
Early Experience Using Amazon Batch for Scientific Workflows
Kyle M.D. Sweeney

Department of Computer Science and Engineering
Notre Dame, IN

ksweene3@nd.edu

Douglas Thain
Department of Computer Science and Engineering

Notre Dame, IN
dthain@nd.edu

ABSTRACT
Recent technological trends have pushed many products and tech-
nologies into the cloud, relying less on local computational services,
and instead purchasing computation a la carte from cloud service
providers. These providers focus more on delivering technologies
which are service based rather than throughput based. With the ad-
vent of Amazon Batch, a new high throughput service, we wished to
see how capable it was for running scientific workflows compared
to existing cloud services. To that end, we developed a testing suite
which created workflows focusing on increasing shared file sizes,
increasing unique file sizes, and increasing number of tasks, and
ran the workflows on Amazon Batch plus two other similar configu-
rations for comparison: EC2 workers and Work Queue on EC2. We
found that while there is a significant delay in sending jobs to Ama-
zon Batch and running raw EC2 workers, there is little overhead in
the actual running of the task, and similar performance to using
Work Queue on EC2 when the workflow does not require large
input files. Additionally, when performing real a workflow, Batch
achieved a speedup over Work Queue workers on EC2 instances of
1.18x.1

ACM Reference format:
Kyle M.D. Sweeney and Douglas Thain. 2018. Early Experience Using Ama-
zon Batch for Scientific Workflows. In Proceedings of 9th Workshop on Sci-
entific Cloud Computing, Tempe, AZ, USA, June 11, 2018 (ScienceCloud’18),
8 pages.
https://doi.org/10.1145/3217880.3217885

1 INTRODUCTION
Modern science requires powerful computation to sift through data
and help make discoveries, advancing human knowledge. Tradi-
tionally, scientists have used high performance computing (HPC)
centers to enable their work, often using workflows to transform
their work into high-throughput computing as a means of distribut-
ing the work among many computers. However these centers are
expensive to acquire and maintain, creating an impetus for alter-
native sources of computation. The cloud is seen as a promising
alternative, as scientists only need to pay for what they use.

1This work was supported in part by National Science Foundation grant OAC-1642409

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ScienceCloud’18, June 11, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5863-7/18/06. . . $15.00
https://doi.org/10.1145/3217880.3217885

Amazon offers many cloud products such as Amazon Simple
Storage Service (S3) and Amazon Elastic Cloud Computing (EC2)
enabling customers to link them together and produce powerful
custom services. However, these platforms and services are usually
aimed at creating long running cloud services, not high-throughput
computation. Amazon released Amazon Batch last year, a cloud
based batch system. We wished to see what the capabilities of Ama-
zon Batch for scientific workflows is by connecting it to a workflow
management system. Given our background with Makeflow [1], we
created back-end modules linking Makeflow to Batch, and tested
Batch’s performance against using plain EC2 workers, and running
Work Queue (WQ) [2] on EC2. To create these modules, we had to
answer some key questions when running remote jobs: how are
the jobs placed and ran, how are files delivered from the jobs, and
how are the jobs retrieved when finished. Amazon Batch works
by provisioning a set of EC2 workers which fulfills user specified
requirements. The EC2 workers then accept jobs from different
queues, running them inside of containers. We wanted to test this
batch system against simply provisioning a correctly sized EC2
instance for a given job, and another system which also implements
a similar workers-on-pre-provisioned-workers system. Thus we
chose to use Work Queue: a pilot job system which enables users
to create their own cloud batch system out of a variety of different
kinds of computing resources. For example, if a researcher has ac-
cess to three different HPC sites, by starting workers on those sites,
the user can run any number of jobs and workflows on those sites
via Makeflow, which coordinates between the given resources.

Taking inspiration from Zhang et al’s work on "Capability of
Large Scale Computers" [3], we identified five metrics by which we
would test our three systems: total workflow runtime, the histo-
graphic runtime, the job dispatch latency, the queue delay of the
systems, and the job retrieval latencies. To isolate these features, we
created a tool which allows us to generate customized workflows:
customizing the input sizes, how long jobs run, the number of jobs,
and having an output file or not. By customizing these workflows,
we could then see in which areas the systems were stronger and
weaker. We also ran a real workflow to see how Batch and Work
Queue compared in practice.

