
Autoscaling High-Throughput Workloads
on Container Orchestrators

Chao Zheng
University of Notre Dame

charleszheng44@gmail.com

Nathaniel Kremer-Herman
University of Notre Dame

nkremerh@nd.edu

Tim Shaffer
University of Notre Dame

tshaffe1@nd.edu

Douglas Thain
University of Notre Dame

dthain@nd.edu

Abstract—High-throughput computing (HTC) workloads seek
to complete as many jobs as possible over a long period of
time. Such workloads require efficient execution of many parallel
jobs and can occupy a large number of resources for a long
time. As a result, full utilization is the normal state of an HTC
facility. The widespread use of container orchestrators eases
the deployment of HTC frameworks across different platforms,
which also provides an opportunity to scale up HTC workloads
with almost infinite resources on the public cloud. However, the
autoscaling mechanisms of container orchestrators are primarily
designed to support latency-sensitive microservices, and result in
unexpected behavior when presented with HTC workloads. In
this paper, we design a feedback autoscaler, High Throughput
Autoscaler (HTA), that leverages the unique characteristics of
the HTC workload to autoscales the resource pools used by HTC
workloads on container orchestrators. HTA takes into account
a reference input, the real-time status of the jobs’ queue, as
well as two feedback inputs, resource consumption of jobs, and
the resource initialization time of the container orchestrator. We
implement HTA using the Makeflow workload manager, Work
Queue job scheduler, and the Kubernetes cluster manager. We
evaluate its performance on both CPU-bound and IO-bound
workloads. The evaluation results show that, by using HTA, we
improve resource utilization by 5.6× with a slight increase in
execution time (about 15%) for a CPU-bound workload, and
shorten the workload execution time by up to 3.65× for an IO-
bound workload.

Index Terms—Kubernetes, Autoscaling, High-throughput
Workloads

I. INTRODUCTION

High-throughput computing (HTC) workloads consisting of
large numbers of parallel jobs often require a tremendous
amount of computing resources for a long time. As a result,
HTC facilities that have to execute many HTC workloads
ordinarily operate at full utilization of limited resources. On
the other hand, public cloud providers, like Amazon AWS [1]
and Google GCP [2], render rapidly evolving infrastructure
and almost infinite computing resources. Therefore, migrating
HTC workloads to the public cloud may be a solution to the
scarcity of local resources.

Existing solutions for running HTC workloads provided
by the major cloud providers [3]–[5] include four steps:
i) determining compute, network and storage requirements
for workloads; ii) preserving computing instances on the
cloud; iii) building virtual clusters atop of these virtual nodes;
iv) setting up the HTC frameworks on the cluster and execut-
ing workloads. In this process, container orchestrators, like

Kubernetes [6], have been widely adopted to build elastic
virtual clusters on clouds.

However, container orchestrators are designed for latency-
sensitive workloads, which consist of large fleets of services
deployed to meet the varying loads imposed by external users,
such as web servers, video conferencing, and online games.
The performance objective of these workloads is to minimize
the response time observed by external users interacting with
the system. In contrast, HTC workloads consist of large
numbers of discrete parallel jobs that start and end, such as
genome sequence alignment, molecular dynamics simulation,
and parameter space exploration. The performance objective of
HTC workloads is to maximize the amount of work completed
over a long period of time by using resources efficiently. The
optimization goals of these two workload categories are so
distinct that resource optimizations that apply to one do not
work with the other.

One of the public cloud platform’s critical characteristics is
the pay-as-you-go pricing model, which requires the platform
to autoscale a pool of resources to meet the needs of a given
workload. However, as these systems are generally designed
with latency-sensitive services in mind, regardless of what
virtualization technologies (i.e., virtual machine or container)
they use, most of the autoscaling mechanisms [7]–[9] they
adopted are based on the application response time and re-
source metrics set by users. When any metric is too high/low,
the autoscaler increases/decrease the resource pool, which
has the effect of adjusting the metric to the desired degree.
However, such strategies do not work for HTC workloads
because high resource utilization is the ordinary case, and
increasing the allocated pool only allows more jobs to run.
An open challenge of running HTC workloads on container
orchestrators is how to autoscale resource pools accurately.

Figure 1 shows the three essential components of an HTC
system: a workflow manager, a job scheduler, and a cluster
manager. A workflow manager is a user-facing tool that
describes the overall structure of a workload, handles the job
and data dependencies between components, and dispatches
ready jobs to the underlying system. Examples include Ke-
pler [10], Pegasus [11], and Galaxy [12]. A job scheduler
handles the problem of assigning ready jobs to execution
sites by prioritizing work, matching available resources, and
handling runtime failures. Examples include Spark [13], Work
Queue [14], Sparrow [15], or Spring Batch [16]. A cluster

Workflow
Manager

Cluster Manager

Dispatch tasks
to workers

Submit tasks
to scheduler

How many resources
are needed?

Reserve resources
Based on

Workflow structure

Autoscale
based on

System Load

task
queue

Task
Scheduler

Autoscale
based on

Task Queue

w
w w

Fig. 1: Resource Provisioning for
HTC Workload

manager abstracts resources of physical nodes into a uni-
fied resource pool of containers and virtual machines shared
among multiple users, such as Apache YARN [17], Apache
Mesos [18], or Kubernetes [6].

From the perspective of each component, there are three
broad approaches to autoscaling (figure 1). First, one can let
the workflow manager analyze the structure of the workload
and reserve resources statically. This option usually needs to
know the job resource requirements and relies on domain-
specific prediction models [19]. Second, one can monitor the
job queue’s status through the job scheduling framework and
resize resource pools dynamically. This option does not require
advanced knowledge of workloads, but it does need to know
the resource initialization time to prevent resources from over
or under-provisioning [20]. Third, one can use local node
metrics (e.g., CPU, storage, or network usage) and resize
resource pools as demand changes. This approach can only be
reactive and might miss the peak needs of an HTC workload.

