
Balancing Thread-level and Task-level Parallelism
for Data-Intensive Workloads on Clusters and

Clouds

Olivia Choudhury, Dinesh Rajan, Nicholas Hazekamp, Sandra Gesing, Douglas Thain, Scott Emrich

Department of Computer Science and Engineering

University of Notre Dame

{ochoudhu, dpandiar, nhazekam, sgesing, dthain, semrich}@nd.edu

Abstract—The runtime configuration of parallel and dis-
tributed applications remains a mysterious art. To tune an
application on a particular system, the end-user must choose
the number of machines, the number of cores per task, the
data partitioning strategy, and so on, all of which result in
a combinatorial explosion of choices. While one might try to
exhaustively evaluate all choices in search of the optimal, the
end user’s goal is simply to run the application once with
reasonable performance by avoiding terrible configurations. To
address this problem, we present a hybrid technique based
on regression models for tuning data intensive bioinformatics
applications: the sequential computational kernel is characterized
empirically and then incorporated into an ab initio model of
the distributed system. We demonstrate this technique on the
commonly-used applications BWA, Bowtie2, and BLASR and
validate the accuracy of our proposed models on clouds and
clusters.

I. INTRODUCTION

Determining an optimal runtime configuration of parallel
and distributed applications is a challenging task. To tune an
application on a particular system, the end-user is confronted
with a wide array of controls: number of machines, number of
cores per task, partitioning the data, task scheduling strategies,
and so forth. It is customary in academic papers to perform
an exhaustive exploration of these parameters, and then select
a configuration which is optimal under some limited set of
circumstances. Any change to the machines, the network, or
the workload itself could result in poor performance, often
orders of magnitude worse than what is achievable. From
the user’s perspective, running an application multiple times
to obtain a performance curve is a waste of time.

Therefore, when designing distributed applications, our ob-
jective should be to achieve acceptable performance the
first time by avoiding extremely bad configurations. It is
impossible to provide a comprehensive model for programs
of arbitrary structure. (This is simply the halting problem.)
Fortunately, users in a given area of study often use similar
computational patterns over and over again, which gives us
an opportunity to develop a model that is highly effective
within a given application domain. For example, in the realm
of bioinformatics applications, many tools have the form of
a database search: a program performs a search for a query
pattern within a database of genomic strings. These tools are

typically transformed into parallel applications by partitioning
the query and/or the database, and then running multiple
instances of the local multithreaded program in parallel.

30 36 40 45 60 72 90 120180360

1
2

3
4

5
6

8
9

10
12

0

50

100

150

200

 

No. of tasksNo. of threads/task
 

T
im

e
 (

m
in

s.
)

T
im

e
 (

m
in

s.
)

40

60

80

100

120

140

160

180

Fig. 1: Impact of multi-level concurrency (thread-level paral-
lelism) and distributed computing (task-level parallelism) on
the execution time of a data-intensive workload. Selecting a
good runtime configuration can optimize resource utilization.

We present a regression model-based technique to infer
optimal runtime configurations and predict execution time
and resource consumption for a data-intensive workload. We
perform black-box analysis of the multithreaded program
(computational kernel) to determine its execution time and
memory usage relative to sizes of query and database, and
local concurrency. Once obtained, this model is embedded in
an abstract model of the distributed system that incorporates
data partitioning, data movement, and the tradeoff between
local and distributed concurrency.

We show the effectiveness of our proposed approach in
three commonly used bioinformatics applications BWA [1],
Bowtie2 [2], and BLASR [3] that are widely used in produc-
tion to study cancer [4] and variation-detection in general [5].
In all the cases, our proposed models accurately predict
execution time and resource consumption. The optimal con-
figurations identified by the models also enable cost-efficient



utilization of cloud-based resources.

II. METHODS

In the realm of bioinformatics, millions of next generation
sequencing (NGS) data, called reads, are often compared to the
genome of a related species (reference) for further biological
analysis. For the short read aligners BWA and Bowtie2,
we use the genome of mosquito Culex quinquefasciatus [6]
(562 MB in size) as reference and simulated sequences as
query for these tools. Since BLASR aligns long reads to
a reference genome, we consider the Anopheles gambiae

S form genome [7] (230 MB in size) as reference and
PacBio sequenced data of size 1 GB as query. We use the
flexible master-worker framework WorkQueue [8] to develop
distributed versions of the applications. We utilize shared
computing resources from the Sun Grid Engine as workers,
and an Intel x86 machine with 12-cores and 64 GB memory
as the master server.

For the application-level model, we collect 343 data points
from varying sizes (in GB) of reference (R) and query
(Q) data, and number of threads (N ) for each application.
Similarly, for the system-level model we vary number of tasks
or granularity value (K) and number of cores used by each
task (N ) to record execution time and memory consumption.
We randomly select two-thirds of the data for training the
regression models and the rest for testing. From the training
set of 230 data points, we randomly select unique subsets of
size 100 each to train the models and compute the optimal
coefficients β∗,γ∗,η∗, and φ∗. We then use these coefficients
to measure the accuracy of our model on the test data.

