences, and then combines thess shown in Figure 1, SAND replaces two stages in CA
together into larger structures callestaffoldsin a process with scalable versions that exploit the memory capacity and
simply refered to as theonsensustep. Although it is possible computational power of clusters, clouds and grids, without
to run consensus in parallel, this step contains the leastiatn requiring a shared filesystem. The new modules are compatibl
of parallelism and can often be computed in a few hours atith the old implementations, so we can improve the assembly
a single commodity machine. Therefore, we do not addregsep by step. For example, a new overlap module can be
consensus further in this paper. developed and used for reads from the PacBio instrument [11]
In a genome assembly the alignment step is the mdbkat can reach tens of thousands of nucleotides in length.
naturally parallel, with no tasks requiring inter-compida The algorithmic details of both candidate selection and
communication or having dependencies on prior tasks. Madignment are an open topic of research in bioinformatics,
previous approaches to parallelizing assembly have fabase so we allow the user to provide custom algorithms for each
this step but still run candidate selection step using mgmoiif desired. In this paper, We use two different alignment
intensive sequential programs discussed in Section 8. Thigorithms used in overlap-based assembli&snpleteis the
paper presents solutions that solve both components on cduil prefix-suffix alignment algorithm, which is simple but
modity distributed systems such as clusters, clouds, aidg.gr expensive andBandedis a simple heuristic improvement on

Run on
SMP Machine

Complete
Sequence

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 3

SAND SAND Celera
Dataset | Cores | Selection | Alignment | Consensus 4 THE WORK QUEUE FRAMEWORK
Small 12% 2%8 ::g Sgg ::g 127 sec A variety of systems today make it easy for the individual
Vedium T 265 min 377 in 193 Tin re;earcher to obtain large numbers of cores. An .IndIV.Idua|
128 5 min 7 min might have a small cluster of homogeneous machines in the
Large 1 104 hrs 40 hrs 17 hrs lab, or have access to a large institutional cluster shared
128 49 min 19 min between many researchers using software such as Sun Grid
TABLE 2 Engine [16]. Many institutions scavenge idle cycles from

workstations and clusters using software like Condor [42] t
create a campus grid of thousands of non-dedicated machines
Multiple institutions can band together to create national

prefix-suffix. Both are found in any bioinformatics textboolfd like the Open Science Grid [2] or the TeraGrid [1].
and easily implemented in an afternoon. Although these &9mmercial providers such as Amazon EC2 or Windows
gorithms are less sophisticated than those found in CA, thgure provide metered access to virtually unlimited resesr

structure of SAND results in both faster absolute perforcean Unfortunately, each one of these systems has its own user
and scalability to larger systems. interface, programming model, and semantics of execution.

All experiments were run on the datasets shown in Table Iﬂstead of accessing these systems directly, we use them

: fQ start another layer of software that provides a common
Smallconsists of the all the reads from the largest scaffold o . .
) T : ; execution environment. In SAND, we use Work Queue [44],
Anopheles gambiae MVediumis the entireA. gambiae M . . h
. . a data intensive master-worker system. We use the native
genome, andlargeis a set of simulated reads of t®rghum

bicolor genome [29]. The. gambiaegenome was sequencednterface of the cluster, cloud, or grid to start hundreds of

: . . . waqrker processes, which then contact a master processlglirec
using traditional Sanger sequencing, which has longer r : . . .
. : . . e execution environment is managed entirely between the
lengths, but is more expensive and time consuming. The

simulatedS. bicolordataset was generated by extracting rea(ﬁnaSter and the workers, and no further interaction with the

of 500-1000 bases from the finish&d bicolorgenome with c?ugter,lclc?ud,thor g”dtls nezessal:y. th isti tem h
randomized starting positions. Tluge dataset is the Venter veriaying theé master anc worker on the existing system nhas

human genome [43], which we employ in a final demonstrati&?veral benefits. Because the worker persists across taultip
of scalability ' task executions, commonly used input files, executablas$, an

i) libraries can be cached at the execution site, speedingteip la
Table 2 shows some typical results of using SAND on @qks. Dispatching a new task to an existing worker is a matte

single core and on a large cluster. As can be seen, candidi(g single network communication, which is much faster than
selection and alignment dominate the costs of assemblyeas §, minutes necessary to allocate a new virtual machine or

data size increases. SAND reduces these steps considerakﬁyocessor in an existing cluster, cloud, or grid. For wogkle
Validation of SAND was performed on technical and biosuch as SAND that consist of many short running but data
logical levels. Technically, the goal of SAND is to provide antensive jobs, these properties are critical.
scalable framework for new and previously published assem-In practice, the user runs the master program on
bly modules such as candidate selection. As expected, SAMDworkstation or server as part of their normal activ-
and the original UMDOVverlapper implementation in [34] proity. Worker processes can be started on clusters, clouds,
duce the same set of candidates with the same parametgr®l grids by simply logging into the desired machine
Extensive biological testing of UMDOverlapper has showand running theworker executable. To facilitate start-
that replacing early versions of the CA overlapper produgedng large numbers of workers through batch systems
significantly improved genome in Drosophila [34] and rat][35we provide scripts namedondor_submit_workers |
Our contribution is overlap detection such as UMDOverlappege submit_workers , etc. that simply submit workers
can be run on multiple cores each with smaller amounts @ batch jobs. Workers may be started on multiple systems
RAM (Section 6). As with candidate selection, any alignmesimultaneously, as we will demonstrate in Section 7.
module can be scaled to larger, more heterogeneous systeMsigure 1 shows how the pieces work together. In general,
using our SAND framework (Section 7). the master streams the executable and input files to the
Most validation was done with respect fgnopheles gam- worker, which writes them to local disk. The worker invokes
biae M, our medium dataset, whose genome we recentlge executable, storing the output locally. When the task is
published [24]. There was no substantial difference in commfinished, the output is written back over the network to the
measures of genome assembly quality (e.g., N50 size) roaster. The master receives and verifies the result, theaswri
obvious structural differences when compared to the PE$Tto permanent storage. Making the master responsible for
reference genome [24]. This is expected given previoudteesuesult storage allows several advantages over having the ap
of UMDOverlapper and CA that SAND is built on. Althoughplication or the worker store the results: no globally sahbiée
the subject of future work, we are using now SAND foshared filesystem is required, worker processes are coefplet
Anopheles gambiaand for other arthropod genomes. Théndependent of the application, and the master can valitiate
scalable nature of SAND enables the parameter exploratieprrect form of results as they are produced.
often necessary for biologically optimal results. To evaluate the performance of SAND in a controlled