We argue that a better mechanism that can accurately resize
the resource pool for HTC workloads requires information
from all three components, and a new middleware that has
control over cluster resources based on the status of running
workloads is necessary. In this paper, we refine the autoscaling
problem into two sub-problems, i) what is the size of an
essential resource unit? ii) how many resource units are
required by the target workload? We resolve the first problem
by comparing various system settings and observe that if we
align each resource unit with an independent node and set
the parallelism (i.e., the number of parallel jobs per node)
correctly, we can achieve the highest workload throughput
and resource utilization. To get the correct parallel degree,
we leverage the fact that most HTC workloads consist of
different categories of jobs with internal similarity. Jobs of the
same stage can run in parallel and are usually copies of the
same program with different input datasets. By collecting the
resource usage of complete jobs, we can estimate the resource
requirements of jobs belonging to the same stage and assign an
appropriate number of jobs to a node. For the second problem,
we design a well-informed feedback autoscaler which consid-
ers the resource consumption of completed jobs, the real-time
status of the jobs’ queue, and the resource initialization time
reported by the cluster manager.

As a case study, we compose a software stack with Make-

flow [21] as the workflow manager, Work Queue [14] as
the job scheduling framework and Kubernetes [6] as the
cluster manager. We implement the autoscaling mechanism
in a middleware called High-Throughput Autoscaler (HTA),
which sets up the Work Queue framework on Kubernetes
and controls the life-cycles of deployment units based on the
progress of running workloads.

We compare HTA to the default Horizontal Pod Au-
toscaler (HPA) by running a bioinformatics workload and an
I/O bound synthetic workload. The experimental results show
that HTA can increase the cluster resource utilization by 5.6×
with only a slight increase in execution time (around 15%)
for the bioinformatics workload, and shorten the workload
execution time by up to 3.6× for the I/O bound workload.

The rest of the paper is organized as followed. We introduce
the background knowledge in Section II. We describe and
refine the autoscaling problem in Section III, propose solutions
in Section IV, and describe the implementation details of HTA
in Section V. The evaluation setup and results are presented
in Section VI. After discussing related work in Secion VII,
we conclude in Section VIII.

II. BACKGROUND

There exist many tools to run HTC workloads on the cloud.
We choose three of them to compose a software stack that uses
the Makeflow as the workload manager, the Work Qeue as the
job scheduler, and the Kubernetes as the cluster manager.

A. Makeflow

An HTC workload is often represented as a Directed
Acyclic Graph (DAG), where the nodes of the graph are jobs to
execute, and the edges of the graph represented dependencies
between jobs. Makeflow [21] is a workflow manager for
describing such DAGs. Makeflow’s syntax is similar to that
of GNU Make, which allows users to describe any workload
expressible in a Directed Acyclic Graph (DAG) structure. After
the user creates the workload description, Makeflow parses the
description and generates an in-memory representation of the
workload’s DAG structure and parcels it out to an underlying
execution framework.

B. Work Queue

Work Queue [14] is a framework for building large-scale
master-worker applications that spawn workers across different
cloud platforms. Each master program has a worker pool
consisting of a set of connected workers. The size of the
worker pool varies dynamically with the available computing
resources. During runtime, the master finds available workers
and assigns jobs to them, and then the worker will arrange
data transfer and execute each job it receives. A worker may
run multiple jobs simultaneously, as long as the sum of their
declared resources (e.g., cores, memory, disk) does not exceed
the machine’s capacity.

C. Kubernetes

Kubernetes [6] is a container orchestration tool developed
by Google, which allows the developer to manage distributed
applications hosted in containers. Kubernetes allows users to
describe resources using different objects. In this paper, we
use three of them, i) a Pod, which is the primary deployment
unit and a disposable object which might fail or restart; ii) a
StatefulSet, which contains a set of pods and each of them
has a unique and sticky identity; iii) a Service, which defines
the network protocol for accessing the micro-services hosted
on a set of pods.

For deploying Work Queue workers on Kubernetes, several
configurations exist depending on which deployment unit we
choose to manage worker containers. We anticipate that if the
cluster needs to be shrunk, some workers will be removed. If
we remove workers by deleting the deployment unit wrapping
them, worker containers and jobs running on them will be
interrupted. To avoid interrupting worker containers, rather
than using advanced deployment units to control the life-cycle
of worker containers, we align each worker container with an
independent pod and manage the life-cycle of each worker
container directly through the Work Queue.

III. PROBLEMS

We divide the autoscaling problem into two subproblems:
what is the size of a worker-pod (section III-A) and how many
total worker-pods are required (section III-B)?

A. Size of a worker-pod

HTC workloads are typically composed of loosely coupled
jobs that can be executed concurrently. However, without
knowing the resource requirements of each job, assigning
multiple resource-intensive jobs to a single worker-pod and
running them simultaneously may lead to resource starvation.
To avoid starvation, if the resource requirements (cores, mem-
ory disk) of jobs are uncertain, the Work Queue framework
will conservatively assign only one job to a worker at a time.
(We will relax this assumption in the next section.) This
setting makes the worker size critical to the performance of
the individual job. Therefore, when setting up Work Queue on
Kubernetes, the size of the worker-pod must be appropriately
specified.

Assuming that the size of the resource pool is fixed, then
a fine-grained configuration that has many small workers
will be able to run more jobs concurrently, while a coarse-
grained configuration with few, large workers will have a
lower degree of parallelism. However, as the master’s egress
network bandwidth is fixed, the fine-grained configuration
has to share limited bandwidth between more workers with
more data movements. This imposes extra network overheads
and might lead to longer workload execution time. Therefore,
which configuration is better depends on whether the target
workload is data-intensive or compute-intensive. However, this
information is difficult to obtain without running the workload
several times.

B. Number of worker-pods

Besides the worker size, another parameter that needs to be
determined is the number of worker-pods. Resource demands
of different workloads vary dramatically. Even for a single
workload, resource usage can diverge significantly during the
runtime. Therefore, the number of worker-pods needs to be
changed frequently.

An existing option of adjusting the number of worker-
pods is using the Horizontal Pod Autoscaler (HPA) of
Kubernetes [22]. HPA adjusts the number of pods based on
the ratio between a metric’s desired value and its current
value. For example, we can get the desired amount of CPU
by equation (1), with CurrentCPU and CurrentCPUUse
reported by Kubernetes and the DesiredCPUUse set by
users.

DesiredCPU = CurrentCPU × CurrentCPUUse

DesiredCPUUse
(1)

However, the nature of HPA only allows it to make delayed
responses to the varying resources load. Although this mecha-
nism works well with latency-sensitive micro-services, it does
not work with HTC workloads, resulting in three possible
problems: i) the cluster could scale up too slowly and miss the
peak resource demand. ii) resources could be over-provisioned
when they are no longer needed. iii) workloads might never
scale up to the desired degree.