A. Application-level model for execution time

The time to execute a BWA, Bowtie2 or BLASR task is
given by

T (R,Q,N) = β1

RQ

N
+ β2, (1)

where β =
[

β1 β2

]⊤
are regression coefficients. The scalar

β2 signifies the fraction of the program that cannot be paral-
lelized (discussed in section III-A). We compute the optimal
regression coefficient β∗ using the method discussed in [9].

B. Application-level model for memory usage

As the memory consumed is independent of query size [10],
this model is not considerably impacted by the query data.
Using previous notations, the model to estimate the memory
usage of the applications is

M(R,N) = γ1R + γ2N, (2)

where γ =
[

γ1 γ2

]⊤
are regression coefficients. Similarly,

we calculate the optimal regression coefficients γ∗.

C. System-level model for execution time

Let TS , TIn, TOut, and TJ be the times to split a workload,
transfer input files to workers, return output files to master,
and join outputs, respectively. If TTasks is the time required
to execute K tasks, then the total execution time, Ttotal is

Ttotal = η1TS + η2TIn + η3TTasks + η4TOut + η5TJ ,

where η =
[

η1 . . . η5

]⊤
are the regression coefficients.

TS , TJ depend on the data size, granularity value, and speed
(D) of the disk, whereas TIn, TOut depend on the data
transferred and network bandwidth (B). We split the query
into K subsets, align each (Q

K
) to the reference, and then

join the outputs (O) [11]. Let M and C be the number of
available machines and cores per machine, respectively. For a
finite number of usable cores P , if P ≤ MC, there are more
available resources than required. If P > MC, re-utilization
of resources can limit the extent of parallelism. Thus, a key
feature in minimizing Ttotal in

Ttotal = η1

QK

D
+ η2(

Q

B
+

RKN

BC
)

+ η3T (R,
Q

K
,N) ×

KN

MC
+ η4

O

B
+ η5

OK

D
(3)

is to determine optimal K and N . We calculate optimal
regression coefficients η∗.

D. System-level model for memory usage

The memory required for splitting the workload and joining
the outputs depend on the data sizes. As these operations run
locally on the master server, we define the memory needed at
the master server

MMaster(R,Q) = φ1R + φ2Q, (4)

where φ =
[

φ1 φ2

]⊤
are regression coefficients.

We evaluate the optimal coefficients φ∗. Recall that the
memory required by each worker is computed using (2).

III. RESULTS

For training the models, from 230 data points, we randomly
select 104 unique subsets, each of size 100. The Central
Limit Theorem ensures that the distribution of 104 subsets
is arbitrarily close to a normal/Gaussian distribution. For
each subset, we train the regression models and evaluate
optimal coefficients β∗, γ∗, η∗, and φ∗ which we use to
estimate the execution time and memory usage of the mod-
els using the testing data. We compare the estimated and
empirical values in Table I for different parameter config-
urations. The low mean absolute percentage error (MAPE)
indicates that our regression models predicts the execution
time and memory with high accuracy. Figures depicting the
behavior of the models can be found in the technical report
(https://curate.nd.edu/concern/generic_files/0r967368133).



Model Application Configuration MAPE(%)
Vary R, Fix Q,N 3.4

BWA Vary Q, Fix R,N 3.8
Vary N, Fix R,Q 2.6

Application-level Vary R, Fix Q,N 1.6
Model for Time Bowtie2 Vary Q, Fix R,N 2.2

Vary N, Fix R,Q 1.3
Vary R, Fix Q,N 4.3

BLASR Vary Q, Fix R,N 5.1
Vary N, Fix R,Q 3.6

BWA
Vary R, Fix N 3.9

Application-level Vary N, Fix R 3.3
Model for

Bowtie2
Vary R, Fix N 2.6

Memory Vary N, Fix R 1.9

BLASR
Vary R, Fix N 4.7
Vary N, Fix R 4.2

System-level Vary K, Fix R,Q,P 2.1
Model for Time Vary N, Fix R,Q,P 2.7
System-level Vary R, Fix Q 2.5
Model for Vary Q, Fix R 3.3
Memory

TABLE I: Mean absolute percentage error (MAPE) of
application-level and system-level models for time and mem-
ory on the test data for various parameter configurations. We
compare empirical data for time and memory with model-
predicted values to measure error. For BWA and Bowtie2, the
sizes of R varied between 50 MB and 562 MB and Q varied
between 500 MB and 14 GB. For BLASR, R varied between
50 MB and 230 MB, whereas Q varied between 100 MB and
1 GB. For all the tools N varied between 1 and 16.