We found that in our customized workflows, Work Queue had
the smallest overhead when running jobs, and the fastest dispatch
and retrieval rates, as well as being the quickest when running
jobs, since it sends data the fastest to each job. The EC2 workers
performed the worst in most fields, delivering data the slowest, and
having higher execution times for the jobs themselves, although
its queue delay was the lowest, thus it was able to dispatch jobs
better than Batch. Batch performed between these two, having
fairly consistent execution times and mostly low queue overhead. It
was not able to deliver data as fast as Work Queue could, however.
When running the real workflow, we found that Batch executed it

https://doi.org/10.1145/3217880.3217885
https://doi.org/10.1145/3217880.3217885

ScienceCloud’18, June 11, 2018, Tempe, AZ, USA Kyle M.D. Sweeney and Douglas Thain

faster than Work Queue since Batch transferred less data overall,
running about 1.18x times faster. Thus, we conclude that Amazon
Batch is a capable, cloud-level workflow system.

2 BACKGROUND
To test Amazon Batch, we used Makeflow, which is a workflow
system designed to allow users to use already familiar concepts:
workflows and make files, and combine them into an easy to use
package. Make is a classic interface for describing many different
jobs and how they come together, which is why it is a natural
fit as the interface language to describe a workflow. To that end,
Makeflow interfaces with several different job processing systems to
execute the jobs given to it. It can run them locally, or interface with
Condor [4] or other systems, abstracting away the exact protocols
for those systems so the user can focus on their jobs.

To interface with all of these systems, Makeflow has a series of
modules which adapts the actual interface of the workflow drivers
to the idealized execution model of Makeflow. To accomplish this,
it makes two assumptions. The first is that the underlying system
can operate as a sandbox execution model. This means that every
worker used by Makeflow is independent of all the other workers,
and receives their input files separately. The second assumption
is that each underlying system can fulfill the duties specified by
Makeflow’s Submit, Wait, and Kill methods.

In the sandbox execution model, Makeflow assumes that each
task can be independently executed with the specified parameters,
without affecting the other tasks. This means fulfilling the Cores,
Memory, and Disk space requirements, as well as copying in the
input files, and being able to then retrieve the specified output files.
Many of the adapter modules accomplish this by pretending each
job runs totally independently, and cache the input files whenever
two jobs are on the same machine, and use the same inputs. This
helps speed up execution by not needing multiple file copies.

Makeflow’s three primary module functions, Submit, Wait, and
Kill deal with handling jobs. Submit gives a job to the module, speci-
fying the inputs and outputs, and returns a JobId. The module must
figure out which workers are free to accept a job, or to put them
inside of a queue for executing later. Once all jobs are submitted,
Wait is called until all are finished. Wait returns a non-positive
integer, or a valid JobId. If a valid JobId is returned, then Makeflow
checks that output the files also exist. If not, then if retries were
enabled, the job will either simply fail, or be re-submitted. Once
all JobIds have been returned, Makeflow cleans up and quits, as all
tasks have been done. Kill is called when the user kills Makeflow.

Work Queue is an example of a tool which implements Make-
flow’s sandbox model. Users can start Work Queue workers on any
computer, specifying how much of the computer’s resources it can
use, and which project to accept jobs from. A master computer runs
Makeflow, and handles sending jobs to the workers. The workers
obtain jobs from the master, and returns the outputs from the jobs.
The workers will attempt to use all of the resources which the user
has specified as available. The principal caveat is that all workers
must be able to contact the master to obtain the files, thus users
need an outward facing computer to run Makeflow on.

Amazon’s EC2 is a machine instance service, giving users the
ability to purchase virtual servers meeting their specific needs and

desires, such as how many cores, how much memory, attach disk
space, and customize the operating system. Amazon S3 is a cloud
storage service, giving users a convenient location to place their
files for applications, scaling up with their needs. Finally, Ama-
zon Batch is a new service designed at enabling batch workloads.
Users can create computation environments, customizing things
such as the VPC, security groups, number of cores, etc. Users then
create jobs to run, and queues to place those jobs into. Jobs can
be given dependencies, priority, and other management features.
The compute environments are EC2 instances, either maintained
by Amazon, or created and maintained by the user.

3 ARCHITECTURE
To evaluate different approaches of using Amazon services, we
created three different systems which integrate into Makeflow:
Amazon EC2, Work Queue running on EC2, and Amazon Batch.
When integrating these different approaches into Makeflow, there
were three key issues that need to be addressed. The first is how to
actually run the jobs. Jobs have specific requirements in terms of
CPU, memory, and disk usage. Placing these jobs and being able to
start and stop them is a non-trivial task. The second is delivering
files to and from jobs. Jobs often have input files and then create
output files that are either end products or the inputs for other
jobs. Thus each system needs a way of sending files to each job.
Finally, Makeflow needs a way of monitoring jobs as they run,
determining if they are done, and if they are, retrieving any files
they produced. By having an ability to do all three of these main
ideas, modules can then easily interact with the Submit, Wait, and
Kill methods specified by Makeflow. The EC2 workers and WQ
approach were already established approaches in Makeflow as the
batch integration was being developed. We decided to look at how
these systems implemented their integration and took inspiration
from them due to their similarity with Batch’s design.