We show these three results by running the BLAST bioin-
formatics workload [23] on a GKE1 cluster that can be scaled
up to 15 nodes with three different desired CPU usage, 10%,
50% and 99% (hereinafter referred as Config-10, Config-50,
and Config-99). The BLAST workload we used comprises
of 200 parallel jobs with each of them having the same
size of input data. We assume that the resource requirements
of individual jobs are known in advance, and consider four
dimensions: i) the number of worker-pods connected, ii) the
number of idle worker pods, iii) the desired number of worker-
pods calculated by HPA, and iv) the number of worker-pods
required in an ideal scenario. As shown in figure 2, Config-
10, and Config-50 have a similar workload execution time
(1294 versus 1304 seconds), close CPU usage (68.3% versus
65.2%), and the same maximum cluster size, i.e., 15 nodes.
The primary difference is that Config-10 takes longer to scale
up than Config-50. This is due to the larger disparity between
current and target CPU load.

In contrast, Config-99 never scales up and results in four
times longer workload execution time (4682 seconds) than the
previous two configurations. In summary, even though Config-
10 and Config-50 finally scale up to the desired degree, they
are still far from optimal, which is to have the workload
complete in 240 seconds. Therefore, the autoscaler reacting to
system indicators does not always work with HTC workloads.

1Google Kubernetes Engine

0 200 400 600 800 1000 1200 1400 1600
Time(Second)

0
2
4
6
8

10
12
14
16

Nu
m

 W
or

ke
rs

(a) HPA CPU Load 10%

0 200 400 600 800 1000 1200 1400 1600
Time(Second)

(b) HPA CPU Load 50%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time(Second)

(c) HPA CPU Load 99%

Connected Workers Idle Workers Desired Workers Ideal Workers

Fig. 2: Workload Runtime Statistics with Different HPA Target CPU Load

IV. PROPOSED SOLUTION

A. Large Pod with Resource Monitoring

TC1

TC2

Worker
Node

TC1

Category-1
Cores: 1
Mem: 1200
Disk: 1500

TC2

Category-2
Cores: 2
Mem: 1500
Disk: 2000

TC3

Category-3
Cores: ?
Mem: ?
Disk: ?

TC3

Worker
Node

Master

Node

Update
Resource

Requirement

Fig. 3: One Worker-Pod per Node with
Runtime Resource Monitoring

As discussed in section III-A, for an arbitrary workload, it
is challenging to decide the size of the worker-pod. However,
if each job’s resource requirements are explicitly stated, we
can run multiple jobs parallelly in a worker-pod. The con-
figuration with a larger worker-pod can benefit from larger
network bandwidth as well as a high degree of parallelism. We
verify this by running the BLAST workload [23]) comprising
of 100 parallel jobs, each job having a (cacheable) 1.4GB
shareable input and 600KB output, on a GKE cluster with
three configurations. Concretely, the GKE cluster consists of
5 physical nodes with each node having 3 vCPUs and 12 GB
RAM. Configuration (a) has 15 worker-pods with each worker-
pod occupying 1 vCPU, 4 GB RAM, configuration (b) has 5
worker-pods with each worker occupying an entire physical
node, and configuration (c) has a similar worker-pods setting
as (b) knowing resource requirements of all jobs.

As shown in figure 4, the fine-grained configuration has
411 seconds of workload execution time, 278.382 MB/S
average bandwidth, and 87.21% CPU usage. The coarse-
grained configuration has 632 seconds of workload execu-
tion time, 452.138 MB/S average bandwidth, and 32.43%
average CPU use. However, if the resource requirements of
jobs are explicitly known, the coarse-grained configuration
can complete the workload in 330 seconds with 466.173
MB/S average bandwidth and 85.73% average CPU usage,
which outstrips the other two configurations in terms of both
resource utilization and network bandwidth. Therefore, if the

job resource requirement can be accurately estimated, the
configuration with larger worker-pod should be preferred.

A primary characteristic of the HTC workload is that
parallel jobs from the same stages are usually copies of the
same program that works on different input datasets. Besides,
the size and the pattern of the input dataset is usually the
same between jobs as we usually divide a large dataset into
equally sized small portions and assign them to each job. We
can leverage this fact by splitting jobs into sub-categories
according to their belonging stages. By referring to the re-
source consumption of completed jobs, we can obtain resource
requirements for waiting jobs belonging to the same category.
Concretely, we achieve this in three steps (figure 3), i) tag jobs
of the workload by category before execution; ii) for the first
job of a category, uses a worker-pod exclusively, has resource
consumption measured, and applies the resource requirement
to all jobs belonging to the same category; iii) after resource
requirement of jobs are updated, run jobs parallelly in worker-
pod that has enough resources.

B. Well-informed Autoscaling

The majority of HTC workloads are resource-hungry, which
often results in steady and high system loads. Therefore, rather
than using a reactive autoscaler that scales the resource pool
based on system loads, a better-informed autoscaling approach
should also take into account workload level (i.e., the status of
the job scheduler) and job level (i.e., the resource requirement
of each job) information.

In a queue-based submission model, jobs are queued up and
wait for appropriate resource slots. An autoscaling mechanism
that works with this model is to provision new resources to
remedy the resource shortage when the length of the job
queue increases while removing idle resources vice versa.
As mentioned in the last section, we can estimate resource
requirements of waiting and running jobs based on completed
jobs, for any given time point, we can calculate the resource
shortage by considering resource requirements and quantity
of waiting and running jobs. However, a critical problem
of this approach is that the length of the job queue might
keep changing while the cluster manager is initializing new
resources. This can result in resource over-provisioning or
under-provisioning. In order to tackle this problem, we propose
an autoscaling mechanism that resizes the resource pool by
considering the gap between resource supply and demand
during the initialization of the new resources.

