
ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 1

PREPRINT: A Framework for Scalable Genome
Assembly on Clusters, Clouds, and Grids

Christopher Moretti, Andrew Thrasher, Li Yu, Michael Olson,
Scott Emrich, and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame

Abstract—Bioinformatics researchers need efficient means to process large collections of genomic sequence data. One application of
interest, genome assembly, has great potential for parallelization, however most previous attempts at parallelization require uncommon
high-end hardware. This paper introduces the Scalable Assembler at Notre Dame (SAND) framework that can achieve significant
speedup using large numbers of commodity machines harnessed from clusters, clouds, and grids. SAND interfaces with the Celera
open-source assembly toolkit, replacing two independent sequential modules with scalable parallel alternatives: the candidate selector
exploits distributed memory capacity, and the sequence aligner exploits distributed computing capacity. For large problems, these
modules provide robust task and data management while also achieving speedup with high efficiency. We show results for several
datasets ranging from 738 thousand to over 320 million alignments using resources ranging from a small cluster to more than a
thousand nodes spanning three institutions.

Index Terms—C.2.4 Distributed Systems, Bioinformatics, Genome assembly.

✦

1 INTRODUCTION

THe landscape of genomics and bioinformatics research
is undergoing a dramatic change. The cost of traditional

genome sequencing was once in the range of millions of
dollars and only accessible to national-scale centers focused
on the study of model organisms. Today, second genera-
tion sequencing devices are operating at hundreds of modest
institutions and typical sequencing costs of medium-sized
genomes are on the order of tens of thousands of dollars,
and will drop further with soon-to-be released third generation
platforms [11]. Any ordinary academic or commercial lab will
be able to generate gigabytes to terabytes of genomic data.

However, raw data of a newly sequenced organism is of little
use until it is assembled. Genome assembly is a very com-
putationally intensive task, so sequencing centers (and newer
generation sequencing vendors) have historically incorporated
high end computers into their facilities and installations. Ac-
cordingly, assembly software has been created, evaluated and
deployed on parallel supercomputers. For example, a recent
result in large scale assembly by Kalyanaraman et al. [22]
employs the MPI framework on a dedicated BlueGene/L..

As sequencing becomes inexpensive and commonplace,
there will be a greater need for computational power, and
utilizing a high-end computer for each device is not practical.
Instead, we argue that commodity sequencing devices can be
well served by commodity computing systems. The typical
researcher today has access to a wide variety of computing
power in the form of clusters, clouds, grids. However, to
harness these resources requires software that can run on large
collections of non-dedicated, heterogenous machines.

To address this, we have created SAND - the Scalable
Assembler at Notre Dame. SAND is an framework that can
operate on clusters, clouds, and grids. It consists of two
main stages that speed up assemblies: candidate selection and
sequence alignment. The first stage depends on the aggregate

memory of the distributed system, while the second stage
relies on the aggregate computation power. SAND is both
elastic and fault-tolerant, and can be run on any collectionof
machines, including high performance computers, dedicated
clusters, and desktop workstations. SAND is modular, making
it easy to change algorithms as the field of bioinformatics
advances. Specifically, the core ideas in SAND are ideal for
diverse and/or error-prone data characteristic of some second
and early third generation sequencing platforms such as the
PacBio instrument [11].

To evaluate the correctness of SAND, we assemble and
verify an assembly of the malaria mosquitoAnopheles gam-
biaederived from tens of diverse individuals [24]. To evaluate
the performance, we measure the strong scalability of the
system on mosquito and synthetic sorghum sequence data
on a dedicated cluster of up to 512 cores using both com-
plete prefix-suffix alignment and the common optimization of
banded alignment. We compare the latter to the performance
of the widely used Celera assembler, showing that SAND is
faster than Celera in absolute terms, but also scalable to larger
numbers of cores. Finally, we demonstrate scalability and
robustness by assembling human sequence data on a system
of over 1000 cores drawn from multiple institutions.

In this paper, we provide an overview of overlap-based
genome assembly and its parallelizable aspects in Section 2.
The overall architecture of SAND and the validation of results
are presented in Sections 3 and 4. Sections 5 and 6 describe
the design, implementation and performance of the candi-
date selection and sequence alignment stages, respectively.
In Section 7, we discuss our ability to scale to many cores
and multiple institutions Section 9 in the online supplement
provides further details on candidate selection and scalability
techniques.

This paper is an extension of an earlier workshop paper. [27]

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 2

Number Average Candidate Uncomp. Task Data Comp. Task Data
Dataset Reads Read Size Pairs Size Size Size Comp. Size

Small A. gambiae scaffold 101,617 764 738,838 80MB 684MB 22MB 188MB
Medium A. gambiae complete 2,586,385 763 12,645,128 2.5GB 13GB 642MB 3.6GB

Large S. bicolor simulated 7,915,277 747 121,321,821 5.7GB 127GB 1.7GB 35GB
Huge H. sapiens complete 31,257,852 654 327,025,224 80GB 299GB 20GB 79GB

TABLE 1
Summary of Genome Data Used in this Paper

2 OVERVIEW OF GENOME ASSEMBLY

Genome sequencingis the laboratory process of determining
an organism’s DNA string (A,G,T,C) from a biological sample.
However, no current sequencing process is capable of directly
producing an organism’s entire string of millions or billions
of bases. Instead, the process produces a large number of
random substrings of the sequence known asreads. Reads
can vary in length from 25 to 1000 bases, depending on
the sequencing technology [31].Genome assemblyis the
computational process of arranging reads in the correct order
to produce the largest possible contiguous strings known as
contigs. There are many assemblers [7], [18], [19], [28], [30]
that solve the problem in a variety of ways. Here, we consider
three computational steps: candidate selection, alignment, and
layout + consensus.

In the candidate selectionstep, we must find all potential
overlaps between the suffix of one read and the prefix of an-
other. To ensure that enough reads will overlap, it is necessary
to oversample by a factor of 5 to 10. In principle, every single
read should be compared to every other read, but this would be
computationally infeasible. To reduce the problem, assemblers
often use a method known ask-mer counting, in which each
subsequence of lengthk in the input is added to a hash table
and any sequence pairs that share at least one exact match of
lengthk are considered to be candidates. This is a linear time
algorithm that reduces the work considerably.

Next, overlap regions are refined using modified versions
of sequence alignment[17] to find differences including
sequencing errors. This step has a worse case complexity of
O(mn) where m and n are the sizes of the two sequences
considered. Because there can be millions of candidates, this
step takes the most time in existing assemblers.

Finally, the assembler lays out reads in an estimated or-
der, creates contiguous sequences, and then combines them
together into larger structures calledscaffolds in a process
simply refered to as theconsensusstep. Although it is possible
to run consensus in parallel, this step contains the least amount
of parallelism and can often be computed in a few hours on
a single commodity machine. Therefore, we do not address
consensus further in this paper.