EC2 + Batch Amazon Batch is a service which works by first
requesting some basic configuration details from the user, such as a
minimum, desired, and maximum number of cpus. It then provides
queues which are associated with environments, and finally users
submit jobs to those queues, specifying which environments are
acceptable. In this way, Batch keeps several EC2 instances around
and then builds on top of these pre-existing sites and a job-specified
container to then actually run the job. The environment thus is
able to persist for many different workflows or batches of jobs,
amortizing the expensive operation of launching EC2 instances
over the lifetime of the workflows and batches.

The main idea behind our integration of Amazon Batch into
Makeflow, is to leverage this persistence, having each job in a
container, and using S3 as a remote bucket, to create a sandbox-
like environment which fits our Makeflow model. To do this, the
module requires a configuration script from the user providing the
execution environment, the job queue, VPC, etc, along with the S3
bucket for cloud data storage. Then, the user provides this script to
Makeflow, along with an Amazon Elastic Container Service image.
Makeflow uses the S3 bucket as cloud storage, and the environment
to run jobs. The user can use this script as many times as they wish
with Makeflow, before deleting their cloud resources. To help users,

Early Experience Using Amazon Batch for Scientific Workflows ScienceCloud’18, June 11, 2018, Tempe, AZ, USA

CORES=10
MEMORY=10000
DISK=20000

output1.dat: program input1.dat
 program -i input1.dat -o output1.dat

output2.dat: program input2.dat
 program -i input2.dat -o output2.dat

output3.dat: program input3.dat
 program -i input3.dat -o output3.dat

output_final.dat: program output1.dat output2.dat output3.dat
 program -i output1.dat,output2.dat,output3.dat -o output_final.dat

Figure 1: Makeflow File and Resulting DAG
In this figure, we have an example Makeflow script which lists how many Cores are needed for each job, amount of RAM, and how much Disk
space will be used. We then see that each output is mapped to some inputs, and the command to run which relates all of these together. The last
command will not be ran until the other three are created, since in its input parameters, it lists the outputs of the others, just as one does in make.

Makeflow

3. Execute

1. Creates 2. Push
Files

VM

4. Pull
Files

Plain EC2

5. Destroy

Makeflow

1. Find
Jobs 2. Pull

Files
6. Push

Files

Work Queue Worker on EC2

Job

Worker

$

3. Worker Spawns Job

5. Job Executes

4. Worker Links in
Files

EC2 Instance

Makeflow

S3

1. Push
Files

Job
Queue

2. Submit
Job

5. Executes

3. Schedule Job

7. Polls

6. Push Files

8. Pull
Files

Amazon Batch

4. Pull Files

Batch Managed VM

Figure 2: An Overview of the Three Architectures

we created a bash script which creates this configuration file, and a
bash script for cleaning up cloud resources.

For each job, Makeflow uploads the necessary input files to S3,
keeping track of which files have been sent, and doesn’t re-upload.
It then creates a shell script file for the Amazon batch job to run.
The shell script instructs the job to pull down the input files from S3,
run the job Makeflow submitted, then push the resulting files back
to S3. Makeflow then uploads this command file, and creates a job
definition. Once the job definition is created, the job is submitted,
and Makeflow waits for jobs to complete. When polling for com-
pleted jobs, Makeflow loops through its internal list of submitted
jobs, and sees if one has succeeded or failed. If any have succeeded,
then the resulting files are pulled down from S3, and the job is
labeled success, allowing Makeflow to submit a new job. If the job
has failed, Makeflow attempts to re-run the job, if user specified
when starting Makeflow. When Amazon Batch runs a job, it goes
through the queue to see if any are waiting. If some are, it uses
their priority to determine who goes first. In our module, we use

the same priority for all tasks. After selecting a job, it then sees if
there is any space in the compute environment to run. If there is,
it is ran on the compute environment. For the Compute Environ-
ment, Amazon Batch only asks that users request the minimum,
desired, and maximum number of CPUs to run for its hardware
requirements. Everything else, e.g. scaling up and scaling down the
back-end machines due to workload, is done by Amazon.

EC2 + SSH For this method, we create a brand new instance for
every job, send it files, execute, and then end the instance when
the job finishes. This method can be thought of as an EC2+ssh
method. The reason we wanted to examine this method when
comparing it to EC2, is to compare the persistent-EC2 instances of
Batch which might not always have a perfect packing size for the
jobs which require running, to having customized vms, specifically
sized for each job. In our implementation, before being able to take
advantage of EC2 instances running jobs, the user must provide a
configuration file to Makeflow. This file contains information for
setting up an Amazon EC2 instance. We created a bash script which

ScienceCloud’18, June 11, 2018, Tempe, AZ, USA Kyle M.D. Sweeney and Douglas Thain

automatically sets up these services and creates the configuration
file.