0 50 100 150 200 250 300 350
Time(Second)

0
2
4
6
8

10
12
14
16

Nu
m

 C
or

es

(a) 15 workers with 1 core per worker and
 uknown resource requirement

0 100 200 300 400 500 600
Time(Second)

(b) 5 workers with 3 cores per worker and
 uknown resource requirement

0 50 100 150 200 250 300
Time(Second)

(c) 5 workers with 3 cores per worker and
 known resource requirement

0

5

10

15

20

25

Gi
ga

By
te

s

Cores in Use Bytes Sent

Fig. 4: Runtime Statistics of Workload with Unknown Resource Requirements

To illustrate the basic idea of this mechanism, we define
five terminologies, i) Resource In-use (RIU), the amount of
resources currently being used by running jobs; ii) Resource
Shortage (RSH), the amount of resources desired by waiting
jobs; iii) Resource Demand (RD), the sum of resources in-
use and resource shortage; iv) Resource Supply (RS), the
amount of available resources supplied by the cluster manager;
v) Resource Waste (RW), the amount of idle resources. During
runtime, resource demand is uncontrollable, and there usually
exists a maximum resource quota depending on the user
budget. Despite the above factors, an efficient autoscaling
mechanism should maximize resources in-use and workload
throughput; meanwhile, minimize resource waste, resource
shortage, and workload execution time.

Resource Shortage
Resource Supply
Resource Demand
Resource Waste

Time

Resource

scale up scale down scale up do nothing scale down

Fig. 5: An Example of
workloads resource relationship on cluster

Formally, we define a time interval between the time point
of submitting new resources request (tnr) and the time point
when all new resources are ready (trr) as a resource initial-
ization cycle. Then we establish the objective function (2),
whose objective is to minimize the resource shortage at the
time point trr. Specifically, ∆RSH(t) is the resource amount
of newly enqueued waiting jobs at t, and ∆RIU(t) is the
resource amount of finished jobs at t. When evaluating the re-
source efficiency, both the resource shortage and the workload
execution time can act as indicators, and we chose resource
shortage here to better demonstrate the resource relationship
on the cluster.

Then resource shortage of the system can be calculated by
equation (2), specifically, ∆RSH(t) is the resource amount
of newly enqueued waiting for jobs at t, and ∆RIU(t) is the

W1 W2 W3 W4 W5 W6 W7 W8 W9 W100
30
60
90

120
150
180

Ti
m

e
(S

ec
on

d)

Node Container

Fig. 6: GKE Resource Initialization Latency

resource amount of finished jobs at t

RSH(trr) = RSH(tnr)+

trr∑
t=tnr

(∆RSH(t)−∆RIU(t)) (2)

A potential problem of this mechanism is, if the variation rate
of the resource pool – when and how many resources the
cluster manager will add – is unknown, it will be challenging
to estimate ∆RSH(t) and ∆RIU(t). However, we notice
that cluster managers usually process reservation requests in
batches; thus, requests submitted in the same batch that ask
for the same machine types and container images in the
same geographical region should experience similar resource
initialization latency.

To verify this speculation, we measure the resource ini-
tialization time (including machine reservation and container
pulling time, see figure 6) by creating pods that have resource
requirements which cannot be met by existing nodes. We ran
the benchmark 10 times on GKE and found that the resource
initialization latency alters little (mean: 157.4 seconds, stan-
dard deviation: 4.2 seconds). Therefore, we can assume that
the resource pool’s size is constant during a resource
initialization cycle. Furthermore, we divide the workload’s
lifetime into consecutive time intervals, with each interval
equal to a resource initialization cycle, then the relationship
between the resource supply and demand should look like
figure 5. To resize the resource pool correctly, we only need
to calculate the RSH at the end time point of each cycle and
then create/delete worker-pods accordingly. As the average job
execution time, job resource requirement, and the total amount
of available resources (i.e., the size of the resource pool) is
known, we can easily calculate the ∆RSH(t) and ∆RIU(t)
for any given time point.

Container
Orchestrator

Worker

Container

Node Pool

Workflow
Application

Node

Master

Container
Node

Feedback
Autoscaler

Execute workflow
Update task

resource
requirement

Get tasks
resource

requirement

Get resource
preparing
latency

Get queue
status

Scale
up/down

Create/Delete
Containers

Cluster Autoscaler

Add/Re
Containers

Add/Remove
Nodes

Fig. 7: A Well-Informed Autoscaling Approach

Based on this mechanism, we design a well-informed feed-
back autoscaler (figure 7) that autoscales the resource pool
for HTC workloads by considering two inputs, the length
of the job queue as well as the resource initialization time
of the cluster manager, and a feedback input, runtime
statics (including the job execution time and the resource
consumption) of completed jobs.

Specifically, the autoscaler resizes the resource pool in three
steps, i) measuring the latest resource initialization time of
the cluster manager, obtaining the runtime statics (including
resource consumption as well as the execution time) of com-
pleted jobs reported by the workload manager, and getting
the length of the job queue reported by the job scheduling
framework; ii) estimating the resource shortage (RSH) at
the end of next resource initialization cycle by applying
equation (2) and scale the resource pool accordingly. (i.e.,
scale down if RSH < 0, scale up if RSH > 0, and do nothing
if RSH = 0) iii) scaling the resource pool by adjusting
the number of worker-pods (changing the number of worker-
pods could result in, pending pods with no available node
or idle nodes that are underutilized, and the cloud controller
manager [24] will add/remove nodes accordingly).

V. IMPLEMENTATION

A. System Components

We implement above autoscaler in a new middleware and
named it High Throughput Autoscaler (HTA). HTA deploys
Work Queue job scheduling framework on Kubernetes, helps
Makeflow to submit jobs and manages the container cluster
through the Kubernetes during runtime. Figure 8 shows the
system architecture of HTA, which includes two main com-
ponents,

1) Makeflow Kubernetes Operator, which contains four
sub-components, i) Informer Cache, which receives a notice
when registered objects (i.e., Pod, Service, and Statefulset) are
created, updated, or deleted. By monitoring the worker-pod
lifecycle, it can always get the latest resource initialization
time, i.e., how long does it take for a worker-pod with no

available node to be ready; ii) Resource Provisioner, which
calculates the resource shortage and resizes clusters based on
the status of the job queue, statistics of completed jobs, and
resource initialization time; iii) a TCP Client, which sets up
a network connection to the Work Queue master, submitting
ready jobs, receiving completed jobs, and getting the job queue
status for the resource provisioner; iv) and a TCP Server,
which gathers jobs specifications from Makeflow, including
input/output information and resource requirements. HTC
workloads often produce a large number of data transmission
during runtime. To decrease network overheads, we keep the
connections between Makeflow, HTA, and Work Queue alive
during the entire lifecycle of workloads.