Summary of SAND Performance

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 4

subset of all possiblé-mers that reduce the number bf

ov3 mers one needs to keep track of without losing specificity.
S Many assemblers use some variation on this method [7], [18],
Ov2|0v2 [28] and it has been adapted for newer generation sequencing
n [26].
ovilivil2vi The problem with bothk-mer and minimizer counting

methods is that they require memory proportional to the
number of sequences. When physical memory is exhausted,
the hash table will begin to swap, impacting performance
\ \ by several orders of magnitude. An alternative is to use an

OvO0|1vO| 2vO|l 3vO

n out-of-core algorithm to compute subsets of the problem tha
fit in memory. However, this increases both complexity and
Fig. 2. Distributed Candidate Selection computation time.

Parallelization does not affect the results of k-mer match-
ing for valid candidates, but may affect what is considered
repetitive (i.e., simple repeats or transposable elemiamts
M‘?s‘m,;“ o the genome). We use meryl, Celera’s native k-mer counter,
% r | to address this concern by “masking” likely repeats prior to
candidate selection. This allows us to speed up candidate
64 r 1 selection by distributing subsets of tasks across muliipée

"" cessors while preserving the validity of the k-mer approach
<73 T 1 Figure 2 shows the general strategy after masking. Each task
will involve loading two subsets of the sequences into mgmnor

: : : and determining the candidates for that subset. The snvedler
0 32 64 96 128 divide the tasks, the more parallelism can be exploitedhmit
Number of Cores the more total data must be transferred. In other words, the
communication-to-computation ratio (CCR) [8] is a functio
of the task size.

In the online supplement to this paper, we derive the formula
. ... used to choose the optimal number of sequences per task
manner, we make use of a dedicated cluster 90n5|st|ng 8&proximatelyn/22) Using current hardware, the distributed
AMD Opteron 2356 2.3GHz quad-core CPUS W't_h 2GB Oill orithm has a maximum possible speedup of 6.5x over a
RAM allocated to each core. The results in Sections 5 an gle large memory machine. However, when a large memory

6 employ up to 512 cores hamessed by submitting work chine is not available, the distributed system is sicpnift
to these machines through the SGE batch system. Where, . o0 out-of-coyre implementatior): gty

sequential performance is indicated, we employ a singleenod The SAND candidate selection stage begins by computin
of this cluster. In Section 7, we run SAND on larger multi- g g y pLfing

o X ; X the ideal task size, taking into account the properties ef th
|nst|tu.t|ona| systems with a wide variety of heterogeneomilﬁ ut data and the given network bandwidth and computattiona
mach!neg. Although such systems are uncontrollgd, theY Ueed of the hardware. The input is divided into subsets, and
effective in exposing the challenges of the execuyon eI the corresponding tasks are generated. Each task is sent to a
ment, a_lnd demonstrate that SAND can run effectively in Su9\/|'l)rker along with a sequential executable. When complete,
an environment. the generated candidates are returned to the master.

The system is fault tolerant in several ways. In the event
of a worker or task crash, the master will note the failure
and retry the task elsewhere. As tasks are completed, they
The candidate selection step suggests pairs of reads that mee noted in a checkpoint file, so restarting the master will
overlap. It takes as its input a set of sequences and outpaitew the workload to continue where it left off. If a worker
a set of candidate pairs for the alignment stage. It is basethchine should have less memory than expected, an out-of-
off of the idea ofk-mer counting: if two sequences share atore algorithm is used to ensure adequate performance.
least one short subsequence that matches exactly, then theywe measured the performance of candidate selection on
are more likely to have significant overlap. Hence the goal ike small, medium, and large datasets on a dedicated cluster
to find all pairs that share at least one subsequence of lengdiing 1-128 cores, each with a memory limit of 2GB per
k (a k-mer) that match exactly. In the experiments beléw, core. Figure 3 shows how speedup varies with the number
was chosen to be 22, based on results from [34]. of available cores. (Here, speedup is the performancewelat

Typically k-mer counting is done by adding eaéhmer to 1 core performing an out-of-core computation using 2GB
in the input to a single hash table, then traversing the talé RAM.) As can be seen, larger datasets are capable of
to find all pairs of reads that share at least ohlener. using more cores efficiently: small achieves a speedup of 22x
UMDOverlapper [34] introduced minimizers, which are anedium 50x, and large 109x. By trading computational time

128 T T T

Speedup

Fig. 3. Scalability of Candidate Selection

5 CANDIDATE SELECTION

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 5

512 : : : effects, a 1Gbit/s network could support no more than 1800
Mé‘&{ﬂﬁ ,,,,,,,,,,,,,, simultaneous workers with banded alignment, and 18,000 wit
3g4 | Small smmmams J complete alignment. The implementation challenge lies in

\\\\\\\\\\\\\\ effectively managing the local state associated with soyman

Qo

2 g | tasks and workers.

(‘/&) Given a naturally parallel problem, the intuitive approach
128 is to split the problem up into as many tasks as there are

resources, and submit those tasks as batch jobs to a cluster
[20], [28]. The simplest way to do this is to prestage the
0 1 1 1 .
0 128 256 384 512 yvork locally a_md require the_ batch s_ystem tq tran;fer thk.tas
input data with the batch job. An issue with this solution,
Number of Cores L. . .
however, is its voracious consumption of local state. Astmos
Fig. 4. Scalability of Complete Alignment batch systems require all files to be in place on submission
and remain in place (because of the likelihood of latency,
out-of-order execution, or eviction) the framework would

128 , , , : .
Large have to prestage locally a file corresponding to every task.
9 M‘?s‘m;“ o For workloads in which sequences appear in many different

candidates this means that the master must have enough disk

space for many times the total data set size. As an example,

64 r 1 Table 1 shows the sequence library and required task dasa siz
-- for our four datasets. The task data is the amount of data that

Speedup

32+ 1 must be sent over the network.
\\\\\\\\\ - A related alternative to the conventional approach is simil
s s s but the data are prestaged onto the resources where the
32 64 96 128 computation will take place. The tasks would then be run
Number of Cores on resources with the appropriate task input. A complicatio

with this method is that the input data are quite large and the
resources might not be persistent or reliable. The fornmeitdi

our ability to prestage all the tasks’ data to every compute
rr11tode. The latter limits our ability to carefully craft exhct
which tasks will run on which resources and prestage the
appropriate task input files accordingly.