When Makeflow decides to send a job, it will first try to start
an instance. If the user has specified a limited number of external
workers at a time, it will first check to see if there is room left, or wait
until there is. The module then reads the machine requirements:
number of cores, disk space, and memory, and attempts to best
match that to an Amazon machine type. Once it has selected that,
it starts to spin up the instance. Once Amazon reports that the
instance has finished initializing, Makeflow then pushes over all
necessary input files including the binary via SCP into the instance.
When all of the input files have been transferred over, Makeflow
establishes an SSH connection and runs the job. After the job has
been completed, either succeeding or failing, Makeflow will then
use SCP to pull any output files back from the instance machines,
and then kill the instance machine. Once the instance has been
deleted, Makeflow is free to submit another job.

EC2 + Work Queue As an improvement, instead of launching
an instance for every job, we take advantage of an extant technology,
Work Queue, and have it manage accepting and running jobs from
Makeflow. Both this method and Amazon Batch rely on creating
persistent instances which can be reused for many different jobs,
thus amortizing their startup and teardown costs over not only a
single workflow, but as many as are desired. The main difference is
comparing WorkQueue which is tightly integrated into Makeflow
and specifically designed to take advantage of many different kinds
of computational resources and leverage them to run a workflow, vs
combining together different Amazon technologies to accomplish
the similar goal of a custom cloud batch system.

To use this method, Makeflow requires that the user sets up the
workers they wish to use, and install Work Queue on it. Then the
user can run Makeflow, giving a project name. When the workers
are pointed to it, they accept a job from Makeflow, receive the input
files, and create sandboxes for each job. The files are linked into
the sandbox, and the job runs. Once the job finishes, the worker
will send the output files back to the master, and keep the input
files. These input files are cached for later use, if future jobs require
the same, eliminating sending every input file for every job. But
the worker does need access to the master computer to work. Once
Makeflow completes, the workers shutdown.

4 EVALUATINGWORKFLOW SYSTEMS
To properly analyze the capability of a system to handle a workflow,
and how well it performs, we identified five features of a workflow
system to measure: First, the total Workflow Runtime, second, the
Distribution of Job Runtimes, third, the job dispatch latency, fourth,
the queue delay, and fifth, the job retrieval latency.

Workflow Turnaround Time: The workflow runtime relies
on many factors, but it can give us a very general overview of how
well the systems perform different kinds of jobs. For example, just
because one system is very good at long computation times, does
not mean it can handle workflows that have large input files. By
scaling workflows of differing types, we can measure the overall
effectiveness of a system for those workflows.

Distribution of Job Runtimes: Because each system is using
cloud resources, it is hard to know exactly how far away from

the hardware the job runs. A Histogram can reveal the per-core
overhead of each setup.When starting an EC2 instance, the distance
between the provided server and the actual hardware is unknown
to the user. Amazon lists it as a virtual computing environment,
thus there could be overhead when running a job[5]. Running
Work Queue on an EC2 instance is somewhere between the Batch
and Pure EC2 system. When running as EC2 instance, the job is
ran via a remote SSH command, where as WorkQueue calls the
command directly. Finally, Amazon Batch runs at least two layers
away from the hardware. The first layer is the actual server itself.
While Amazon makes promises about the resources available for
the server, they could be either a container or a vm resting on top
of actual hardware. From there, to help customize job execution,
each job must specify a Docker image, generally from Amazon’s
container service. Then, each job is ran inside of it.

JobDispatchLatency:WhileMakeflow is responsible for sched-
uling jobs, each of the three different systems handles the submis-
sion of jobs in a very different manner. When using the EC2 module,
it will create a new EC2 instance, upload all files on it, and run the
job. WQ’s approach is to run workers on the pre-established ma-
chines, and retrieve a job from the master. Makeflow is the master;
when it needs to submit a job, it broadcasts to the module that a job
is ready for work. Amazon Batch has a two step process. First, a job
definition is created; it bundles together the necessary information
for the batch system to determine when and where a job can be ran,
e.g number of processors, amount of memory, and environment
variables, along with an array representing the parsed comman-
dline string of a job to run. After the job definition is created, a
job can be submitted, calling on the job definition to run. Amazon
batch will then determine which compute environments can handle
running a container for this job, and if space is free, run the job.

Upload of Files: When working with Amazon EC2, Makeflow
transfers all of the necessary input files from the local host, and
sends them to the remote EC2 instance. Because a job has its own
unique EC2 instance, each file needs to be sent to each instance.
Thus each job has its own unique copy of the data. There’s no need
to keep track of what files have been sent before, as all files need
to be sent. However this approach has the immediate downside of
creating a lot of WAN traffic, from re-sending the same files.