2) Container Cluster On GKE, HTA sets up a container
cluster to run the Work Queue framework. As discussed
early IV-A, we apply the configuration of large worker-pods
with each pod occupying an entire physical node. Initially,
the cluster has 3 nodes 2 and will scale up on-demand later.
To avoid loss of intermediate data and ensure a restarted
master pod can run on the same physical node with the same
identity, we encapsulate the master pod inside a StatefulSet
and dump intermediate data into a persistent volume. Since
users often start workflow applications locally or from a
network namespace different from container clusters, we set
up dedicated services for HTA and worker-pods to access the
master pod from outside and inside of the cluster.

Container Cluster

Kube Master

w

w

w

Pod

Pod

Pod

Makeflow

Local Directory

TCP server

Kube Informer TCP Client

Makeflow Kubernetes Operator

Operator Client
Service

User

WQ
Master

Operator Client

TCP
 Server

Pod

StatefulSet

Work Queue
Service

Rsrc Provisioner

Stateful
Volume

Google
Kubernetes Engine

Fig. 8: Makeflow Kubernetes Operator Architecture

2A GKE cluster with a size smaller than 3 nodes that might be unreachable
during the Kubernetes master node upgrade. To avoid unnecessary disruption,
we use 3 nodes by default.

B. Resource Initialization Time

To calculate the resource shortage at the end time point of
a resource initialization cycle, we need to gather three pieces
of information: i) resource requirement of waiting jobs, which
can be estimated by referring to complete jobs belonging to
the same categories; ii) number of waiting and running jobs,
which can be obtained by inquiring Work Queue; iii) resource
initialization time of the cluster manager. To obtain the latest
resource initialization time, we use the log data of the informer
API to track the lifecycle of each worker-pod, which includes
four states (see figure 9):

1) No Available Node This state happens when Kubernetes
receives requests for creating a new worker-pod, but there
exists no physical node that has enough resources. The worker-
pod will stay in Pending state with event Insufficient
Resource. Then the cloud controller manager will detect the
pending pods and reserve new physical nodes.

2) No Container Image The Pending worker-pod has
been scheduled on the new node, but the container image has
not been pulled yet. The worker-pod will stay at the Pending
state with a new event Pulling Image while waiting for
the Kubelet to pull the image.

3) Worker-Pod Running After Kubelet pulls the container
image, the worker-pod starts running.

4) Worker-Pod Stopped When deciding to scale down the
resource pool, the HTA will stop the worker process running
inside the worker-pod. After the worker process completes all
running job, the worker-pod will turn into Succeeded phase
and will be removed.

No
Available

Node

No
Container

Image

Worker
Pod

Running

Add New Node

Pull
Container

Image

Pod Phase: Pending
Event: Insufficient Resource

Pod Phase: Pending
Event: Pulling Image

Pod Phase: Running
Event: Container Started

Worker
Pod

Stopped

Stop Worker Process

Pod Phase: Succeeded

Scale
Up

Scale
Down

Remove
Ideal
Node

Create Worker-Pod

Fig. 9: Lifecycle of a Worker-Pod

We leverage client-go’s informer cache to track the lifecycle
of each worker-pod and its event. If the creation process of a
worker-pod experience three states – No Available Node, No
Container Image, Worker-Pod Running – we will use the time
interval between HTA generating worker-pods creation request

and the worker-pod becoming ready as the latest resource
initialization time.

C. Resource Autoscaling

The autoscaling process includes three stages:
1) Warm-Up Stage In this stage, HTA sets up the Work

Queue framework on Kubernetes with 3 nodes and start
tracking the resource initialization time. Makeflow submits the
first batch of jobs to HTA. Instead of fanning out all jobs at
once, HTA sends out only a portion of jobs with one job per
category to collect resource statistics of each category.

2) Runtime Stage During runtime, HTA periodically esti-
mates resource needs and resizes the resource pool on-demand.
As shown in algorithm 1, when calculating the resource short-
age, the latest resource initialization time, information about
running/waiting jobs, jobs runtime information (i.e. resource
requirement and execution time) grouped by categories and
information of active workers are passed to the function. The
estimation function checks the current resource balance (line
3 - 18), evaluate the relationship between resource supply
and demand (line 18 - 24), and returns the desired scale
variation (line 25).

If the scale variation is larger than zero, a scaling up
action will be applied which creates new worker-pods, while
scaling down action will be taken if the scale variation is
smaller than zero, which drains worker pods, i.e., stop the
worker once all running jobs on it are finished. Furthermore,
to avoid system thrashing caused by frequently resizing, time
intervals between two resizing actions is always set as the
latest resource initialization time.

3) Clean-Up Stage, when there are no more jobs need
to run, HTA will receive a notification from Makeflow and
drain all workers. Once all jobs are complete, HTA will
erase intermediate data, delete all deployment units left on
Kubernetes, and send out a notification to the user.

VI. EVALUATION

In section (section III), we show that with CPU load higher
than 50%, HPA would rarely scale up the cluster. Therefore,
we compare HTA to two setups: (i) HPA-20%, which uses
HPA of Kubernetes with target CPU load 20%; and (ii) HPA-
50%, which use HPA of Kubernetes with target CPU load
50%.

We run our experiments on a Google Kubernetes En-
gine (GKE) with Kubernetes version 1.13 using 20 n1-
standard-4 instances. Each instance has 4 vCPUs, 15 GB
RAM, and 100 GB SSD with Container-Optimized OS from
Google. To avoid network speed variations between a public
Docker registry and the daemons, we set up a private container
registry on Google cloud. As discussed in section (section
IV-A), we set up the Work Queue framework with one worker
per pod. To monitor the resource consumption of tasks, we
enable the resource monitor [25] of Work Queue.

.....…
.

…
.

…
.

.....…
.

.....…
.

.....…
.