In a genome assembly the alignment step is the most
naturally parallel, with no tasks requiring inter-computation
communication or having dependencies on prior tasks. Most
previous approaches to parallelizing assembly have focused on
this step but still run candidate selection step using memory-
intensive sequential programs discussed in Section 8. This
paper presents solutions that solve both components on com-
modity distributed systems such as clusters, clouds, and grids.

Selection
Candidate Alignment Consensus

Sequence
Complete

Worker Worker

AlignSelect

Candidate
List Overlaps

Reads

Run on
SMP Machine

Workers
Dispatched
to Clusters,

Clouds, and Grids

Fig. 1. Architecture of SAND

3 SAND
SAND is an open source scalable framework that replaces the
first several stages of an overlap-based assembler similar to
[34]. Specifically, SAND generates OVL alignment informa-
tion for the Celera Assembler (CA) [28] but can be easily
modified for other software. We chose CA to start because
it is widely used for processing whole genome shotgun data
(e.g., [39]) and is relatively modular: the top-level program is
a script that invokes each of the stages discussed previously
using files to communicate between steps. The candidate
selection and alignment steps are woven into a single module,
and can be run on a batch system such as SGE, relying on a
shared filesystem to communicate the sequence data.

As shown in Figure 1, SAND replaces two stages in CA
with scalable versions that exploit the memory capacity and
computational power of clusters, clouds and grids, without
requiring a shared filesystem. The new modules are compatible
with the old implementations, so we can improve the assembly
step by step. For example, a new overlap module can be
developed and used for reads from the PacBio instrument [11]
that can reach tens of thousands of nucleotides in length.

The algorithmic details of both candidate selection and
alignment are an open topic of research in bioinformatics,
so we allow the user to provide custom algorithms for each
if desired. In this paper, We use two different alignment
algorithms used in overlap-based assemblies:Completeis the
full prefix-suffix alignment algorithm, which is simple but
expensive andBandedis a simple heuristic improvement on

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 3

SAND SAND Celera
Dataset Cores Selection Alignment Consensus

Small 1 220 sec 539 sec 127 sec
128 10 sec 29 sec

Medium 1 265 min 377 min 193 min
128 5 min 7 min

Large 1 104 hrs 40 hrs 17 hrs
128 49 min 19 min

TABLE 2
Summary of SAND Performance

prefix-suffix. Both are found in any bioinformatics textbook
and easily implemented in an afternoon. Although these al-
gorithms are less sophisticated than those found in CA, the
structure of SAND results in both faster absolute performance
and scalability to larger systems.

All experiments were run on the datasets shown in Table 1.
Smallconsists of the all the reads from the largest scaffold of
Anopheles gambiae M, Medium is the entireA. gambiae M
genome, andLarge is a set of simulated reads of theSorghum
bicolor genome [29]. TheA. gambiaegenome was sequenced
using traditional Sanger sequencing, which has longer read
lengths, but is more expensive and time consuming. The
simulatedS. bicolordataset was generated by extracting reads
of 500-1000 bases from the finishedS. bicolorgenome with
randomized starting positions. TheHugedataset is the Venter
human genome [43], which we employ in a final demonstration
of scalability.

Table 2 shows some typical results of using SAND on a
single core and on a large cluster. As can be seen, candidate
selection and alignment dominate the costs of assembly as the
data size increases. SAND reduces these steps considerably.

Validation of SAND was performed on technical and bio-
logical levels. Technically, the goal of SAND is to provide a
scalable framework for new and previously published assem-
bly modules such as candidate selection. As expected, SAND
and the original UMDOverlapper implementation in [34] pro-
duce the same set of candidates with the same parameters.
Extensive biological testing of UMDOverlapper has shown
that replacing early versions of the CA overlapper produceda
significantly improved genome in Drosophila [34] and rat [35].
Our contribution is overlap detection such as UMDOverlapper
can be run on multiple cores each with smaller amounts of
RAM (Section 6). As with candidate selection, any alignment
module can be scaled to larger, more heterogeneous systems
using our SAND framework (Section 7).

Most validation was done with respect toAnopheles gam-
biae M, our medium dataset, whose genome we recently
published [24]. There was no substantial difference in common
measures of genome assembly quality (e.g., N50 size) or
obvious structural differences when compared to the PEST
reference genome [24]. This is expected given previous results
of UMDOverlapper and CA that SAND is built on. Although
the subject of future work, we are using now SAND for
Anopheles gambiaeand for other arthropod genomes. The
scalable nature of SAND enables the parameter exploration
often necessary for biologically optimal results.

4 THE WORK QUEUE FRAMEWORK

A variety of systems today make it easy for the individual
researcher to obtain large numbers of cores. An individual
might have a small cluster of homogeneous machines in the
lab, or have access to a large institutional cluster shared
between many researchers using software such as Sun Grid
Engine [16]. Many institutions scavenge idle cycles from
workstations and clusters using software like Condor [42] to
create a campus grid of thousands of non-dedicated machines.
Multiple institutions can band together to create national
grid like the Open Science Grid [2] or the TeraGrid [1].
Commercial providers such as Amazon EC2 or Windows
Azure provide metered access to virtually unlimited resources.

Unfortunately, each one of these systems has its own user
interface, programming model, and semantics of execution.
Instead of accessing these systems directly, we use them
to start another layer of software that provides a common
execution environment. In SAND, we use Work Queue [44],
a data intensive master-worker system. We use the native
interface of the cluster, cloud, or grid to start hundreds of
worker processes, which then contact a master process directly.
The execution environment is managed entirely between the
master and the workers, and no further interaction with the
cluster, cloud, or grid is necessary.

Overlaying the master and worker on the existing system has
several benefits. Because the worker persists across multiple
task executions, commonly used input files, executables, and
libraries can be cached at the execution site, speeding up later
tasks. Dispatching a new task to an existing worker is a matter
of a single network communication, which is much faster than
the minutes necessary to allocate a new virtual machine or
processor in an existing cluster, cloud, or grid. For workloads
such as SAND that consist of many short running but data
intensive jobs, these properties are critical.

In practice, the user runs the master program on
a workstation or server as part of their normal activ-
ity. Worker processes can be started on clusters, clouds,
and grids by simply logging into the desired machine
and running theworker executable. To facilitate start-
ing large numbers of workers through batch systems
we provide scripts namedcondor_submit_workers ,
sge_submit_workers , etc. that simply submit workers
as batch jobs. Workers may be started on multiple systems
simultaneously, as we will demonstrate in Section 7.

Figure 1 shows how the pieces work together. In general,
the master streams the executable and input files to the
worker, which writes them to local disk. The worker invokes
the executable, storing the output locally. When the task is
finished, the output is written back over the network to the
master. The master receives and verifies the result, then writes
it to permanent storage. Making the master responsible for
result storage allows several advantages over having the ap-
plication or the worker store the results: no globally available
shared filesystem is required, worker processes are completely
independent of the application, and the master can validatethe
correct form of results as they are produced.