When using Work Queue running on EC2 workers, Makeflow
and Work Queue coordinate sending files. Workers maintain their
own cache of files on their machine, linking in input files for a job
after setting up the job’s sandbox. This allows Makeflow to only
send files once to each worker. Files are only re-transmitted over
the WAN to each running instance. Once all the instances with
workers have a copy, the files never need to be re-sent again. For
jobs which share input files, this can drastically reduce the amount
of data that needs to be sent over the WAN.

For Amazon Batch, our approach uses an S3 bucket as a cloud-
level cache for all files. When Makeflow attempts to send an input
file to the S3 bucket for a job, it checks to see if the file has already
been sent. Included in the input files is the command file. This com-
mand file is a shell script which will pull down the necessary files
for the job, run the job, then upload the newly created files. Amazon
Batch’s approach only ever sends input files from the Makeflow-
master once. However, an additional file is created for every job:
the command file. But this file is small. For most workflows, this

Early Experience Using Amazon Batch for Scientific Workflows ScienceCloud’18, June 11, 2018, Tempe, AZ, USA

small file will pale in comparison to most input files. In the cloud,
it does produce more stress on the internal LAN of the network
since every job is pulling those files down from S3 into the local
container, and not caching once on the machine. Additionally, an
intermediate file, one which is produced by a rule and consumed
by another, will be moved twice: once to the master, and once to S3.

Job Retrieval Latency: Each system has a different method of
reporting back when a job is done, and how quickly this can be
accomplished. In both of Amazon Batch and EC2 workers cases,
the master needs to poll and retrieve a finished status from the jobs,
where as WQ has each job report back when it is done. Thus, the
speed at which jobs are retrieved and new jobs pushed are linked.

Queue Delay: It is Makeflow’s responsibility to order jobs: it
won’t schedule jobs which depend on others before the first are
finished. When working with EC2 instances, we define the Queue
delay as the time between Makeflow calling setting up the instance,
pushing the files to it, and then actually running the test. Ama-
zon EC2+WQ relies on Makeflow for job scheduling. Work Queue
simply asks which jobs are available for work, accepts them, and
returns the files when done, and doesn’t schedule them. The queue
delay here is thus a measurement of the time between Makeflow
dispatching the job and Work Queue worker claiming the job, re-
ceiving the files, and starting the task. While Amazon Batch is
capable of determining job order via dependencies, our system does
not employ this usage. Submitting a job is simply telling the batch
system to attempt to schedule a job for execution. When Ama-
zon Batch has a selection of jobs to run, it will try and match the
specified CPU and RAM requirements to some managed instance
backing up the compute environment, then runs the job in a Docker
container. The difference between Amazon recognizing the job as
being created and when the container running the job is started
is our definition for the queue delay of Amazon Batch. Note, our
measurement doesn’t include the uploading of files to S3, or the
pulling of files from S3 to the container. These are accounted for in
the total runtime, however.

5 EVALUATION
To properly test our system, we created a benchmark generator
which creates custom Makeflows. We can choose how many jobs
are in a Makeflow, how large the unique file for each job is, how
long each job will busy wait, and how large the common input file
given to every job is. This allows users to test their own workflow
systems, to see how it will perform for their kinds of workflows.

For each of our tests, we tried to standardize the underlying
systems for each module. When running Work Queue on top of
Amazon EC2 instances, we used a total of 10 cores across two
T series instances. Both of the instances then ran Work Queue
worker, listing all of their cores, memory, and available disk space as
available for use.When runningAmazon batch, we allowedAmazon
to decide which compute systems would be optimal, requesting
only 10 cores for the minimum, maximum, and desired cases. When
using an entire instance to run a task, for our plain EC2+ssh model,
we limited the number of workers to 10 as was our account limit. In
each case, we informed Makeflow that the job only needed 1 core.

We ran five increasingly larger kinds of workflows. The first
series of tests determined how the different systems behave as

the common input for each job grows larger, from 10MB-10GB.
The tasks themselves open the common input file, dump 4MB of
random data from /dev/urandom to /dev/null, and busy wait for
20 seconds, replicating processing some data, or performing some
calculation. For each file size, we ran 100 jobs. The second series
determined how the systems behave as the size of the unique input
files grows larger, from 1KB-100MB. The tasks themselves would
open the input, dump the entire content of the file to /dev/null, and
busy wait for 20 seconds. For every file size, we ran 100 jobs. The
third series determined how the systems behaved when increasing
the number of jobs to run, from 10 to 1000. Each job would dump
4MB of data from /dev/urandom, and busy wait for 20 seconds.
The fourth test was to determine the raw dispatch and retrieval
rate of the systems. For this test, the jobs did not perform any I/O,
nor did they busy wait. The final test was to see how the systems
performed running a real workflow. We ran the BWA-GATK [6]
workflow, with private data. For the first four tests, our Amazon
Batch image was a small image built on Python2.7:latest image
from Docker-hub, and installed AWS CLI on it. For the last one, we
used an image based on amazonlinux:latest, and installed unzip,
AWS CLI, java, and perl.