The SAND alignment master is designed to avoid the
6 ALIGNMENT disk space, network latency, and bandwidth bottlenecks en-
The alignment stage of SAND takes a library of sequences atalintered in the conventional approach. To prevent exeessi
a list of candidate sequence pairs generated by the previcossumption of disk space and slow filesystem access to many
stage. The output is a set of overlap records indicating wvhismall files, the master process reads in the sequence data
sequences align well, which is used by the final stages of thed stores it in a hash table for fast lookup based on the
assembler. The exact alignment algorithm to be used vargjuence identifier. To prevent task submission latenawy fro
with the biological goals of the research. limiting effective parallelism, a large number of alignnten

The simplest icomplete prefix-suffix alignmefit7], which are grouped together into a single task to be executed by
constructs a dynamic programming matrix, and run®{(mm) the serial worker code. To decrease total data sent over the
time, wheren and m are the lengths of the sequencesetwork, the candidate list is sorted, so that that pairsisha
compared. Complete prefix-suffix alignment is in some senadirst sequence can easily be grouped together with thedhare
the most “correct” method of assembly, because it will findequence copied only once. (In practice, we see an average of
the best overlap with the fewest assumptions. Until nowag h1.15 sequences transmitted per alignment.) Once the tasks h
been computationally infeasible, so most assemblers lide Cbeen buffered, the alignment program and the input buffer ar
era apply heuristics such &mnded alignmentn which only sent over the network to the worker.

a portion of the dynamic programming matrix is constructed, Each worker computes the alignment between the indicated
given some prior knowledge of diversity in a sample. Belovgequences. To minimize data transfer, only aligments tbette
we will show that SAND makes complete alignment feasibl¢han a user-specified threshhold are returned to the master f

and makes banded alignment more scalable. persistent storage. Because the master may run for mang hour

Computing multiple alignments from a single set of readsr days, it also tracks the set of tasks completed, so thanit ¢
is more naturally parallel than candidate selection, bseawecover and continue after a failure.
each alignment is fully independent and does not involve aWhile the master’s design considerations save on disk space
time-space tradeoff. On our dedicated cluster, completéixar and conserve network bandwidth, this comes at the cost of
suffix alignment has a CCR of 7KB/CPU-sec, while bandag@quiring all the sequences in memory on the master through-
alignment has a CCR of 72KB/CPU-sec. Ignoring queueiroyt the workload, rather than just during task construction

Fig. 5. Scalability of Banded Alignment

for distributed memory capacity, we can achieve significal
speedups over sequential execution.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 6

60 : : : , : Celera implementation we ran the small dataset throughr&ele
50 | [] Cséoisrg — 5.4, 6.1 and the newest 7.0 version. The assembly results wer
nearly identical using SAND-created overlaps; however, we
£ 40 ; 1 noticed that newer versions of Celera (6.1 and 7.0) required
2 30 | 53 On 128 cores: | roughly 1.6X more time for the consensus step when using
o SAND: 68 min SAND-created overlaps. The observed constant difference
E L Celera: 398 min]
= 20 - \ was consistent running the medium mosquito dataset (2,779
10 S]=] seconds vs. 1,578 seconds) with CA7.0. Therefore, SAND
—
gs 3 FH qu = can easily be used with all three Celera versions with only
0 a modest performance hit in the consensus stage
4 8 16 32 64 128 :
Number of Cores
] 7 SAND oON CLUSTERS, CLOUDS AND GRIDS
Fig. 6. SAND and Celera Compared .)
This far, we have evaluated SAND on a dedicated cluster
to provide consistent performance results. However, SAND
700 g Add ' ' is designed to function in uncontrolled wide-area systems
600 [§ CampusRemore 1 encompassing clusters, clouds, and grids. Section 9.2en th
2 500 % g% 5 i online supplement details many of the techniques necessary
€ 4o0l2 25 o] in this environment.
=] S o3 2 .
x 0 << 8 Figure 7 demonstrates that SAND can transparently scale up
% 300 ¢ 3 | from a single workstation to a wide-area distributed system
S 200 2 1 handling both failures and resource variations. One author
100 1 started the SAND alignment master on his workstation, with
‘ ‘ ‘ ‘ ‘ one worker running. After a few minutes, he asked a co-worker

20

40

60 80
Time (minutes)

100

120

to start a worker on her workstation, and then submitted
some workers to his research group’s 32-node cluster. As