To evaluate the performance of SAND in a controlled

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 4

0 v 0

0 v 1

0 v 3

0 v 2

1 v 0 2 v 0 3 v 0

2 v 11 v 1

0 v 2

n

s

n

Fig. 2. Distributed Candidate Selection

 32

 64

 96

 128

 0 32 64 96 128

S
pe

ed
up

Number of Cores

Large
Medium

Small

Fig. 3. Scalability of Candidate Selection

manner, we make use of a dedicated cluster consisting of
AMD Opteron 2356 2.3GHz quad-core CPUs with 2GB of
RAM allocated to each core. The results in Sections 5 and
6 employ up to 512 cores harnessed by submitting workers
to these machines through the SGE batch system. Where
sequential performance is indicated, we employ a single node
of this cluster. In Section 7, we run SAND on larger multi-
institutional systems with a wide variety of heterogeneous
machines. Although such systems are uncontrolled, they are
effective in exposing the challenges of the execution environ-
ment, and demonstrate that SAND can run effectively in such
an environment.

5 CANDIDATE SELECTION

The candidate selection step suggests pairs of reads that may
overlap. It takes as its input a set of sequences and outputs
a set of candidate pairs for the alignment stage. It is based
off of the idea ofk-mer counting: if two sequences share at
least one short subsequence that matches exactly, then they
are more likely to have significant overlap. Hence the goal is
to find all pairs that share at least one subsequence of length
k (a k-mer) that match exactly. In the experiments below,k
was chosen to be 22, based on results from [34].

Typically k-mer counting is done by adding eachk-mer
in the input to a single hash table, then traversing the table
to find all pairs of reads that share at least onek-mer.
UMDOverlapper [34] introduced minimizers, which are a

subset of all possiblek-mers that reduce the number ofk-
mers one needs to keep track of without losing specificity.
Many assemblers use some variation on this method [7], [18],
[28] and it has been adapted for newer generation sequencing
[26].

The problem with bothk-mer and minimizer counting
methods is that they require memory proportional to the
number of sequences. When physical memory is exhausted,
the hash table will begin to swap, impacting performance
by several orders of magnitude. An alternative is to use an
out-of-core algorithm to compute subsets of the problem that
fit in memory. However, this increases both complexity and
computation time.

Parallelization does not affect the results of k-mer match-
ing for valid candidates, but may affect what is considered
repetitive (i.e., simple repeats or transposable elementsion
the genome). We use meryl, Celera’s native k-mer counter,
to address this concern by “masking” likely repeats prior to
candidate selection. This allows us to speed up candidate
selection by distributing subsets of tasks across multiplepro-
cessors while preserving the validity of the k-mer approach.
Figure 2 shows the general strategy after masking. Each task
will involve loading two subsets of the sequences into memory,
and determining the candidates for that subset. The smallerwe
divide the tasks, the more parallelism can be exploited, butthe
the more total data must be transferred. In other words, the
communication-to-computation ratio (CCR) [8] is a function
of the task size.

In the online supplement to this paper, we derive the formula
used to choose the optimal number of sequences per task
(approximatelyn/22) Using current hardware, the distributed
algorithm has a maximum possible speedup of 6.5x over a
single large memory machine. However, when a large memory
machine is not available, the distributed system is significantly
better than an out-of-core implementation.

The SAND candidate selection stage begins by computing
the ideal task size, taking into account the properties of the
input data and the given network bandwidth and computational
speed of the hardware. The input is divided into subsets, and
the corresponding tasks are generated. Each task is sent to a
worker along with a sequential executable. When complete,
the generated candidates are returned to the master.

The system is fault tolerant in several ways. In the event
of a worker or task crash, the master will note the failure
and retry the task elsewhere. As tasks are completed, they
are noted in a checkpoint file, so restarting the master will
allow the workload to continue where it left off. If a worker
machine should have less memory than expected, an out-of-
core algorithm is used to ensure adequate performance.

We measured the performance of candidate selection on
the small, medium, and large datasets on a dedicated cluster,
using 1-128 cores, each with a memory limit of 2GB per
core. Figure 3 shows how speedup varies with the number
of available cores. (Here, speedup is the performance relative
to 1 core performing an out-of-core computation using 2GB
of RAM.) As can be seen, larger datasets are capable of
using more cores efficiently: small achieves a speedup of 22x,
medium 50x, and large 109x. By trading computational time

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 5

 0

 128

 256

 384

 512

 0 128 256 384 512

S
pe

ed
up

Number of Cores

Large
Medium

Small

Fig. 4. Scalability of Complete Alignment

 32

 64

 96

 128

 32 64 96 128

S
pe

ed
up

Number of Cores

Large
Medium

Small

Fig. 5. Scalability of Banded Alignment

for distributed memory capacity, we can achieve significant
speedups over sequential execution.

6 ALIGNMENT

The alignment stage of SAND takes a library of sequences and
a list of candidate sequence pairs generated by the previous
stage. The output is a set of overlap records indicating which
sequences align well, which is used by the final stages of the
assembler. The exact alignment algorithm to be used varies
with the biological goals of the research.

The simplest iscomplete prefix-suffix alignment[17], which
constructs a dynamic programming matrix, and runs inO(nm)
time, where n and m are the lengths of the sequences
compared. Complete prefix-suffix alignment is in some sense
the most “correct” method of assembly, because it will find
the best overlap with the fewest assumptions. Until now, it has
been computationally infeasible, so most assemblers like Cel-
era apply heuristics such asbanded alignment, in which only
a portion of the dynamic programming matrix is constructed,
given some prior knowledge of diversity in a sample. Below,
we will show that SAND makes complete alignment feasible,
and makes banded alignment more scalable.

Computing multiple alignments from a single set of reads
is more naturally parallel than candidate selection, because
each alignment is fully independent and does not involve a
time-space tradeoff. On our dedicated cluster, complete prefix-
suffix alignment has a CCR of 7KB/CPU-sec, while banded
alignment has a CCR of 72KB/CPU-sec. Ignoring queueing

effects, a 1Gbit/s network could support no more than 1800
simultaneous workers with banded alignment, and 18,000 with
complete alignment. The implementation challenge lies in
effectively managing the local state associated with so many
tasks and workers.

Given a naturally parallel problem, the intuitive approach
is to split the problem up into as many tasks as there are
resources, and submit those tasks as batch jobs to a cluster
[20], [28]. The simplest way to do this is to prestage the
work locally and require the batch system to transfer the task
input data with the batch job. An issue with this solution,
however, is its voracious consumption of local state. As most
batch systems require all files to be in place on submission
and remain in place (because of the likelihood of latency,
out-of-order execution, or eviction) the framework would
have to prestage locally a file corresponding to every task.
For workloads in which sequences appear in many different
candidates this means that the master must have enough disk
space for many times the total data set size. As an example,
Table 1 shows the sequence library and required task data sizes
for our four datasets. The task data is the amount of data that
must be sent over the network.