Num tasks: 200
Avg Time: 60s

Input: 1.3GB
Output: 600KB

Num tasks: 34
Avg Time: 360s

Input: 1.3GB
Output: 900KB

Num tasks: 166
Avg Time: 80s

Input: 1.3GB
Output: 700KB

(a) Blast Workflow Structure

0 500 1000 1500 2000 2500 3000
Time(Second)

0

20

40

60

80

100

Co

re
s

(i) HPA CPU Load 20%

0 500 1000 1500 2000 2500 3000
Time(Second)

0

20

40

60

80

100

Co

re
s

(ii) HPA CPU Load 50%

0 500 1000 1500 2000 2500 3000
Time(Second)

0

20

40

60

80

100

Co

re
s

(iii) High-throughput Autoscaler

resource supply resource demand

(b) Resource Supply and Demand of Blast

Resource
Autoscaler

Workflow
Runtime
(second)

Accumulate
Waste

(core× s)

Accumulate
Shortage
(core× s)

HPA(20% CPU) 2656 51324 34813
HPA(50% CPU) 2480 39353 66611

HTA 3060 9146 40680

(c) Blast Workflow Performance Summary

Fig. 10: Blast Workflow

Algorithm 1: Resource Estimation Algorithm
Data: rsrcInitT ime, runningTasks,

waitingTasks, taskCategoryInfo,
activeWorkers

Result: scaleChanged, timeToNextAction
/* simulate the execution of workflow */

1 rsrcCap = TotalRsrc(activeWorkers)
2 avaRsrc = AvaRsrc(activeWorkers, runningTasks)
3 for t = 1; t < rsrcInitT ime; t + + do
4 completeTasks =

TasksCompleteAt(t, runningTasks)
/* return resource used by complete tasks */

5 foreach task in completeTasks do
6 avaRsrc = avaRsrc + task.rsrc
7 end

/* simulate task dispatching */
8 foreach task in waitingTasks do

/* no resource available, moving on */
9 if AvaRsrc == 0 then

10 break
11 end

/* dispatch waiting tasks */
12 if task.rsrc < avaRsrc then
13 avaRsrc = avaRsrc− task.rsrc
14 runningTasks =

append(runningTasks, task)
15 delete(waitingTasks, task)
16 end
17 end
18 end

/* resources are enough, do nothing */
19 if Len(waitingTasks) == 0 then
20 return 0, DefaultCycle
21 end

/* scale down if there is spare resources */
22 if avaRsrc > 0 then
23 return -NumIdleWorkers(avaRsrc),

MaxRuntime(runningTasks)
24 end

/* scale up, otherwise */
25 return WorkerRequired(waitingTasks), rsrcInitTime

A. Multistage Workload

We start by considering a multistage BLAST workload,
which contains three stages with each stage involves three
steps, i.e., splitting an input data, aligning subsequences, and
reducing intermediate results. We consider five dimensions:
i) workload execution time; ii) resource shortage; iii) resource
supply; iv) accumulated resource shortage; and v) accumulated
resource waste. The accumulated resource shortage/waste is
the definite integral of resource shortage/waste over the work-
load runtime.

As shown in figure 10a, the first and last stages of the
workload contains tasks more than the second stage (200,

164 compared to 34), an optimal autoscaler should resize the
cluster follow the same pattern, i.e., a decrease in resource
demand in the middle of the lifecycle, and a bump up once
the workload entering into the third stage.

However, as shown in figure 10b, if HPA is applied, cluster
size will gradually increase and stay at the capacity limit (i.e.,
20 nodes, 60 cores) until workload complete. This is because
to avoid pods from thrashing, there is a stabilization interval
between two downscale operations, and the default value is
5 minutes. Even though we can increase the frequency of
downscale by tuning this value, different workloads have
various resource changing rates, without running the same
workload multiple times, it is challenging to pick the right
value.

In contrast, HTA autoscale the cluster as expect. To take As
shown in table 10c, even though we see a slight increase in
workload execution time (12.5% compare to HPA-20%, 16.6%
compare to HPA-50%), HTA reduces the resource waste
dramatically (5.6× compare to HPA-20%, 4.30× compare to
HPA-50%).

In general, when resizing resource pool for workload with
fluctuant resource demands, HTA can make a more accurate
autoscaling plan compare to HPA as HTA considering infor-
mation from every component of the software stack.

B. I/O Intensive Workload

While CPU load is often a good indicator of system load,
applications’ performance might be bound by other resources.
Choosing a wrong indicator might cause HPA scaling cluster
to an inappropriate degree. To reveal how will the autoscaler
behave for workload bounded by resources other than CPU,
we create a synthetic workload that contains 200 I/O intensive
parallel tasks. Each task of them runs dd commands to
read/write data from the disk device. We consider the same
dimensions as the previous benchmark VI-A.

As shown in sub-figures (i) and (ii) of figure 11b, while tasks
are queuing up on Work Queue, the cluster size maintain in
1. The reason is that each task is busy at reading/writing data,
and the CPU load is rarely over 20%. In contrast, HTA can
scale up the cluster to the desired size as it considering CPU
load as well as usages of other resources (e.g., max number of
processor required by task) when establishing an autoscaling
plan. As a result, by using HTA, we successfully scale up the
cluster and shorten workload execution time by around 3.66×.

In terms of resource waste, even though configuration using
HPA does not have resource waste, the significant resource
shortage and small cluster scale result in unacceptable through-
put and execution time. In contrast, when running with HTA,
even though there is a small amount of resource waste at the
beginning as Work Queue master assigning tasks to workers,
once the cluster upscaled to the desired degree, we see no
resource waste during the entire lifecycle of workload.

In general, using HPA require users to know the workload
well and pick the correct resource indicator. Moreover, in order
to scale the cluster to the desired degree, users need to fine-
tune multiple system options. However, it is challenging for

regular users to choose appropriate parameters without running
workloads multiple times. By contrast, HTA estimates the
resource shortage based on the real-time status of different
system components, and dynamically adjust the stabilization
cycle by considering the latest resource initialization time.
Therefore, by using HTA, we can resize cluster on-demand
without user intervention.

VII. RELATED WORK

A. Autoscaling on the cloud

Autoscaling on the cloud is not a new topic, regardless
of the underlying virtualization technology, researchers in
previous studies have proposed various efficient autoscaling
mechanisms that can be divided into three categories.

Rule-based autoscaling mechanisms [26], [27] usually re-
quire users to specify a set of fixed thresholds (e.g., CPU,
I/O, bandwidth), and resize the cluster once these thresholds
are reached. These mechanisms are generic, work to different
workloads, but they only consider infrastructure-level met-
rics and, hence, do not work with HTC workloads that are
not resource-bound. HTA takes into account infrastructure-
level (resource initialization time), framework-level (job queue
length) as well as application-level metrics (resource require-
ment and execution time of jobs) to resize the cluster more
accurately.