these jobs started running, speedup increased accordingly
Hoping to finish the alignments that afternoon, he submitted
jobs to the campus Condor pool at Notre Dame, followed
by submissions to Condor-based grids at Purdue University
However, these memory requirements are much less than thasg the University of Wisconsin. About halfway through
of the hash table used in candidate selection. the complete assembly, however, he accidentally poweried of
Figure 4 shows the scalability of the alignment stage dils workstation, causing the computation to halt. Fortelyat
our dedicated cluster, using complete prefix-suffix aligntne when the master was restarted, it loaded all of the complete
Speedup is measured relative to the time to complete gdkults, accepted connections from the still-running ek
alignment using SAND in sequential mode. On the smadnd continued where it left off. The entire assembly congalet
dataset, SAND achieves close to linear speedup on 128 coigsust over two hours, with a speedup of 269x and a maximum
but drops to about 50 percent efficiency by 512 cores. Aff 680 cores in use at once. 7998 tasks ran at Notre Dame,
the dataset sizes increase, scalability improves, sho8@§ 7760 at Purdue, and 1232 at Wisconsin.
efficiency at 512 cores on the medium dataset, and 90%Next, we demonstrate that SAND can effectively com-
efficiency at 512 cores on the large dataset. This is relgtiveplete an assembly of the human genome [43] consisting of
easy to achieve due to the high CCR of complete alignmer#iM sequences totalling 20 gigabases. To accomplish this,
Figure 5 shows the scalability of alignment using the bandege submitted workers to our campus Condor pool, where
alignment algorithm on the same dedicated cluster. Thedzhnchpproximately 1000 cores were available at any given time.
algorithm does less work than the complete algorithm, sast hThe candidate selection stage generated 327M candidate pai
a higher CCR. The banded algorithm peaks at 20x speedupieri1 hours, using up to 413 workers at once, with an overall
the small dataset, 50x on the medium, and 100x on the larggeedup of 274x. (This is very close to the runtime predicted
Figure 6 shows the performance of SAND against tha Figure 10 in the online supplement.) A complete prefix-
equivalent first two stages of the Celera Assembler on osuffix alignment completed in 2.5 hours using up to 1015
dedicated cluster. The performance of Celera flattens ombrkers, for a speedup of 952x. For comparison, we also
after 64 cores, due to the overhead of transmitting the eentian a banded alignment, which completed in one hour using
sequence library to every node in the computation. At 12§ to 245 workers for a speedup of 175x. SAND is able to
cores, SAND is 5.8X faster than Celera, and does not requafectively harness large, unreliable systems to complete
the use of a shared filesystem, making it easier to obtagssembly in about half a day.
resources for the computation. Similar results are obthine To verify that SAND functions correctly in a cloud environ-
with the small and medium datasets. ment, we used the Amazon Elastic Computing Cloud service
As this article went to press, version 7.0 of the Celer allocate 100 cores using “large” instances each with 7.5
assembler was released. To test the sensitivity of SANDdo t&B RAM. The virtual machines were brought online, and the

Fig. 7. Scaling SAND from a Workstation to the Grid

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 7

SA’_\'D _ SAND accomodate custom assembly algorithms along with state-of
Cores | Selection | Alignment the-art updates in Celera reported in [26].
Cloud - WAN 100 | 1445 sec 565 sec The general concept of executing bag-of-tasks application
Cloud - LAN 100 35 sec 130 sec on a master-worker framework is well established. A number
Campus Grid 100 95 sec 176 sec of software systems have been designed for harnessing the
Fig. 8. SAND Performance on Cloud idle cycles of computers to execute bag-of-tasks apptioafi

including Condor [42], SETI@Home [41] and its generalized
descendant BOINC [4], Piranha [15], and Entropia [10], to

SAND worker started on each. We tested the performance M€ & few. We have demonstrated SAND running on Condor
SAND on the small dataset in three configurations: with wori@nd SGE, but there is no fundamental barrier to running on
ers in the cloud and the master at Notre Dame (Cloud - WANJP Of any of these other systems.

with workers in the cloud and the master in the same cloud There exist a number of application level frameworks for
(Cloud - LAN), and using our Condor-based campus griiaag-of-tasks apphcatlor_ws._ _Perhaps the earliest is Lir8la [
(Campus Grid). Table 8 summarizes the results. The Cloughich offered three primitives that could be added to any
LAN configuration achieves performance very similar to th&d€neral purpose language. With the addition of a conditiona
of our campus grid, however, the Cloud-WAN configuratio§Wap operator, Linda programs can be made fault-tolergnt [S

pays a significant penalty for using the wide area networllore recently, we have seen the development of Condor-
which is generally discouraged by cloud providers. MW [25], a C++ application framework which has been used

to solve large scale optimization problems. APST [9] and
MyGrid [12] are designed to attack large parameter sweep
8 RELATED WORK problems using existing executables, such as monte carlo
studies on biological simultations. Falkon [32] is also sstea
Parallel approaches for deBrujn-based assembly ([21] a@rker framework specialized for very rapid task execution
[23]) use a different assembly graph that is ideal for shognd applies the techinque of data diffusion [33] to improve
reads, but relies heavily on error correction techniquel.[2 jnput performance on data intensive tasks. SAND shares the
Here, we focus on the different problem of overlap-baseéme underlying architecture as these systems, but plays a
assembly ideal for long reads that will remain importanitdh greater role in the decomposition of the problem into suétab
generation instruments will soon generate error-pronés@a tasks. To our knowledge SAND is the first application of bag-
the order of tens of thousands of characters (see [11]). of-tasks concepts to the problem of production-qualityayea
Because determining overlaps between candidates has bgssembly at scale on a diverse collection of resources.
the most time intensive step of an overlap-based assenbly, iin recent years, the theory of master-worker computing
was the step most often parallelized. For example, to adeemias placed much attention on the scheduling of tasks to
the mouse genome the PCAP program was developed to usg¢dstessors. For example, Rosenberg [36] considers a system
compute nodes and a shared file system [20]. PCAP generaséthomogeneous performance but varying failure probapbilit
a total of 273 million overlaps that were processed in 88nd shows how to generate schedules arbitrarily close to
distinct batch jobs, each of which took 7 days to compute orpatimal. Banino et al [6] consider arbitrary networked sys-
Compag ES40. Kalyanaraman et al. later reported an appro@sfis with heterogeneous CPU and network performance: the
that could process 47 million maize candidate alignments égheduling problem is NP-hard in the general case, but can
under 2 hours using 1024 processors of an IBM BlueGenefle made tractable by considering the steady state. To avoid
[22]. More recent work has explored usiong FPGAs [4Ghe limitations of a single master (such as we have shown
and the Cell processor [37] to speed up alignment, whigfbove), Beaumont et al [8] consider how to schedule tasks
would provide up to a 100X speedup. Systems such @sing hierarchical masters. This problem is also NP-harerwh
CloudBurst [38] have applied the Map-Reduce [14] datauffer sizes are limited, so several heuristics of varyingliy
parallel computation model to similar bioinformatics plems are presented and evaluated.
on similar distributed systems.
The parallel solutions to genome assembly have reli
on on batch processing, complex programming paradigﬂCKI\lOWLEDGEME'\ITS
or specialized hardware. In contrast, we are interested inThis work was supported in part by a University of Notre
growing trend to develop modular genome assembly compgdame strategic initiative for Global Health, by the Natibna
nents such as the UMDOverlapper [34] but to enable them liwstitutes of Health (NIAID contract HHSN266200400039C)
run on more heterogeneous systems composed of cores framd National Science Foundation grants CNS06-43229 and
clusters, clouds, grids. Here, we extend this modular aesi@NS08-55047.
concept [31] to facilitate candidate selection and alignime We thank the staff at the Purdue Rosen Center for Advanced
modules that are highly adaptable to many types of diseithutComputing and the Wisconsin Condor Team for sharing their
resources. Note that although we have used Celera Assemblemputing resources to make this work possible. We thank
as the basis for these results our scalable framework canbieesh Rajan for assisting with the testing on the Amazon
used in other assembly systems as done by related framkud. We thank the anonymous reviewers for their comments
works [34]. We believe improvements in our framework caand suggestions.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012