A related alternative to the conventional approach is similar,
but the data are prestaged onto the resources where the
computation will take place. The tasks would then be run
on resources with the appropriate task input. A complication
with this method is that the input data are quite large and the
resources might not be persistent or reliable. The former limits
our ability to prestage all the tasks’ data to every compute
node. The latter limits our ability to carefully craft exactly
which tasks will run on which resources and prestage the
appropriate task input files accordingly.

The SAND alignment master is designed to avoid the
disk space, network latency, and bandwidth bottlenecks en-
countered in the conventional approach. To prevent excessive
consumption of disk space and slow filesystem access to many
small files, the master process reads in the sequence data
and stores it in a hash table for fast lookup based on the
sequence identifier. To prevent task submission latency from
limiting effective parallelism, a large number of alignments
are grouped together into a single task to be executed by
the serial worker code. To decrease total data sent over the
network, the candidate list is sorted, so that that pairs sharing
a first sequence can easily be grouped together with the shared
sequence copied only once. (In practice, we see an average of
1.15 sequences transmitted per alignment.) Once the tasks have
been buffered, the alignment program and the input buffer are
sent over the network to the worker.

Each worker computes the alignment between the indicated
sequences. To minimize data transfer, only aligments better
than a user-specified threshhold are returned to the master for
persistent storage. Because the master may run for many hours
or days, it also tracks the set of tasks completed, so that it can
recover and continue after a failure.

While the master’s design considerations save on disk space
and conserve network bandwidth, this comes at the cost of
requiring all the sequences in memory on the master through-
out the workload, rather than just during task construction.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 6

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 64 128

T
im

e
(h

ou
rs

)

Number of Cores

On 128 cores:
SAND: 68 min

Celera: 398 min

SAND
Celera

C
an

d
S

el
A

lig
n

O
V

L
1

O
V

L
2

Fig. 6. SAND and Celera Compared

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

T
as

ks
 R

un
ni

ng

Time (minutes)

O
ne

 W
or

ks
ta

tio
n

A
dd

 W
or

ks
ta

tio
n

A
dd

 C
lu

st
er

Add
Campus

Grid

Add
Remote

Grids

F
or

ce
d

M
as

te
r

C
ra

sh

Fig. 7. Scaling SAND from a Workstation to the Grid

However, these memory requirements are much less than those
of the hash table used in candidate selection.

Figure 4 shows the scalability of the alignment stage on
our dedicated cluster, using complete prefix-suffix alignment.
Speedup is measured relative to the time to complete all
alignment using SAND in sequential mode. On the small
dataset, SAND achieves close to linear speedup on 128 cores,
but drops to about 50 percent efficiency by 512 cores. As
the dataset sizes increase, scalability improves, showing80%
efficiency at 512 cores on the medium dataset, and 90%
efficiency at 512 cores on the large dataset. This is relatively
easy to achieve due to the high CCR of complete alignment.

Figure 5 shows the scalability of alignment using the banded
alignment algorithm on the same dedicated cluster. The banded
algorithm does less work than the complete algorithm, so it has
a higher CCR. The banded algorithm peaks at 20x speedup on
the small dataset, 50x on the medium, and 100x on the large.

Figure 6 shows the performance of SAND against the
equivalent first two stages of the Celera Assembler on our
dedicated cluster. The performance of Celera flattens out
after 64 cores, due to the overhead of transmitting the entire
sequence library to every node in the computation. At 128
cores, SAND is 5.8X faster than Celera, and does not require
the use of a shared filesystem, making it easier to obtain
resources for the computation. Similar results are obtained
with the small and medium datasets.

As this article went to press, version 7.0 of the Celera
assembler was released. To test the sensitivity of SAND to the

Celera implementation we ran the small dataset through Celera
5.4, 6.1 and the newest 7.0 version. The assembly results were
nearly identical using SAND-created overlaps; however, we
noticed that newer versions of Celera (6.1 and 7.0) required
roughly 1.6X more time for the consensus step when using
SAND-created overlaps. The observed constant difference
was consistent running the medium mosquito dataset (2,779
seconds vs. 1,578 seconds) with CA7.0. Therefore, SAND
can easily be used with all three Celera versions with only
a modest performance hit in the consensus stage.

7 SAND ON CLUSTERS, CLOUDS AND GRIDS

This far, we have evaluated SAND on a dedicated cluster
to provide consistent performance results. However, SAND
is designed to function in uncontrolled wide-area systems
encompassing clusters, clouds, and grids. Section 9.2 in the
online supplement details many of the techniques necessary
in this environment.

Figure 7 demonstrates that SAND can transparently scale up
from a single workstation to a wide-area distributed system,
handling both failures and resource variations. One author
started the SAND alignment master on his workstation, with
one worker running. After a few minutes, he asked a co-worker
to start a worker on her workstation, and then submitted
some workers to his research group’s 32-node cluster. As
these jobs started running, speedup increased accordingly.
Hoping to finish the alignments that afternoon, he submitted
jobs to the campus Condor pool at Notre Dame, followed
by submissions to Condor-based grids at Purdue University
and the University of Wisconsin. About halfway through
the complete assembly, however, he accidentally powered off
his workstation, causing the computation to halt. Fortunately,
when the master was restarted, it loaded all of the complete
results, accepted connections from the still-running workers,
and continued where it left off. The entire assembly completed
in just over two hours, with a speedup of 269x and a maximum
of 680 cores in use at once. 7998 tasks ran at Notre Dame,
7760 at Purdue, and 1232 at Wisconsin.

Next, we demonstrate that SAND can effectively com-
plete an assembly of the human genome [43] consisting of
31M sequences totalling 20 gigabases. To accomplish this,
we submitted workers to our campus Condor pool, where
approximately 1000 cores were available at any given time.
The candidate selection stage generated 327M candidate pairs
in 11 hours, using up to 413 workers at once, with an overall
speedup of 274x. (This is very close to the runtime predicted
in Figure 10 in the online supplement.) A complete prefix-
suffix alignment completed in 2.5 hours using up to 1015
workers, for a speedup of 952x. For comparison, we also
ran a banded alignment, which completed in one hour using
up to 245 workers for a speedup of 175x. SAND is able to
effectively harness large, unreliable systems to completethe
assembly in about half a day.

To verify that SAND functions correctly in a cloud environ-
ment, we used the Amazon Elastic Computing Cloud service
to allocate 100 cores using “large” instances each with 7.5
GB RAM. The virtual machines were brought online, and the

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 7

SAND SAND
Cores Selection Alignment

Cloud - WAN 100 1445 sec 565 sec
Cloud - LAN 100 35 sec 130 sec
Campus Grid 100 55 sec 176 sec

Fig. 8. SAND Performance on Cloud

SAND worker started on each. We tested the performance of
SAND on the small dataset in three configurations: with work-
ers in the cloud and the master at Notre Dame (Cloud - WAN),
with workers in the cloud and the master in the same cloud
(Cloud - LAN), and using our Condor-based campus grid
(Campus Grid). Table 8 summarizes the results. The Cloud-
LAN configuration achieves performance very similar to that
of our campus grid, however, the Cloud-WAN configuration
pays a significant penalty for using the wide area network,
which is generally discouraged by cloud providers.