Learning-model based approaches apply linear regres-
sion [28], reinforcement learning [29]–[31] or other machine
learning models [32] to predict future resource demands and
resize the cluster in advance. However, these approaches
usually require a long time to train the models before they can
accurately predict the resource demands, which might result in
the poor quality of service (QoS) during the early stage of the
learning period. In contrast, by leveraging the fact that HTC
workloads usually comprise of many small parallel jobs with
similar resource requirements, HTA can accurately estimate
the resource requirement of workloads at the early stage.

Control-theory based mechanisms [33]–[35] use adaptive
feedback controllers to scale the resource pool by monitoring
not only the system load but also taking application-specific
metrics (e.g., requests arrival rate) into account. Comparing
to them, HTA considers the resource initialization time of the
cluster manager and estimates the resource demands on the job
level, which allows HTA to predict future resource demands
more accurately and perform proper autoscaling actions more
timely.

B. Autoscaling batch workloads with Kubernetes

With the rise of Kubernetes as the new standard of container
orchestration, there emerged many systems that attempt to
autoscale batch workloads on Kubernetes.

KFServing [36] is designed for serving machine learn-
ing (ML) frameworks, like Tensorflow [37] and PyTorch [38],
on Knative platform [39]. It leverages Knative’s request-based
autoscaling mechanism [40], which autoscales the cluster
based on how many concurrent requests can be handled by
a container. This mechanism works well with ML workloads

.....…
.

.....…
.

Num tasks: 200
Avg Time: 60s

.....…
.

(a) I/O Bound Workflow Structure

0 1000 2000 3000 4000 5000 6000 7000 8000
Time(Second)

0

20

40

60

80

100

Co

re
s

(i) HPA CPU Load 20%

0 1000 2000 3000 4000 5000 6000 7000 8000
Time(Second)

0

20

40

60

80

100

Co

re
s

(ii) HPA CPU Load 50%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(Second)

0

20

40

60

80

100

Co

re
s

(iii) High-throughput Autoscaler

resource supply resource demand

(b) Resource Supply and Demand of I/O Bound Workflow

Resource
Autoscaler

Workflow
Runtime
(second)

Accumulate
Waste

(core× s)

Accumulate
Shortage
(core× s)

HPA(20% CPU) 6670 159 337737
HPA(50% CPU) 7230 82 357640

HTA 1823 2028 31840

(c) I/O Bound Workflow Performance Summary

Fig. 11: I/O Bound Workflow

that are not bound by common computing resources. However,
HTC workloads have unique characteristics different from ML
and other batch workloads, by leveraging these characteristics,
consisting of parallel jobs with a similar resource requirement
and execution time, HTA can make scaling plans that best fit
the HTC workload.

Escalator [41] is an optimizer for the HPA of Kubernetes.
It is designed for large batch workloads that cannot be inter-
rupted and migrated when the cluster needs to shrink. As an
optimizer of HPA, Escalator still relies on system indicators
to resize clusters, while HTA makes scaling plans based on
system metrics collect from Kubernetes as well as real-time
status of job scheduling framework running on Kubernetes,
which can estimate the scale variation more accurately and
timely.

C. Running HTC workloads with containers

Other than setting up the job scheduling framework on
container orchestrators, There exist various configurations of
running HTC workloads with container technologies. One op-
tion is integrating container runtime into the workload system.
In our previous work, we successfully integrated Docker and
Singularity into Makeflow and Work Queue [42]. Other work-
load systems like IBM Spectrum LSF [43] and Altair’s PBS
Professional [44] also includes support for Docker contain-
ers. Though these deployments exploit the existing workload
system that has been developed over the years to support
high-throughput workloads, it is complicated to deploy such a
system on a commercial cloud, which often renders more and
newer hardware with evolved and compelling infrastructure.
Our solution builds elastic container clusters that follow the
pay-as-you-go approach with dedicated autoscaler, as well as
accommodates properties of both high-throughput workload
container orchestrator.

VIII. CONCLUSION

In this paper, we explored how to autoscale HTC workloads
on the cloud through Kubernetes. We show that the default
autoscaler of Kubernetes – which use system indicator to
resize resource pool – does not work to the HTC workload,
and propose a new autoscaling mechanism that leverages the
unique characteristics of the HTC workload to automatically
resizes the resource pool. Based on this mechanism, we de-
veloped a High-throughput Autoscaler (HTA), which manages
the workload scheduling framework and resizes the container
cluster based on the resource utilization of complete jobs, the
real-time status of the job queue, and the resource initialization
time of the cluster manager. Our evaluation shows that HTA
can improve the resource usage of CPU-bound workloads by
5.6×, and shorten the execution time of IO-bound workloads
by up to 3.66× compare to the default autoscaler of the
Kubernetes.

REFERENCES

[1] “Global infrastructure.” Amazon Web Services, 2019, https://aws.
amazon.com/about-aws/global-infrastructure/.

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

[2] “About google data centers.” Google, 2019, https://www.google.com/
about/datacenters/.

[3] “High performance computing - virtually unlimited infrastructure and
fast networking for scalable hpc.” aws, 2019, https://aws.amazon.com/
hpc/.

[4] “High performance computing.” Google Cloud, 2020, https://cloud.
google.com/solutions/hpc.

[5] “High performance computing (hpc) on azure.” Azure,
2020, https://docs.microsoft.com/en-us/azure/architecture/topics/
high-performance-computing.

[6] “Production-grade container orchestration,” 2017, https://kubernetes.io/.
[7] “Horizontal pod autoscaler,” 2019, https://github.com/kubernetes/

autoscaler/tree/master/cluster-autoscaler.
[8] “Scaling based on cpu or load balancing serving capacity,” 2020, https://

cloud.google.com/compute/docs/autoscaler/scaling-cpu-load-balancing.
[9] “Target tracking scaling policies for amazon ec2 auto scaling,”

2020, https://docs.aws.amazon.com/autoscaling/ec2/userguide/
as-scaling-target-tracking.html.

[10] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific
workflows,” in Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on. IEEE, 2004, pp. 423–
424.

[11] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, 2014.