The SAND software
General

is licensed under
Public License and

the GNU24]
is available for down-

load at http://www.nd.edu/"ccl/software/sand ,
along with the datasets used in this paper.

REFERENCES

(1]
[2]
(3]

[4]
(5]

(6]

[7]

(8]

9]

[10]

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

TeraGrid. http://www.teragrid.org. (25]

The Open Science Grid. http://www.opensciencegrigl.or
S. Ahuja, N. Carriero, and D. Gelernter. Linda and frisndIEEE
Computer 19(8):26—34, August 1986. [26]
D. Anderson. BOINC: A system for public-resource comipgtand
storage. InProc. IEEE/ACM Workshop on Grid Computing004.
D. Bakken and R. Schlichting. Tolerating failures in thag-of-tasks
programming paradigm. IAEEE International Symposium on Fault
Tolerant ComputingJune 1991.
C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Ledraand
Y. Robert. Scheduling strategies for master-slave taskinghetero-
geneous processor platformHEEEE Trans. on Parallel and Distributed
Systems15:319-330, April 2004.
S. Batzoglou et al. ARACHNE: A whole-genome shotgun adsler.
Genome Res12(1):177-189, January 2002.
O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Maichand
Y. Robert. Centralized versus distributed schedulers &u-bf-tasks ap-
plications.|IEEE Trans. on Parallel and Distributed Systeri9(5):698—
709, May 2008.
H. Casanova, G. Obertelli, F. Berman, and R. Wolski. ThepkeS
parameter sweep template: user-level middleware for tktk ¢m Proc.
of ACM/IEEE Supercomputin@000.
A. Chien, B. Calder, S. Elber, and K. Bhatia. Entropiachitecture and
performance of an enterprise desktop grid systdiournal of Parallel
and Distributed Computing63:597—610, May 2003.
C.-S. S. Chin, J. Sorenson, J. B. Harris, W. P. RobinsCRCharles,
R. R. Jean-Charles, J. Bullard, D. R. Webster, A. Kasarski®eluso,
E. E. Paxinos, Y. Yamaichi, S. B. Calderwood, J. J. MekalaiosE.
Schadt, and M. K. Waldor. The origin of the Haitian choleraboeiak
strain. The New England Journal of Medicing64(1):33—-42, Jan. 2011
W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F.iBies J. Sauve,
F. Silva, C. Barros, and C. Silveira. Running bag-of-tasgpliaations
on computational grids: the MyGrid approach. Pmoc. of Intl. Conf.
on Parallel Processing (ICPR)October 2003.
D. da Silva, W. Cirne, and F. Brasilero. Trading cycles ihformation:
Using replication to schedule bag-of-tasks applicatiome@mputational
grids. InEuro-Par, 2003.
J. Dean and S. Ghemawat. MapReduce: Simplified dateegsity on
large cluster. InOperating Systems Design and Implementat@2004.
D. Gelernter and D. Kaminsky. Supercomputing out of/oéed garbage:
preliminary experience with Piranha. Rroc. International Conference
on Supercomputingl992. [38]
W. Gentzsch. Sun grid engine: Towards creating a compotver grid.
In CCGRID '01: Proceedings of the 1st International Symposiom
Cluster Computing and the Grighage 35, Washington, DC, USA, 2001.[39]
IEEE Computer Society.

: comput(f&o]

[27]

(28]
[29]
[30]
[31]

(32
(33]

[34]

[35]
[36]

[37]

D. Gusfield. Algorithms on strings, trees, and sequences
science and computational biolagyCambridge Univ. Press, January
2007.

P. Havlak et al. The Atlas genome assembly syste@enome Res
14(4):721-732, April 2004,

X. Huang and A. Madan. CAP3: A DNA sequence assembly narog
Genome Res9(9):868-877, September 1999.

X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. HillieC/®P: A whole-
genome assembly prograr@enome Res13(9):2164-2170, September
2003.

B. Jackson, P. Schnable, and S. Aluru. Parallel shoiesece assembly
of transcriptomesBMC Bioinformatics 10(Suppl 1):S14, 2009.

A. Kalyanaraman, S. Emrich, P. Schnable, and S. Alursseinbling
genomes on large-scale parallel computdmirnal of Parallel and Dis-
tributed Computing67(12):1240 — 1255, 2007. Best Paper Awards: 20t|
International Parallel and Distributed Processing Sympos(IPDPS
2006).

V. K. Kundeti, S. Rajasekaran, H. Dinh, M. Vaughn, andT#apar.
Efficient parallel and out of core algorithms for constragtilarge bi-
directed de Bruijn graphsBMC Bioinformatics 11:560+, 2010.

[41]

[42]

[43]

tha)

M. K. N. Lawniczak, S. J. Emrich, A. K. Holloway, A. P. Reg
M. Olson, B. White, S. Redmond, L. Fulton, E. Appelbaum, Jdfzey,
C. Farmer, A. Chinwalla, S.-P. Yang, P. Minx, J. Nelson, K.uKg,
B. P. Walenz, E. Garcia-Hernandez, M. Aguiar, L. D. Viswaaat, V.-
H. Rogers, R. L. Strausberg, C. A. Saski, D. Lawson, F. H.iagll
F. C. Kafatos, G. K. Christophides, S. W. Clifton, E. F. Kidss, and
N. J. Besansky. Widespread Divergence Between Incipierdpheles
gambiae Species Revealed by Whole Genome SequenBegence
330(6003):512-514, 2010.