8 RELATED WORK

Parallel approaches for deBrujn-based assembly ([21] and
[23]) use a different assembly graph that is ideal for short
reads, but relies heavily on error correction techniques [21].
Here, we focus on the different problem of overlap-based
assembly ideal for long reads that will remain important; third-
generation instruments will soon generate error-prone reads on
the order of tens of thousands of characters (see [11]).

Because determining overlaps between candidates has been
the most time intensive step of an overlap-based assembly, it
was the step most often parallelized. For example, to assemble
the mouse genome the PCAP program was developed to use 24
compute nodes and a shared file system [20]. PCAP generated
a total of 273 million overlaps that were processed in 80
distinct batch jobs, each of which took 7 days to compute on a
Compaq ES40. Kalyanaraman et al. later reported an approach
that could process 47 million maize candidate alignments in
under 2 hours using 1024 processors of an IBM BlueGene/L
[22]. More recent work has explored usiong FPGAs [40]
and the Cell processor [37] to speed up alignment, which
would provide up to a 100X speedup. Systems such as
CloudBurst [38] have applied the Map-Reduce [14] data-
parallel computation model to similar bioinformatics problems
on similar distributed systems.

The parallel solutions to genome assembly have relied
on on batch processing, complex programming paradigms
or specialized hardware. In contrast, we are interested in a
growing trend to develop modular genome assembly compo-
nents such as the UMDOverlapper [34] but to enable them to
run on more heterogeneous systems composed of cores from
clusters, clouds, grids. Here, we extend this modular design
concept [31] to facilitate candidate selection and alignment
modules that are highly adaptable to many types of distributed
resources. Note that although we have used Celera Assembler
as the basis for these results our scalable framework can be
used in other assembly systems as done by related frame-
works [34]. We believe improvements in our framework can

accomodate custom assembly algorithms along with state-of-
the-art updates in Celera reported in [26].

The general concept of executing bag-of-tasks applications
on a master-worker framework is well established. A number
of software systems have been designed for harnessing the
idle cycles of computers to execute bag-of-tasks applications,
including Condor [42], SETI@Home [41] and its generalized
descendant BOINC [4], Piranha [15], and Entropia [10], to
name a few. We have demonstrated SAND running on Condor
and SGE, but there is no fundamental barrier to running on
top of any of these other systems.

There exist a number of application level frameworks for
bag-of-tasks applications. Perhaps the earliest is Linda [3],
which offered three primitives that could be added to any
general purpose language. With the addition of a conditional-
swap operator, Linda programs can be made fault-tolerant [5].
More recently, we have seen the development of Condor-
MW [25], a C++ application framework which has been used
to solve large scale optimization problems. APST [9] and
MyGrid [12] are designed to attack large parameter sweep
problems using existing executables, such as monte carlo
studies on biological simultations. Falkon [32] is also a master-
worker framework specialized for very rapid task execution,
and applies the techinque of data diffusion [33] to improve
input performance on data intensive tasks. SAND shares the
same underlying architecture as these systems, but plays a
greater role in the decomposition of the problem into suitable
tasks. To our knowledge SAND is the first application of bag-
of-tasks concepts to the problem of production-quality genome
assembly at scale on a diverse collection of resources.

In recent years, the theory of master-worker computing
has placed much attention on the scheduling of tasks to
processors. For example, Rosenberg [36] considers a system
of homogeneous performance but varying failure probability,
and shows how to generate schedules arbitrarily close to
optimal. Banino et al [6] consider arbitrary networked sys-
tems with heterogeneous CPU and network performance: the
scheduling problem is NP-hard in the general case, but can
be made tractable by considering the steady state. To avoid
the limitations of a single master (such as we have shown
above), Beaumont et al [8] consider how to schedule tasks
using hierarchical masters. This problem is also NP-hard when
buffer sizes are limited, so several heuristics of varying quality
are presented and evaluated.

ACKNOWLEDGEMENTS

This work was supported in part by a University of Notre
Dame strategic initiative for Global Health, by the National
Institutes of Health (NIAID contract HHSN266200400039C)
and National Science Foundation grants CNS06-43229 and
CNS08-55047.

We thank the staff at the Purdue Rosen Center for Advanced
Computing and the Wisconsin Condor Team for sharing their
computing resources to make this work possible. We thank
Dinesh Rajan for assisting with the testing on the Amazon
cloud. We thank the anonymous reviewers for their comments
and suggestions.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 8

The SAND software is licensed under the GNU
General Public License and is available for down-
load at http://www.nd.edu/˜ccl/software/sand ,
along with the datasets used in this paper.

REFERENCES

[1] TeraGrid. http://www.teragrid.org.
[2] The Open Science Grid. http://www.opensciencegrid.org.
[3] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE

Computer, 19(8):26–34, August 1986.
[4] D. Anderson. BOINC: A system for public-resource computing and

storage. InProc. IEEE/ACM Workshop on Grid Computing, 2004.
[5] D. Bakken and R. Schlichting. Tolerating failures in thebag-of-tasks

programming paradigm. InIEEE International Symposium on Fault
Tolerant Computing, June 1991.

[6] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Scheduling strategies for master-slave taskingon hetero-
geneous processor platforms.IEEE Trans. on Parallel and Distributed
Systems, 15:319–330, April 2004.

[7] S. Batzoglou et al. ARACHNE: A whole-genome shotgun assembler.
Genome Res., 12(1):177–189, January 2002.

[8] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and
Y. Robert. Centralized versus distributed schedulers for bag-of-tasks ap-
plications. IEEE Trans. on Parallel and Distributed Systems, 19(5):698–
709, May 2008.

[9] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS
parameter sweep template: user-level middleware for the grid. In Proc.
of ACM/IEEE Supercomputing, 2000.

[10] A. Chien, B. Calder, S. Elber, and K. Bhatia. Entropia: Architecture and
performance of an enterprise desktop grid system.Journal of Parallel
and Distributed Computing, 63:597–610, May 2003.

[11] C.-S. S. Chin, J. Sorenson, J. B. Harris, W. P. Robins, R.C. Charles,
R. R. Jean-Charles, J. Bullard, D. R. Webster, A. Kasarskis,P. Peluso,
E. E. Paxinos, Y. Yamaichi, S. B. Calderwood, J. J. Mekalanos, E. E.
Schadt, and M. K. Waldor. The origin of the Haitian cholera outbreak
strain. The New England Journal of Medicine, 364(1):33–42, Jan. 2011.

[12] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve,
F. Silva, C. Barros, and C. Silveira. Running bag-of-tasks applications
on computational grids: the MyGrid approach. InProc. of Intl. Conf.
on Parallel Processing (ICPP), October 2003.