Workflow Runtime In figure 3, we see that each system per-
forms differently for each type of workflow. When the workflow is
primarily composed of a single large common input file, a straight
instance per job method became exponentially worse and worse as
the size of the input file increased. This is expected, as the file needs
to be transferred over WAN for every job. Work Queue running on
pre-fetched instances had the best performance, due to the caching
ability of the workers. Amazon Batch performed between the two,
due to how data is transferred to the workers. First, the data is sent
to S3, and then downloaded to each worker. This makes it much
cheaper for the user, as they minimize the amount of data that
needs to be transferred over the WAN. Amazon Batch did suffer
from failures with bigger input sizes, with some tasks failing due
to a known issue with not enough blocks for the ThinPool. Future
work will address this, however, we believe that the data gathered is
a good indicator for performance as compared to the other systems.
Similarly, we did not run EC2 test on the large sizes, as an obvious
trend is in the graph. For EC2+ssh test we also skipped data point
500, due to loosing that run log but we had the 1000MB data point,
which showed the trend. Each system had similar performance for
growing unique input files for each job. Again Work Queue was
best, most likely due to the lower overhead cost of running tasks.
Where the other systems need to set up their environments, Work
Queue is already running, allowing for faster run-times. When the
number of jobs grew, the runtime for each also grew, with Batch
and EC2 systems growing at a much larger rate than Work Queue,
likely due to the overhead of both Systems. When running the
data-scaling jobs, the specifications were the same across all jobs,
with a minimum of 1000 designated as the diskspace, unless the
amount of data needed to be increased, e.g for common data, when
the input was 10GB, the diskspace was designated as 12GB. For
the job-scaling run, while the number of cores needed was always
specified as 1, the amount of memory or disk was left out for the
10-jobs run, and sometimes specified as 1000 or 1. Ultimately, since
the jobs themselves are tiny and do not create files, this should have
no effect on the ultimate runtime.

ScienceCloud’18, June 11, 2018, Tempe, AZ, USA Kyle M.D. Sweeney and Douglas Thain

 100

 1000

 10000

 100000

 10 100 1000 10000

S
e

c
o

n
d

s

MB

Common Input Size Workflow Time

EC2+Batch
EC2+ssh
EC2+WQ

 100

 1000

 10000

 1 10 100 1000 10000 100000

S
e

c
o

n
d

s

KB

Unique File Input Size Workflow Time

EC2+Batch
EC2+ssh
EC2+WQ

 10

 100

 1000

 10000

 10 100 1000

S
e

c
o

n
d

s

Jobs

Increasing Number of Jobs Workflow Time

EC2+Batch
EC2+ssh
EC2+WQ

n=100 jobs, t=20s, c=0MB n=100 jobs, t=20s, u=0KB t=20s, c=0MB, u=0KB

Figure 3: Total Workflow Comparions between Different Tasks and Systems

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

19 20 21 22 23 24 25 26 27 28 29 30 31

Seconds

Job Execution Times

EC2+ssh

EC2+WQ

EC2+Batch

n=1000 jobs, t=20s, c=0MB, u=0KB

Figure 4: Histographic Runtimes of Different Systems
Here, the times have been binned into intervals, with all extrema in

the graph binned into the first and last bins, respectively.

Histographic Runtime of Jobs To examine the overhead of
the system, we took the data from the 1000 job, busy wait test, and a
re-run of the EC2+WQ run of this job size. Each job performed 4MB
of I/O and busy waited for 20 seconds, up to the resolution of the
time() function in the C standard library. The primary differences
between the Batch, EC2, and EC2-WQ tasks is the "queue" size that
Makeflow understands. For Batch, it was set to 100 by default, for
EC2 it was set to 10 to limit the number of workers to 10, and for
EC2+WQ, it was set to 100 as well, while the default is 1000.