J. Linderoth et al. An enabling framework for masterrisgr applications
on the computational grid. IMEEE High Performance Distributed
Computing pages 43-50, Pittsburgh, Pennsylvania, August 2000.

J. R. Miller, A. L. Delcher, S. Koren, E. Venter, B. P. Walk, A. Brown-
ley, J. Johnson, K. Li, C. Mobarry, and G. Sutton. Aggressissembly
of pyroseqgencing reads with mateBioinformatics 24(24):2818-2824,
2008.

C. Moretti, M. Olson, S. Emrich, and D. Thain. Highly $ale
Genome Assembly on Campus Grids. IBEE Workshop on Many-
Task Computing on Grids and Supercomputers (MTAGSIH)9.

E. W. Myers et al. A whole-genome assembly of Drosoph8aience
287(5461):2196-2204, March 2000.

A. H. Paterson et al. Th8orghum bicologenome and the diversification
of grassesNaturg 457(7229):551-556, January 2009.

M. Pop et al. Genome sequence assembly: Algorithms asdes.
Computer 35(7):47-54, 2002.

M. Pop and S. L. Salzberg. Bioinformatics challengesaf sequencing
technology. Trends in Genetics24(3):142-149, March 2008.

I. Raicu, Y. Zhao, C. Dumitrescu, |. Foster, and M. Wildé&alkon:
a Fast and Light-weight tasK executiON framework. IEEE/ACM
Supercomputing2007.

I. Raicu, Y. Zhao, I. Foster, and A. Szalay. Accelergtlarge-scale data
exploration through data diffusion. IRroc. Workshop on Data Aware
Distributed Computing2008.

M. Roberts et al. A preprocessor for shotgun assemblgrge genomes.
Journal of Computational Biologyl1(4):734-752, 2004.

M. Roberts, A. V. Zimin, W. Hayes, B. R. Hunt, C. Ustun,Rl. White,
P. Havlak, and J. Yorke. Improving phrap-based assemblyhefrat
using reliable overlapsPLoS ONE 3:1836, 2008.

A. L. Rosenberg. Optimal schedules for cycle-stealinga network
of workstations with a bag-of-tasks workloadEEE Transactions on
Parallel and Distributed System43(2):179-191, February 2002.

A. Sarje and S. Aluru. Parallel biological sequencegmainents on the
cell broadband engine. IRarallel and Distributed Processing, 2008.
IPDPS 2008. pages 1-11, April 2008.

M. Schatz. CloudBurst: Highly sensitive read mappinthwlapReduce.
Bioinformatics (Online Advance Accesg)pril 2009.

M. V. Sharakhova et al. Update of theopheles gambiaBEST genome
assembly.Genome Biology8:R5+, January 2007.

0. Storaasli and D. Strenski. Exploring acceleratiogsce applications
with FPGAs. InThird Annual Reconfigurable Systems Summer Institute
(RSSI) July 2007.

W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedyand
D. Anderson. A new major SETI project based on project seépend
data and 100,000 personal computers.5th International Conference
on Bioastronomy1997.

D. Thain, T. Tannenbaum, and M. Livny. Condor and thedgriin
F. Berman, G. Fox, and T. Hey, editor&rid Computing: Making the
Global Infrastructure a RealityJohn Wiley, 2003.

J. C. Venter et al. The sequence of the human genorBeience
291(5507):1304-1351, February 2001.

L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain. Hass&g
Parallelism in Multicore Clusters with the All-Pairs and Veéront
Abstractions. INEEE High Performance Distributed Computingages
1-10, 2009.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012

Christopher Moretti graduated from the Col-
lege of William and Mary in 2004 with a B.S.
in Computer Science. He received the Ph.D.
in Computer Science and Engineering from the
University of Notre Dame in 2010. He is currently
a lecturer in the Department of Computer Sci-
ence at Princeton University.

Andrew Thrasher graduated from Anderson
University in Indiana in 2009 with a B.A. in Com-
puter Science, Mathematics and Physics. He
is currently working towards a Master's degree
in Computer Science at the University of Notre
Dame.

Li Yu graduated from Huazhong University of
Science and Technology in 2006 with a B.S.
in Computer Science and in 2008 with a M.S.
in Computer Science. He is currently a Ph.D.
student at the University of Notre Dame, re-
searching distributed computing systems.

Michael Olson graduated from St. Olaf College
in 2004 with a B.A. in Mathematics.He received
a Master’s of Science in Computer Science and
Engineering from the University of Notre Dame
in 2010. He is currently the chief software archi-
tect at CenterX, a healthcare IT startup.

Scott Emrich received the B.S. in Biology and
Computer Science from Loyola College in Mary-
land and the Ph.D. in Bioinformatics and Com-
putational Biology from lowa State University.
His research interests include computational bi-
ology, bioinformatics and parallel computing, in-
cluding arthropod genome analysis with applica-
tions to global health and ecology.

Douglas Thain received the B.S. in Physics
from the University of Minnesota and the Ph.D.
in Computer Sciences from the University of
Wisconsin - Madison. He is currently an Asso-
ciate Professor of Computer Science and Engi-
neering at the University of Notre Dame, where
his research focuses on scientific applications of
distributed computing systems.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 10

RAM Required per Task

4000 .
Simple —— 10MB 100MB 1GB 10GB 100GB

__ 3500 Out of Core ----@---- - % 1076 = T T : :
) G
D i 0] These Tasks are
@ 3000 £ 1075 e Limited to 2GB RAM
g 2500 1 = o b T
D 3 g k..]
= 2000 . 1 3
2 S 10m3}]
5 1500 R 1 £
=} =}
o .. = 100 f]
£ 1000 ety] |
- &4 '\ ¥ @ —~ 10 | i

500] 0

£
0 - o 1
0 200000 400000 600000 800000 1e+06 1073 10nM 10"5 1076 10n7 10”8
Number of Sequences s = Task Size (# of sequences)