A. Multi-level Concurrency

The execution time of a computation-heavy workload re-
duces with multiple computing threads, although the speedup
is not proportionally improved beyond a certain number of
threads, as discussed in [12]. In (1), RQ

N
denotes the fraction

of the program that can be parallelized with more threads
whereas β2 signifies the fraction of the program that cannot be
parallelized, including the overhead of using multiple threads.

B. Task-level Parallelism

Data-intensive applications often split data-parallel work-
loads into smaller, independent tasks that are executed in
parallel. As the number of tasks increases, the corresponding
execution time can decrease while sufficient resources are
available. It is important to determine an optimal granularity
value that would maximize the overall performance of the
application while factoring in the additional overhead of
splitting the workload, transferring data across the network,
and carefully merging the individual outputs. These overheads
are considered in the formulation of (3).

C. Balancing Multi-level Concurrency and Task-level Paral-

lelism

While decomposing a workload into multi-core tasks, it is
crucial to find an optimal number of tasks and threads which
maximize parallelism and efficiency, respectively. Although
the use of more threads reduces the overall execution time
of an application, the efficiency is not considerably improved.
For a given configuration of instances (number of cores and

Cores Tasks MP Time Speedup AEE Cost MAE Cost
1 360 70 6.6 50.4 64.8
2 180 38 12.3 25.2 32.4
4 90 24 19.5 18.9 32.4
8 45 27 17.3 18.9 32.4

TABLE II: Comparison of performance for different config-
urations (K and N ) and their corresponding cost estimation
based on Amazon EC2 and Microsoft Azure-based pricing.
MP = Model predicted, AEE = Amazon EC2 estimated, MAE
= Microsoft Azure estimated. The system-level model for time
proves to be cost-efficient. Using optimized number of tasks
and cores per task can save the cost incurred in harnessing
commercial cloud-based resources.

RAM), there exists an optimal split of the workload to run on a
distributed system. Following the discussion in section III-B,
for a given number of resources P , such that KiNi = P ,
where Ki is the number of tasks and Ni is the number of
cores used by each task for the ith measurement, we select K
and N to optimize the overall execution time, inherent cost of
splitting tasks, transferring data, and merging outputs.

D. Using Optimal Number of Instances

For considerably large number of tasks, it might be appeal-
ing to use as many nodes or instances as possible to reduce
execution time. Assuming a single instance is associated with
each task, if the number of tasks is lower than the number of
available instances, all the tasks can be executed in a single
round after transferring. On the other hand, if the number of
tasks is higher than the number of available instances, the
workload now requires multiple rounds, although the total data
transferred can be reduced if shared data between tasks is
cached, as made possible by our implementation.

E. Reducing Cost of Operation

Many cloud computing services allows users to select re-
sources with differing base costs. Users must ensure utilization
of less resources as well as for a shorter duration to minimize
cost. For example, although the price of an 8-core instance
per hour may be higher than a 4-core instance, the speedup
obtained from using an 8-core instance may prove to be more
cost-efficient. We also consider the case where customers pay
for the entire instance hour, although the resources were used
for a fraction of the time bought. Determining an optimal
runtime configuration leads to cost saving. In Table II, we
compare and contrast the computation cost of the test workload
using our model-estimated optimized parameters (Cores=4,
Tasks=90) and set of default parameters for popular utility
services like Amazon EC2 and Microsoft Azure [13]. Our
model is demonstrated to perform at the lowest overall cost.

IV. RELATED WORK

Several frameworks exist for the development and execution
of large-scale applications. Hadoop [14], an open-source im-
plementation of the MapReduce programming paradigm [15]
is widely used for data-intensive applications. Dryad [16]
provides a programming framework and distributed execution



engine for DAG-based workloads. CIEL [17] extends the
programming and execution model to support dynamic data
dependencies and arbitrary data-dependent control flows. Con-
trary to this, we develop a hybrid technique that determines
optimal runtime configurations to minimize utilization of cloud
or cluster-based resources. Some scheduling techniques [18]–
[20] address the challenge of reducing resource utilization in a
distributed system while maintaining fairness at the underlying
hardware level. We optimize resource utilization and cost by
exploring the trade-off between parallelism achieved from
multi-level concurrency and distributed computing. Models
designed for performance prediction plays a significant role
in efficient management and operation of workloads on a
distributed system [21]. As noted in [22], [23], it is important
to strike a balance between the number of computational
resources used and the duration of their usage. Although
earlier studies [24]–[26] have implemented different Machine
Learning algorithms to predict resource utilization, we develop
a two-tiered hybrid model using holdout sampling and linear
regression to detect the sweet spot between thread-level and
task-level parallelism.