Each system doesn’t add much overhead to the jobs being ran.
Each job should run for roughly 20 seconds, and as seen in figure 4,
both Batch and Work Queue have similar run times. The runtime of
a single job in Amazon Batch is defined as the difference between
when Amazon reports the job container started and ended. The
most extreme data point is a single job which ran for between
26 and 27 seconds, but the vast majority were between 21 and 24
seconds. For Work Queue, it’s defined as the time when a job is
between the running and waiting retrieval states. All of the jobs
ran between 19 and 21 seconds, as expected. For EC2, which has
the widest spread of jobs, it’s defined as the time between the job is
started and when the module polls that the job is done. This helps

System Dispatch Rate Retrieval Rate
Batch 0.276 tasks/second 0.813 tasks/second
EC2 0.528 tasks/second 0.260 tasks/second

Work Queue 36.452 tasks/second 36.370 tasks/second

Figure 5: Job Dispatch and Return Rate of the Three Systems

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

30 50 70 90 110 130 150 170 190 210

Seconds

Queue Delay Times

EC2+ssh
EC2+WQ

EC2+Batch

n=1000 jobs, t=20s, c=0MB, u=0KB

Figure 6: Queue Delay Histograms
Here, the times have been binned into intervals, with all extrema in

the graph binned into the first and last bins, respectively.

explain why there is a wide spread of reported execution times
in the histogram. There were only two erroneous jobs in the job
which ran for less than 19 seconds, and two jobs which failed but
when re-ran, ran correctly and are captured in the histogram.

Job Dispatch/Retrieval Latency and General Queue Delay
One of the most important characteristics of a system is the raw
ability to dispatch and retrieve jobs from our Makeflow to the
underlying batch system. To measure this, we created a workflow
that delivered a binary, but did no work. Then we examined how
long it took Makeflow to send off all of the jobs in its queue, and
once there were no more jobs to dispatch, how long it took to
recover the remaining jobs. By default, Work Queue has a queue of
1000, Batch has a queue of 100, and EC2 had a queue of 10, limiting
the number of instances to only 10.

Early Experience Using Amazon Batch for Scientific Workflows ScienceCloud’18, June 11, 2018, Tempe, AZ, USA

 1

 10

 100

 1000

 10 100 1000 10000

M
B

/s
 C

o
n

s
u

m
e

d
 b

y
 J

o
b

s

MB

Throughput for Common Data Size

EC2+Batch
EC2+ssh
EC2+WQ

n=100 jobs, t=20s, u=0KB

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

K
B

/s
 C

o
n

s
u

m
e

d
 b

y
 J

o
b

s

KB

Throughput for Unique Data Size

EC2+Batch
EC2+ssh
EC2+WQ

n=100 jobs, t=20s, c=0MB

Figure 7: Ability to Deliver Data To Each Task

As seen in the table in figure 5, Work Queue is able to dispatch
and retrieve completed jobs the fastest, due to simply transferring
responsibility to a job already in memory on the same computer.
EC2 has good performance as well, since the module would start
calling a series of AWS API calls, creating the machine directly. It
did end up recovering more slowly, due the intricacies of going
through the full motion of setting up an instances. Finally Batch had
decent performance, despite the several tasks it needs to perform
in going out to submit the jobs and then poll for jobs to finish.

For the internal queuing rate, we took the same data as from the
histogram set. Amazon batch had the largest spread in its queuing
rate, as when jobs are ran is determined by Amazon. Most of the
jobs ran within 30 to 90 seconds, with a large number starting in
less than 30 seconds. EC2 had the shortest queue times of all three
systems, likely due to the limiting of the queue size due to the
number of allowed workers. The primary delay came from setting
up the instance and polling to see if it is ready for execution, then
sending the worker and execute files. Work Queue had a rather
consistent delay of 190 seconds, the longest out of all of the systems.
This is due to the fact that as a job is returned, the task is placed
immediately at the back of the queue, with 100 jobs in front of it.

Figure 8: Visualization of Similar BWA-GATKWorkflow

Upload of Files One of the most expensive tasks for each system
is delivering files to each job. Because each job needs to have data
sent to it, we can look at how many Bytes per second are consumed
by each job over the runtime of the job. Because there were 100
jobs, we measure this by taking 100, multiplying by the size of the
data file required by each job, and divided by the total runtime of
the workflow.

For increasing Common data size, we see that Work Queue was
the fastest in being able to deliver data to the individual jobs, since
once the file was sent, it was cached on the workers. Batch also
had good performance, as data only had to be transferred over
WAN once, letting Amazon’s internal LAN handle delivery to each
task. Finally, EC2 had the worst performance, as data was only ever
delivered over WAN. This trend is seen again for the unique data
sizes, where Work Queue is fastest, followed by both Batch and
EC2. Work Queue is likely fastest due to runtimes being faster, since
the data is sent before the job is considered "started" as compared
to the other two system. Both Batch and EC2 had very similar
performance, with EC2 starting to be just a hair faster than Batch,
probably due to files not needing to go through S3 before getting
to their tasks.