[13] D. da Silva, W. Cirne, and F. Brasilero. Trading cycles for information:
Using replication to schedule bag-of-tasks applications on computational
grids. In Euro-Par, 2003.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large cluster. InOperating Systems Design and Implementation, 2004.

[15] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage:
preliminary experience with Piranha. InProc. International Conference
on Supercomputing, 1992.

[16] W. Gentzsch. Sun grid engine: Towards creating a compute power grid.
In CCGRID ’01: Proceedings of the 1st International Symposiumon
Cluster Computing and the Grid, page 35, Washington, DC, USA, 2001.
IEEE Computer Society.

[17] D. Gusfield. Algorithms on strings, trees, and sequences : computer
science and computational biology. Cambridge Univ. Press, January
2007.

[18] P. Havlak et al. The Atlas genome assembly system.Genome Res,
14(4):721–732, April 2004.

[19] X. Huang and A. Madan. CAP3: A DNA sequence assembly program.
Genome Res., 9(9):868–877, September 1999.

[20] X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. Hillier. PCAP: A whole-
genome assembly program.Genome Res., 13(9):2164–2170, September
2003.

[21] B. Jackson, P. Schnable, and S. Aluru. Parallel short sequence assembly
of transcriptomes.BMC Bioinformatics, 10(Suppl 1):S14, 2009.

[22] A. Kalyanaraman, S. Emrich, P. Schnable, and S. Aluru. Assembling
genomes on large-scale parallel computers.Journal of Parallel and Dis-
tributed Computing, 67(12):1240 – 1255, 2007. Best Paper Awards: 20th
International Parallel and Distributed Processing Symposium (IPDPS
2006).

[23] V. K. Kundeti, S. Rajasekaran, H. Dinh, M. Vaughn, and V.Thapar.
Efficient parallel and out of core algorithms for constructing large bi-
directed de Bruijn graphs.BMC Bioinformatics, 11:560+, 2010.

[24] M. K. N. Lawniczak, S. J. Emrich, A. K. Holloway, A. P. Regier,
M. Olson, B. White, S. Redmond, L. Fulton, E. Appelbaum, J. Godfrey,
C. Farmer, A. Chinwalla, S.-P. Yang, P. Minx, J. Nelson, K. Kyung,
B. P. Walenz, E. Garcia-Hernandez, M. Aguiar, L. D. Viswanathan, Y.-
H. Rogers, R. L. Strausberg, C. A. Saski, D. Lawson, F. H. Collins,
F. C. Kafatos, G. K. Christophides, S. W. Clifton, E. F. Kirkness, and
N. J. Besansky. Widespread Divergence Between Incipient Anopheles
gambiae Species Revealed by Whole Genome Sequences.Science,
330(6003):512–514, 2010.

[25] J. Linderoth et al. An enabling framework for master-worker applications
on the computational grid. InIEEE High Performance Distributed
Computing, pages 43–50, Pittsburgh, Pennsylvania, August 2000.

[26] J. R. Miller, A. L. Delcher, S. Koren, E. Venter, B. P. Walenz, A. Brown-
ley, J. Johnson, K. Li, C. Mobarry, and G. Sutton. Aggressiveassembly
of pyroseqencing reads with mates.Bioinformatics, 24(24):2818–2824,
2008.

[27] C. Moretti, M. Olson, S. Emrich, and D. Thain. Highly Scalable
Genome Assembly on Campus Grids. InIEEE Workshop on Many-
Task Computing on Grids and Supercomputers (MTAGS09), 2009.

[28] E. W. Myers et al. A whole-genome assembly of Drosophila. Science,
287(5461):2196–2204, March 2000.

[29] A. H. Paterson et al. TheSorghum bicolorgenome and the diversification
of grasses.Nature, 457(7229):551–556, January 2009.

[30] M. Pop et al. Genome sequence assembly: Algorithms and issues.
Computer, 35(7):47–54, 2002.

[31] M. Pop and S. L. Salzberg. Bioinformatics challenges ofnew sequencing
technology.Trends in Genetics, 24(3):142–149, March 2008.

[32] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon:
a Fast and Light-weight tasK executiON framework. InIEEE/ACM
Supercomputing, 2007.

[33] I. Raicu, Y. Zhao, I. Foster, and A. Szalay. Accelerating large-scale data
exploration through data diffusion. InProc. Workshop on Data Aware
Distributed Computing, 2008.

[34] M. Roberts et al. A preprocessor for shotgun assembly oflarge genomes.
Journal of Computational Biology, 11(4):734–752, 2004.

[35] M. Roberts, A. V. Zimin, W. Hayes, B. R. Hunt, C. Ustun, J.R. White,
P. Havlak, and J. Yorke. Improving phrap-based assembly of the rat
using reliable overlaps.PLoS ONE, 3:e1836, 2008.

[36] A. L. Rosenberg. Optimal schedules for cycle-stealingin a network
of workstations with a bag-of-tasks workload.IEEE Transactions on
Parallel and Distributed Systems, 13(2):179–191, February 2002.

[37] A. Sarje and S. Aluru. Parallel biological sequence alignments on the
cell broadband engine. InParallel and Distributed Processing, 2008.
IPDPS 2008., pages 1–11, April 2008.

[38] M. Schatz. CloudBurst: Highly sensitive read mapping with MapReduce.
Bioinformatics (Online Advance Access), April 2009.

[39] M. V. Sharakhova et al. Update of theAnopheles gambiaePEST genome
assembly.Genome Biology, 8:R5+, January 2007.

[40] O. Storaasli and D. Strenski. Exploring accelerating science applications
with FPGAs. InThird Annual Reconfigurable Systems Summer Institute
(RSSI), July 2007.

[41] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and
D. Anderson. A new major SETI project based on project serendip
data and 100,000 personal computers. In5th International Conference
on Bioastronomy, 1997.

[42] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In
F. Berman, G. Fox, and T. Hey, editors,Grid Computing: Making the
Global Infrastructure a Reality. John Wiley, 2003.

[43] J. C. Venter et al. The sequence of the human genome.Science,
291(5507):1304–1351, February 2001.

[44] L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain. Harnessing
Parallelism in Multicore Clusters with the All-Pairs and Wavefront
Abstractions. InIEEE High Performance Distributed Computing, pages
1–10, 2009.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 9

Christopher Moretti graduated from the Col-
lege of William and Mary in 2004 with a B.S.
in Computer Science. He received the Ph.D.
in Computer Science and Engineering from the
University of Notre Dame in 2010. He is currently
a lecturer in the Department of Computer Sci-
ence at Princeton University.

Andrew Thrasher graduated from Anderson
University in Indiana in 2009 with a B.A. in Com-
puter Science, Mathematics and Physics. He
is currently working towards a Master’s degree
in Computer Science at the University of Notre
Dame.