Fig. 9. Performance of Sequential Candidate Selection Fig. 10. Performance Tradeoffs in Candidate Selection

9 ONLINE SUPPLEMENT within the constraints of available memory. The minimum of

9.1 Candidate Selection each curve occurs when:

Figure 9 shows the performance of our sequential candidate LC
selection module. The simple implementation just creates a Smin = n\[5 ~ 0.04418n = n/22 ©

hash tablle and loads sequences as described _above. Wh%r example, the medium dataset achieves best performance
memory 1S exhal,!sted, performance Qrops essentially ta Z&hen s is 117,562, yielding 484 total tasks. However, if we
The ou_t-of?core implementation begins to drop off earlleE:onsider the huge dataset, the situation is somewhat eliffer
but maintains degraded performance as the number of inning on a single node would require over 119GB of RAM.
guences increases. In both cases, the peak performandals e minimum of the curve is at about— 1.420.000. but

sequences per second when 100,000 sequences are hell%iénwould require 12GB of RAM per node. If we assume a

memory.) aximum of 2GB RAM per node, then can be no greater
To derive the optimal number of sequences per task for t n256. 000
dlstrlbgted implementation: . In all cases, the best possible speedup of the distributed
« n is the total number of sequences in a genome. algorithm ats = s,,;, compared to the sequential algorithm
« L is the average length of a sequence in bases. on a large memory machine is:
« C is the number of sequences per second that can be
processed when everything fits in memory. n/C 9B
o B is the network bandwidth in bytes per second. Speedup = Dln 5o = LC+ VaBic ~ 6.5 3)

« s is the number of sequences per task. v _
If the entire problem can fit in memory, than the time to Of course, a large memory machine is not always available,
process a complete genome sequentially,j€’. If we split so the distributed algorithm is much better than an outarkc

the problem up into pieces of sizeon each side, as shown2/ternative.

in Figure 2, then each task will requiBs sequences as input

and complete ir2s/C time. However, there are now?/s?> 9.2 Scaling Techniques

tasks to be completed. Four bases can be packed into & by{gs results presented in Sections 5 and 6 are performed on a
so each sequence will take/4B time to transfer. Ideally, it single dedicated cluster to provide consistent resultsvéver,

will take (n?/s?) * (2s) + (L/4B) to transfer all input data rynning very large assemblies requires that we scale up to
to every task, and (assuming more nodes than tasks) all tagis uncontrolled environment of multiple clusters, clouaisd

will complete in parallel in2s/C' time. Putting it together, the grigs. In this section, we demonstrate those challenges and

turnaround time for the distributed implementation is: solutions by harnessing workers from multiple Condor pools
In? located at the University of Notre Dame, Purdue University,

D(n,s) = o +2s/C (1) and the University of Wisconsin. Such a wide area system

2Bs consists of multiple routed networks, changes on a daily

Figure 10 shows the ideal execution timign, s) for each basis, and is shared with multiple users, so it is by nature
each of our four datasets, asvaries over several orders ofdynamic and uncontrolled. The results in this section serve
magnitude. (We take and L from Table 1 and assum@& = to demonstrate that SAND can function correctly in such a
3600 segs/s and3 = 1 Gigabit/sec.) The square at the end ofiostile environment.
each curve shows the sequential execution time, assuming &ipelining. Above, we presented the candidate selection
single host has enough memory for the entire task. A triangiad alignment steps independently. In practice, the twosste
is placed on each curve to indicate the best execution tinean be pipelined, because the aligner can begin constguctin

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 11

14 s on the slow worker while all other workers were idle. The
. 121 Without Fgg: Abgﬁ — version with fast abort enabled_to cut off a worker after isha
S 10}] exceeded the average completion time by 50% does not suffer
% gl | from these extreme tails.
5 6| | Another approach would be to replicate tasks at the end of
= 4l] a workload, as in [13] and [14]. To a first approximation,
= replication and fast abort achieve the same result, althbug
27 | I g H g H H HA future work may determine which is more efficent.
0t ecocococccocooccoooooon Waiting for Out—c_)f—CoreTask Data. In our first implemen—
LBOCECBNRRRREBREI538533 tation, complete alignment saw a marked decrease in perfor-
. mance at 512 workers. The biggest problem with running such
Turnaround Time (s)