[12] E. Afgan, D. Baker, B. Batut, M. Van Den Beek, D. Bouvier, M. Čech,
J. Chilton, D. Clements, N. Coraor, B. A. Grüning et al., “The galaxy
platform for accessible, reproducible and collaborative biomedical anal-
yses: 2018 update,” Nucleic acids research, vol. 46, no. W1, pp. W537–
W544, 2018.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[14] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A Framework For Scalable Scientific Ensemble Ap-
plications,” in Workshop on Python for High Performance and Scien-
tific Computing (PyHPC) at the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis
(Supercomputing) , 2011.

[15] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM, 2013, pp.
69–84.

[16] “Spring batch,” 2019, https://spring.io/projects/spring-batch.
[17] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 2013, p. 5.

[18] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, 2011, pp. 22–22.

[19] N. Hazekamp, N. Kremer-Herman, B. Tovar, H. Meng, O. Choudhury,
S. Emrich, and D. Thain, “Combining static and dynamic storage
management for data intensive scientific workflows,” IEEE Transactions
on Parallel and Distributed Systems, vol. 29, no. 2, pp. 338–350, 2017.

[20] N. Kremer-Herman, B. Tovar, and D. Thain, “A lightweight model
for right-sizing master-worker applications,” in SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2018, pp. 504–516.

[21] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A Portable
Abstraction for Data Intensive Computing on Clusters, Clouds, and
Grids,” in Workshop on Scalable Workflow Enactment Engines and
Technologies (SWEET) at ACM SIGMOD, 2012.

[22] “Kubernetes cluster autoscaler,” 2019, https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale/.

[23] “Basic local alignment search tool,” 2019, https://blast.ncbi.nlm.nih.gov/
Blast.cgi.

[24] “Cloud controller manager,” 2020, https://kubernetes.io/docs/concepts/
architecture/cloud-controller/.

[25] B. Tovar, R. F. da Silva, G. Juve, E. Deelman, W. Allcock, D. Thain,
and M. Livny, “A job sizing strategy for high-throughput scientific

workflows,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 2, pp. 240–253, 2017.

[26] Z. A. Al-Sharif, Y. Jararweh, A. Al-Dahoud, and L. M. Alawneh, “Accrs:
autonomic based cloud computing resource scaling,” Cluster Computing,
vol. 20, no. 3, pp. 2479–2488, 2017.

[27] P. Dube, A. Gandhi, A. Karve, A. Kochut, and L. Zhang, “Scaling a
cloud infrastructure,” Mar. 29 2016, uS Patent 9,300,552.

[28] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Future Generation
Computer Systems, vol. 28, no. 1, pp. 155–162, 2012.

[29] P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada, “Self-
learning cloud controllers: Fuzzy q-learning for knowledge evolution,”
in 2015 International Conference on Cloud and Autonomic Computing.
IEEE, 2015, pp. 208–211.

[30] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of
reinforcement learning techniques for fuzzy cloud auto-scaling,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2017, pp. 64–73.

[31] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and
N. Koziris, “Automated, elastic resource provisioning for nosql clusters
using tiramola,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. IEEE, 2013, pp. 34–41.

[32] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Adaptive,
model-driven autoscaling for cloud applications,” in 11th International
Conference on Autonomic Computing ({ICAC} 14), 2014, pp. 57–64.

[33] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-time feed-
back controller for containerized cloud applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 217–228.

[34] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient pro-
visioning of bursty scientific workloads on the cloud using adaptive
elasticity control,” in Proceedings of the 3rd workshop on Scientific
Cloud Computing, 2012, pp. 31–40.

[35] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in 2012 IEEE Network Operations
and Management Symposium. IEEE, 2012, pp. 204–212.

[36] “Kfserving,” 2020, https://github.com/kubeflow/kfserving.
[37] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[38] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors
and dynamic neural networks in python with strong gpu acceleration,”
PyTorch: Tensors and dynamic neural networks in Python with strong
GPU acceleration, vol. 6, 2017.

[39] “Kubernetes-based platform to deploy and manage modern serverless
workloads,” 2020, https://knative.dev/.

[40] “Configuring autoscaling for knative,” 2020, https://knative.dev/docs/
serving/configuring-autoscaling/.

[41] “Atlassian escalator,” 2019, https://github.com/atlassian/escalator.
[42] C. C. Zheng and D. Thain, “Integrating Containers into Workflows: A

Case Study Using Makeflow, Work Queue, and Docker,” in Workshop
on Virtualization Technologies in Distributed Computing (VTDC), 2015.

[43] “Ibm spectrum lsf v10.1 documentation.” IBM Knowledge Cen-
ter, 2017, https://www.ibm.com/support/knowledgecenter/en/SSWRJV
10.1.0/lsf welcome.

[44] “Pbs professional.” Altair Engineering, Inc., 2017, http://www.
pbsworks.com.

https://www.google.com/about/datacenters/
https://www.google.com/about/datacenters/
https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc
https://docs.microsoft.com/en-us/azure/architecture/topics/high-performance-computing
https://docs.microsoft.com/en-us/azure/architecture/topics/high-performance-computing
https://kubernetes.io/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://cloud.google.com/compute/docs/autoscaler/scaling-cpu-load-balancing
https://cloud.google.com/compute/docs/autoscaler/scaling-cpu-load-balancing
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://spring.io/projects/spring-batch
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://github.com/kubeflow/kfserving
https://knative.dev/
https://knative.dev/docs/serving/configuring-autoscaling/
https://knative.dev/docs/serving/configuring-autoscaling/
https://github.com/atlassian/escalator
https://www.ibm.com/support/knowledgecenter/en/ SSWRJV_10.1.0/lsf_welcome
https://www.ibm.com/support/knowledgecenter/en/ SSWRJV_10.1.0/lsf_welcome
http://www.pbsworks.com
http://www.pbsworks.com

	Introduction
	Background
	Makeflow
	Work Queue
	Kubernetes

	Problems
	Size of a worker-pod
	Number of worker-pods

	Proposed Solution
	Large Pod with Resource Monitoring
	Well-informed Autoscaling

	Implementation
	System Components
	Resource Initialization Time
	Resource Autoscaling

	Evaluation
	Multistage Workload
	I/O Intensive Workload

	Related Work
	Autoscaling on the cloud
	Autoscaling batch workloads with Kubernetes
	Running HTC workloads with containers

	Conclusion
	References