Li Yu graduated from Huazhong University of
Science and Technology in 2006 with a B.S.
in Computer Science and in 2008 with a M.S.
in Computer Science. He is currently a Ph.D.
student at the University of Notre Dame, re-
searching distributed computing systems.

Michael Olson graduated from St. Olaf College
in 2004 with a B.A. in Mathematics.He received
a Master’s of Science in Computer Science and
Engineering from the University of Notre Dame
in 2010. He is currently the chief software archi-
tect at CenterX, a healthcare IT startup.

Scott Emrich received the B.S. in Biology and
Computer Science from Loyola College in Mary-
land and the Ph.D. in Bioinformatics and Com-
putational Biology from Iowa State University.
His research interests include computational bi-
ology, bioinformatics and parallel computing, in-
cluding arthropod genome analysis with applica-
tions to global health and ecology.

Douglas Thain received the B.S. in Physics
from the University of Minnesota and the Ph.D.
in Computer Sciences from the University of
Wisconsin - Madison. He is currently an Asso-
ciate Professor of Computer Science and Engi-
neering at the University of Notre Dame, where
his research focuses on scientific applications of
distributed computing systems.

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200000 400000 600000 800000 1e+06

T
hr

ou
gh

pu
t (

se
qs

/s
ec

)

Number of Sequences

Simple
Out of Core

Fig. 9. Performance of Sequential Candidate Selection

9 ONLINE SUPPLEMENT

9.1 Candidate Selection

Figure 9 shows the performance of our sequential candidate
selection module. The simple implementation just creates a
hash table and loads sequences as described above. When
memory is exhausted, performance drops essentially to zero.
The out-of-core implementation begins to drop off earlier,
but maintains degraded performance as the number of se-
quences increases. In both cases, the peak performance is 3600
sequences per second when 100,000 sequences are held in
memory.

To derive the optimal number of sequences per task for the
distributed implementation:

• n is the total number of sequences in a genome.
• L is the average length of a sequence in bases.
• C is the number of sequences per second that can be

processed when everything fits in memory.
• B is the network bandwidth in bytes per second.
• s is the number of sequences per task.

If the entire problem can fit in memory, than the time to
process a complete genome sequentially isn/C. If we split
the problem up into pieces of sizes on each side, as shown
in Figure 2, then each task will require2s sequences as input
and complete in2s/C time. However, there are nown2/s2

tasks to be completed. Four bases can be packed into a byte,
so each sequence will takeL/4B time to transfer. Ideally, it
will take (n2/s2) ∗ (2s) ∗ (L/4B) to transfer all input data
to every task, and (assuming more nodes than tasks) all tasks
will complete in parallel in2s/C time. Putting it together, the
turnaround time for the distributed implementation is:

D(n, s) =
Ln2

2Bs
+ 2s/C (1)

Figure 10 shows the ideal execution timeD(n, s) for each
each of our four datasets, ass varies over several orders of
magnitude. (We taken andL from Table 1 and assumeC =
3600 seqs/s andB = 1 Gigabit/sec.) The square at the end of
each curve shows the sequential execution time, assuming a
single host has enough memory for the entire task. A triangle
is placed on each curve to indicate the best execution time,

 1

 10

 100

10^3

10^4

10^5

10^6

10^3 10^4 10^5 10^6 10^7 10^8

10MB 100MB 1GB 10GB 100GB

D
(n

,s
)

=
 T

ur
na

ro
un

d
T

im
e

(s
)

s = Task Size (# of sequences)

RAM Required per Task

These Tasks are
Limited to 2GB RAM

Huge
Large

Medium
Small

Fig. 10. Performance Tradeoffs in Candidate Selection

within the constraints of available memory. The minimum of
each curve occurs when:

smin = n

√

LC

4B
≈ 0.04418n ≈ n/22 (2)

For example, the medium dataset achieves best performance
when s is 117,562, yielding 484 total tasks. However, if we
consider the huge dataset, the situation is somewhat different.
Running on a single node would require over 119GB of RAM.
The minimum of the curve is at abouts = 1, 420, 000, but
this would require 12GB of RAM per node. If we assume a
maximum of 2GB RAM per node, thens can be no greater
than256, 000.

In all cases, the best possible speedup of the distributed
algorithm ats = smin compared to the sequential algorithm
on a large memory machine is:

Speedup =
n/C

D(n, smin)
=

2B

LC +
√

4BLC
≈ 6.5 (3)

Of course, a large memory machine is not always available,
so the distributed algorithm is much better than an out-of-core
alternative.

9.2 Scaling Techniques

The results presented in Sections 5 and 6 are performed on a
single dedicated cluster to provide consistent results. However,
running very large assemblies requires that we scale up to
the uncontrolled environment of multiple clusters, clouds, and
grids. In this section, we demonstrate those challenges and
solutions by harnessing workers from multiple Condor pools
located at the University of Notre Dame, Purdue University,
and the University of Wisconsin. Such a wide area system
consists of multiple routed networks, changes on a daily
basis, and is shared with multiple users, so it is by nature
dynamic and uncontrolled. The results in this section serve
to demonstrate that SAND can function correctly in such a
hostile environment.

Pipelining. Above, we presented the candidate selection
and alignment steps independently. In practice, the two steps
can be pipelined, because the aligner can begin constructing

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 11

 0

 2

 4

 6

 8

 10

 12

 14

57
0

59
0

61
0

63
0

65
0

67
0

69
0

71
0

73
0

75
0

77
0

79
0

81
0

83
0

85
0

87
0

89
0

91
0

93
0

95
0

97
0

99
0

10
10

N
um

be
r

of
 R

un
s

Turnaround Time (s)

Fast Abort
Without Fast Abort

Fig. 11. Preventing Long Tails with Fast Abort

and submitting tasks as soon as the candidate selection begins
generating candidates. Once the candidate selection completes,
its workers can be redirected to work for the aligner’s master
process. This is accomplished by having each worker job
submitted for the candidate selection run two copies of the
worker, one after the other. The first points to the candidate
selection master and the second points to the alignment master
When candidate selection finishes, it tells all its workers to
shut down and the second command begins, allowing those
additional workers to work for the alignment master. Using
this method can improve overall runtime. For example, in one
instance the candidate selection on the medium dataset ran in
423 seconds on 60 workers. The aligner ran in 502 seconds
for a combined runtime of 925 seconds. However, the pipeline
running 30 workers on each stage finished in 654 seconds.

Long Tails. All candidate pairs are independently com-
putable, and thus during a workload even very slow machines
do useful work. At the end of a workload, however, slow
machines may take work that would be completed faster on
other available resources. In the worst case, this can hold up
completion of the workload significantly and cause a long-tail
effect at the end of the workload.

Because it is designed for heterogeneous environments, the
Work Queue infrastructure has a mechanism to preemptively
abandon jobs that are taking too long –fast abort. This is
critical in workloads where later computation is dependenton
earlier computation [44]. We aim to avoid long-tails while still
allowing slow machines to contribute by activating fast abort
only in the finishing stages of a workload.