a large dataset was memory. Although we were running the
Fig. 11. Preventing Long Tails with Fast Abort master on a machine with 8GB of memory, the large dataset
was 5.7GB. This is loaded into memory to achieve the best
retrieval times when building tasks. Additionally, the reas
and submitting tasks as soon as the candidate selectionsbeguffers tasks in memory.
generating candidates. Once the candidate selection etespl With 512 workers, the additional buffered tasks caused the
its workers can be redirected to work for the aligner’'s mastenaster to exceed physical memory. When the master began
process. This is accomplished by having each worker job need paging for its task management, performance began
submitted for the candidate selection run two copies of thie degrade. The effect of this can be seen in Figure 12(A).
worker, one after the other. The first points to the candidaBecause it takes significantly longer to create the number
selection master and the second points to the alignmenemasff tasks required, workers must wait longer to receive their
When candidate selection finishes, it tells all its workers task. When running with many workers, the amount of time
shut down and the second command begins, allowing thasecessary to give tasks to all the workers is longer than the
additional workers to work for the alignment master. Usingmount of time it takes a worker to complete this task. This
this method can improve overall runtime. For example, in oreeates a convoy effect, where workers are spending moee tim
instance the candidate selection on the medium dataseh ramvaiting to be processed by the master than they spend actuall
423 seconds on 60 workers. The aligner ran in 502 secondarking. This explains the large variation in the number of
for a combined runtime of 925 seconds. However, the pipelitasks working.
running 30 workers on each stage finished in 654 seconds. To combat this issue, we compressed the data. Because
Long Tails. All candidate pairs are independently combBNA consists of only 4 letters, we may represent a single
putable, and thus during a workload even very slow machinkase with two bits. The master does not need to interpret the
do useful work. At the end of a workload, however, slovsequence data itself, so the data stays compressed onrdisk, i
machines may take work that would be completed faster ¢ime master's memory, and while in transit to the worker nodes
other available resources. In the worst case, this can hpld ltiis uncompressed as a side effect of loading into the memory
completion of the workload significantly and cause a lorig-teof the alignment program.
effect at the end of the workload. Once the amount of memory needed can be kept within the
Because it is designed for heterogeneous environments, fitgysical memory, the master is easily able to keep up with the
Work Queue infrastructure has a mechanism to preemptivelprkers requesting tasks. In this case, the number of werker
abandon jobs that are taking too longfast abort This is running at any time remains relatively constant, subjedy on
critical in workloads where later computation is dependeEmt to minor fluctuations, mostly caused by changes in the number
earlier computation [44]. We aim to avoid long-tails whitdls of workers active. Figure 12(B) shows how the same job ran
allowing slow machines to contribute by activating fast boon 512 workers with compression enabled.
only in the finishing stages of a workload. This continues to be necessary even as resources scale up
In order to evaluate the fast abort mechanism, we allocatesith the data set sizes. For example, the master for the human
64 nodes from our dedicated cluster, in which one of thoskataset was run on a machine with 32GB of RAM, which was
nodes was handicapped to take 5-10x longer to complete taskeugh for its 20GB requirement.
than the other nodes. This environment is much more pronéWaiting for Task Assignment. When a master has many
to delays in the workload due to a single very slow node. workers connected to it, it takes the master longer to assign
Figure 11 shows a histogram of completion times for 3tsks to all the workers in round-robin fashion. If task gssi
workloads with the small dataset. The light boxes show counhent is slow, it takes the master longer to assign tasks to all
of workloads in which fast abort is not activated and theorkers in the pool than it takes for an individual worker to
dark boxes are counts of those in which fast abort wdisish its task. The same symptoms appear as in the memory
activated after all tasks had been submitted. Though vamnist case above: workers spend more time waiting to be given new
in workload timings didn’t result in long tails every timetasks than they spend working, and efficiency suffers. Ia thi
without fast abort, it is clear that a significant amount cf thcase, the main problem is waiting for the master to transfer
trials took much longer to complete. Upon inspection, thimsk data to every worker. To induce this problem, we began
delay resulted from having one remaining task being contpbutaunning workers on Condor pools at Purdue University and

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 12

600 —— 600 600 600
500 4 500 500 4 500
2 400 4 400 2 400 4 400
c o c o
S 2 g 3
& 300 1300 g & 300 1300 g
[o [o
2 @ 2 @
& 200 | 4 200 & 200 4 200
100 £ 1{ 100 100 1{ 100
0 J 0 0 E 1 1 1 1 1 0
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120
Time (minutes) Time (minutes)
(A) No Compression (B) Compression

Fig. 12. The Effect of Data Compression.

These graphs show the effect of data compression on theneaiéity to dispatch tasks using the large dataset. Eakbves

a timeline of a single run, with the number of tasks runnirgg tumulative speedup, and the percent complete over time.
Figure 12(A) does not use data compression, and oscilladédésden 300 and 400 tasks running at once, reaching a speedup
of slightly better than 300x. Figure 12(B) uses compressiond stabilizes at about 500 workers.

1000 : : : : : : - 1000 1000 : : : : : : 1000
o
>
800 4 800 T 800 4 800
L Q
2 & 2
S 600 | {600 2 2 600 | {600 &
S ° © o
24 g o o
2 <% £ 2
< 400 1400 & S 400} 1400 g
e & o
n o
200 + 4 200 % 200 4 200
il
0 L 40 0 0
0 20 40 60 80 100 120 140 0 10 20 30 40 50 60 70
Time (minutes) Time (minutes)
(A) Single Master (B) Dual Masters

Fig. 13. The Effect of Splitting Masters.

When using a sulfficiently large number of workers on the lalggset, the master does not have enough network bandwidth
to keep all of them busy. These figures show a timeline of desing with approximately 950 workers using one master (A)
and two masters (B). With a single master, workers compéettef than the master can dispatch new work, so not all nodes
can be kept busy processing at once, and the speedup readgsethan 400x. With dual masters, peak speedup reaches 790x
before settling out about 700x. Note that the unequal distion of completing work in (B) causes the dropoff beyonadnti)

the University of Wisconsin. divide the workers (including the slow connections) betwee

While we could transmit data to machines at Notre Danf@/© controlling masters. To do this, we split the list of
at an average speed of 42.29MB/s (meaning data for a t&g0didate pairs in half and run the master program on two
could be transfered in only a few hundredths of a secondfParate machines with the same list of sequences buteditfer
data to Purdue took an average of .36s, and data to Wiscor&tves of the candidate pairs list. When using two masters
was even slower, at .53s per transfer. In a job we ran with 989 the above workload, sending data to 450 workers each
submitted workers for a single master with 5000 candidat8¥erading 0.27s per task takes only 121s, so both mastees wer
per task, the average transfer time was 0.27s. 835 work&tye o work efficiently.
completed tasks, with the others failing to find an available Figure 13(A) shows a timeline of workers waiting rather
resource or exiting after starvation. This means the aweratpan actively computing associated with this problem for a
time to transfer files to all 835 workers was 225s, which isimilar job with 950 submitted workers, while Figure 13(B)
greater than the typical task completion time. shows the smoother two-master version of the same workload.

Ideally more nodes with fast connections could be adddd® Maximum number of workers running tasks at a time was

in place of machines at other institutions, however this 21 With two masters.

not always feasible. In order to take advantage of remoteThe multiple-master technique is not limited in applica-
computing resources that have slower network transfergimegon to workloads with large number of workers with slow
without compromising the efficiency of our workload, weconnections. Various other system resources limitaticens c

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012

cause workers to experience starvation even if networkdspee
are fast enough to support all workers. For instance, many
Linux systems have hard limits on file descriptors open by a
process (usually 1024), and users might not have permission
to increase this limit. Using multiple masters multiplidset
number of connections, and thus supportable workers.

We have shown that there is benefit significant benefit to
manually splitting into two masters, but a more automatic
division of work would be better. Future work may use, for
example, the scheduling algorithm developed by Beaumont et
al [8] for hierarchical masters.

13