V. CONCLUSION

We have discussed and addressed the problem of balancing
thread-level parallelism and task-level parallelism for data-
intensive workloads on clusters and clouds. We observe that
utilizing more computational threads does not necessarily
improve speedup and efficiency. Similarly, splitting a large
workload into multiple parallel tasks incurs high overhead
costs which decelerates computation. Moreover, poor utiliza-
tion of individual resources may prove prohibitive. In this
paper, we developed a predictive modeling methodology that
considers relevant constraints while solving the multi-variable
optimization problem of determining runtime configuration.
We test our models on arbitrarily selected data and demon-
strate its predictive capability at high accuracy.

VI. ACKNOWLEDGEMENT

This work was supported in part by National Institutes of
Health/National Institute for Allergy and Infectious Diseases
(grant number HHSN272200900039C to SJE) and National
Science Foundation SI2-SSE grant number 1148330 to DT).

REFERENCES

[1] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[2] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nature methods, vol. 9, no. 4, pp. 357–359, 2012.

[3] M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing
reads using basic local alignment with successive refinement (BLASR):
application and theory,” BMC bioinformatics, vol. 13, no. 1, p. 238,
2012.

[4] D. Wu, C. M. Rice, and X. Wang, “Cancer bioinformatics: A new
approach to systems clinical medicine,” BMC bioinformatics, vol. 13,
no. 1, p. 71, 2012.

[5] R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang,
“SNP detection for massively parallel whole-genome resequencing,”
Genome research, vol. 19, no. 6, pp. 1124–1132, 2009.

[6] K. Megy, S. J. Emrich, D. Lawson, D. Campbell, E. Dialynas, D. S.
Hughes, G. Koscielny, C. Louis, R. M. MacCallum, S. N. Redmond,
et al., “VectorBase: improvements to a bioinformatics resource for
invertebrate vector genomics,” Nucleic acids research, p. gkr1089, 2011.

[7] M. Lawniczak, S. Emrich, A. Holloway, A. Regier, M. Olson, B. White,
S. Redmond, L. Fulton, E. Appelbaum, J. Godfrey, et al., “Widespread
divergence between incipient Anopheles gambiae species revealed by
whole genome sequences,” Science, vol. 330, no. 6003, pp. 512–514,
2010.

[8] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue+ Python: A Framework For Scalable Scientific Ensemble Appli-
cations,” in Workshop on Python for High Performance and Scientific
Computing at SC11, 2011.

[9] E. K. Chong and S. H. Zak, An introduction to optimization, vol. 76.
John Wiley & Sons, 2013.

[10] H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows–Wheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589–
595, 2010.

[11] O. Choudhury, N. Hazekamp, D. Thain, and S. Emrich, “Accelerating
Comparative Genomics Workflows in a Distributed Environment with
Optimized Data Partitioning,” in C4Bio at CCGrid.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference, pp. 483–485, ACM, 1967.

[13] “Windows Azure Cloud Platform.” http://www.windowsazure.com. Ac-
cessed: 2013-12-21.

[14] Hadoop. http://hadoop.apache.org/, 2007.
[15] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” in Symposium on Operating System Design and
Implementation (OSDI), pp. 137–150, 2004.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data parallel programs from sequential building blocks,” in
Proceedings of EuroSys, March 2007.

[17] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand, “CIEL: a universal execution engine for
distributed data-flow computing,” in Proceedings of the 8th USENIX
conference on Networked systems design and implementation, NSDI’11,
(Berkeley, CA, USA), p. 9, USENIX Association, 2011.

[18] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proceedings of the
2014 ACM conference on SIGCOMM, pp. 455–466, ACM, 2014.

[19] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in High Perfor-
mance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th
IEEE International Symposium on, pp. 352–358, IEEE, 2002.

[20] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[21] S. A. Jarvis, D. P. Spooner, H. N. Lim Choi Keung, J. Cao, S. Saini,
and G. R. Nudd, “Performance prediction and its use in parallel and
distributed computing systems,” Future Generation Computer Systems,
vol. 22, no. 7, pp. 745–754, 2006.

[22] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud
computing,” in Services Computing (SCC), 2011 IEEE International
Conference on, pp. 370–377, IEEE, 2011.

[23] R. L. Grossman, “The case for cloud computing,” IT professional,
vol. 11, no. 2, pp. 23–27, 2009.

[24] R. Albers, E. Suijs, and P. de With, “Triple-C: Resource-usage pre-
diction for semi-automatic parallelization of groups of dynamic image-
processing tasks,” in Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pp. 1–8, IEEE, 2009.

[25] R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan, and T. Fahringer, “A
hybrid intelligent method for performance modeling and prediction of
workflow activities in grids,” in Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp. 339–
347, IEEE Computer Society, 2009.

[26] A. Matsunaga and J. A. Fortes, “On the use of machine learning to pre-
dict the time and resources consumed by applications,” in Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pp. 495–504, IEEE Computer Society, 2010.

http://www.windowsazure.com