In order to evaluate the fast abort mechanism, we allocated
64 nodes from our dedicated cluster, in which one of those
nodes was handicapped to take 5-10x longer to complete tasks
than the other nodes. This environment is much more prone
to delays in the workload due to a single very slow node.

Figure 11 shows a histogram of completion times for 38
workloads with the small dataset. The light boxes show counts
of workloads in which fast abort is not activated and the
dark boxes are counts of those in which fast abort was
activated after all tasks had been submitted. Though variations
in workload timings didn’t result in long tails every time
without fast abort, it is clear that a significant amount of the
trials took much longer to complete. Upon inspection, this
delay resulted from having one remaining task being computed

on the slow worker while all other workers were idle. The
version with fast abort enabled to cut off a worker after it has
exceeded the average completion time by 50% does not suffer
from these extreme tails.

Another approach would be to replicate tasks at the end of
a workload, as in [13] and [14]. To a first approximation,
replication and fast abort achieve the same result, althought
future work may determine which is more efficent.

Waiting for Out-of-Core Task Data. In our first implemen-
tation, complete alignment saw a marked decrease in perfor-
mance at 512 workers. The biggest problem with running such
a large dataset was memory. Although we were running the
master on a machine with 8GB of memory, the large dataset
was 5.7GB. This is loaded into memory to achieve the best
retrieval times when building tasks. Additionally, the master
buffers tasks in memory.

With 512 workers, the additional buffered tasks caused the
master to exceed physical memory. When the master began
to need paging for its task management, performance began
to degrade. The effect of this can be seen in Figure 12(A).
Because it takes significantly longer to create the number
of tasks required, workers must wait longer to receive their
task. When running with many workers, the amount of time
necessary to give tasks to all the workers is longer than the
amount of time it takes a worker to complete this task. This
creates a convoy effect, where workers are spending more time
waiting to be processed by the master than they spend actually
working. This explains the large variation in the number of
tasks working.

To combat this issue, we compressed the data. Because
DNA consists of only 4 letters, we may represent a single
base with two bits. The master does not need to interpret the
sequence data itself, so the data stays compressed on disk, in
the master’s memory, and while in transit to the worker nodes.
It is uncompressed as a side effect of loading into the memory
of the alignment program.

Once the amount of memory needed can be kept within the
physical memory, the master is easily able to keep up with the
workers requesting tasks. In this case, the number of workers
running at any time remains relatively constant, subject only
to minor fluctuations, mostly caused by changes in the number
of workers active. Figure 12(B) shows how the same job ran
on 512 workers with compression enabled.

This continues to be necessary even as resources scale up
with the data set sizes. For example, the master for the human
dataset was run on a machine with 32GB of RAM, which was
enough for its 20GB requirement.

Waiting for Task Assignment. When a master has many
workers connected to it, it takes the master longer to assign
tasks to all the workers in round-robin fashion. If task assign-
ment is slow, it takes the master longer to assign tasks to all
workers in the pool than it takes for an individual worker to
finish its task. The same symptoms appear as in the memory
case above: workers spend more time waiting to be given new
tasks than they spend working, and efficiency suffers. In this
case, the main problem is waiting for the master to transfer
task data to every worker. To induce this problem, we began
running workers on Condor pools at Purdue University and

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 12

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180
 0

 100

 200

 300

 400

 500

 600
T

as
ks

 R
un

ni
ng

S
pe

ed
up

Time (minutes)

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120
 0

 100

 200

 300

 400

 500

 600

T
as

ks
 R

un
ni

ng

S
pe

ed
up

Time (minutes)

(A) No Compression (B) Compression

Fig. 12. The Effect of Data Compression.
These graphs show the effect of data compression on the master’s ability to dispatch tasks using the large dataset. Each shows
a timeline of a single run, with the number of tasks running, the cumulative speedup, and the percent complete over time.
Figure 12(A) does not use data compression, and oscillates between 300 and 400 tasks running at once, reaching a speedup
of slightly better than 300x. Figure 12(B) uses compressionand stabilizes at about 500 workers.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140
 0

 200

 400

 600

 800

 1000

T
as

ks
 R

un
ni

ng

S
pe

ed
up

Time (minutes)

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70
 0

 200

 400

 600

 800

 1000

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
ed

up

P
er

ce
nt

 C
om

pl
et

e

Time (minutes)

(A) Single Master (B) Dual Masters

Fig. 13. The Effect of Splitting Masters.
When using a sufficiently large number of workers on the largedataset, the master does not have enough network bandwidth
to keep all of them busy. These figures show a timeline of a single run with approximately 950 workers using one master (A)
and two masters (B). With a single master, workers complete faster than the master can dispatch new work, so not all nodes
can be kept busy processing at once, and the speedup reaches less than 400x. With dual masters, peak speedup reaches 790x
before settling out about 700x. Note that the unequal distribution of completing work in (B) causes the dropoff beyond 50min.

the University of Wisconsin.

While we could transmit data to machines at Notre Dame
at an average speed of 42.29MB/s (meaning data for a task
could be transfered in only a few hundredths of a second),
data to Purdue took an average of .36s, and data to Wisconsin
was even slower, at .53s per transfer. In a job we ran with 900
submitted workers for a single master with 5000 candidates
per task, the average transfer time was 0.27s. 835 workers
completed tasks, with the others failing to find an available
resource or exiting after starvation. This means the average
time to transfer files to all 835 workers was 225s, which is
greater than the typical task completion time.

Ideally more nodes with fast connections could be added
in place of machines at other institutions, however this is
not always feasible. In order to take advantage of remote
computing resources that have slower network transfer times
without compromising the efficiency of our workload, we

divide the workers (including the slow connections) between
two controlling masters. To do this, we split the list of
candidate pairs in half and run the master program on two
separate machines with the same list of sequences but different
halves of the candidate pairs list. When using two masters
on the above workload, sending data to 450 workers each
averaging 0.27s per task takes only 121s, so both masters were
able to work efficiently.

Figure 13(A) shows a timeline of workers waiting rather
than actively computing associated with this problem for a
similar job with 950 submitted workers, while Figure 13(B)
shows the smoother two-master version of the same workload.
The maximum number of workers running tasks at a time was
921 with two masters.

The multiple-master technique is not limited in applica-
tion to workloads with large number of workers with slow
connections. Various other system resources limitations can

ACCEPTED TO TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012 13

cause workers to experience starvation even if network speeds
are fast enough to support all workers. For instance, many
Linux systems have hard limits on file descriptors open by a
process (usually 1024), and users might not have permission
to increase this limit. Using multiple masters multiplies the
number of connections, and thus supportable workers.

We have shown that there is benefit significant benefit to
manually splitting into two masters, but a more automatic
division of work would be better. Future work may use, for
example, the scheduling algorithm developed by Beaumont et
al [8] for hierarchical masters.