Real-Data Workflow Test For this test, we ran a workflow
which parallelizes the Burroughs-Wheeler Alignment and Genome
Analysis Toolkit (BWA-GATK). We used private data as the input
data with 10 splits, and ran it in two configurations. In the first
configuration, we used Batch requesting 10 cores as desired, min,
and max number of cores, and allowing Amazon to handle selecting
the types of EC2 instances to use, after we set up our VPC and the
other necessary steps required for creating a compute environment.
In the EC2+WQ configuration, we set up a C4.large and a C4.2xlarge
for a total of 10 cores. We also set universal rules for Makeflow
setting Cores to 1, Memory to 3000 and Disk to 4000.

ScienceCloud’18, June 11, 2018, Tempe, AZ, USA Kyle M.D. Sweeney and Douglas Thain

System Total Runtime Data Transferred Jobs/min
Batch 3h 0m 26s 48.26 GB 2.94
EC2+WQ 3h 33m 13s 64.34 GB 2.49

Figure 9: Batch vs WQ BWA-GATK Performance
Batch moved less data and ran in less time, achieving higher

throughput of Jobs/min, compared to EC2+WQ, with 1.18x speed up

As we can see in the table in figure 9, by using Batch, we out-
perform Work Queue. This is likely due to the fact that Batch sent
less data, thanks to using S3 as a remote cache for the cloud, and
not sending files more than once. Because the output of the Batch
workflow is capture by Amazon Cloud Logs and isn’t sent back to
the Makeflowmaster, we redirected output of theWQ configuration
to /dev/null in order to make the two equivalent. Our Makeflow
toolset comes with a monitor which can read the Makeflow logs,
which is where the runtime and jobs/min figures come from. To
measure amount of data transferred, for Batch our system states
which files are sent or retrieved from S3, and our Makeflow file also
specifies how large the files used are. For those files not specified
(such as binaries, or Jar files, or a packaged version of the JRE) we
simply used stat to find their size and added up the sizes. For WQ
we used the figures reported byWork Queue in theWork Queue log
of how much data was sent and received and added up the figures.

6 CONCLUSION
In our paper, we focused on comparing Amazon Batch to run-
ning WorkQueue on Amazon resources. Previous to Batch, using
Amazon resources tended to need a layer such as WorkQueue to
bring those resources together. When examining the performance
of Batch, in our BWA-GATK workflow, it transfered less data, ran
in a shorter runtime, and accomplished more jobs/min than our
WQ configuration. It also had a fairly consistently low queue delay,
between 30-90s in total. When taken together, we find that Batch
is a viable cloud-level runtime for running scientific applications.
The two major improvements we suggest would be to allow users
to specify files per job, and make that a part of the job submission,
as well as allowing jobs to grow in their disk usage.

7 RELATEDWORK
D. Yuan et al in their work also perform an analysis of cloud systems,
specifically exploring the cost of storing data files on the cloud, and
attempt to minimize the cost of storing the intermediate files, simi-
lar to our architecture of sending the results from Amazon Batch
jobs to S3 before downloading them [7]. Similarly, Suraj Pandey et
al in their paper analyze using cloud systems for workflows and
demonstrate a system to minimize the cost of using cloud systems,
attempting to find the characteristics of the cloud system as well [8].
Y. Yang et al in their work attempt to schedule jobs in the cloud
which minimizes the execution costs and meets deadlines by per-
forming a simulation to understand cloud performance [9]. Similar
to our work, analyzing the performance of using EC2 instances
from Amazon, G. Wang et al in their work analyzed the perfor-
mance virtualization has on computing performance specifically in
EC2 [10]. Comparisons between Grid and Cloud computing, similar
to the difference between using Amazon services and an HPC cen-
ter, was performed by Ian Foster et al in their work [11]. Similarly,

Mehrotra et al also analyze the specialized computer cluster from
Amazon EC2 vs NASA’s Pleiades cluster [12]. Additionally, G. Juve
et al also analyzed the performance of EC2 vs HPC for scientific
workflows, specifying three performance benchmarks [13]. G. Juve
et al also discussed data sharing between jobs on EC2 and discussed
different techniques to improve performance and sharing [14]. S.
Akioka and Y. Muraoka also perform HPC benchmarks using EC2
workers in their work, as well as estimating the price for running
HPC applications on EC2 [15]. One additional consideration of
using Amazon Services is the possibility of using Spot Instances,
that is spare resources usually set at a different price than normally
requesting instances from EC2. While not always guaranteed to
be available, these instances can be cheaper for users, and is an
option for Amazon Batch. Work done by A. Ben-Yehuda et al can
help users better save money while performing their tasks [16].

REFERENCES
[1] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable abstraction

for data intensive computing on clusters, clouds, and grids,” in Proceedings of
the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and
Technologies, ser. SWEET ’12. New York, NY, USA: ACM, 2012, pp. 1:1–1:13.
[Online]. Available: http://doi.acm.org/10.1145/2443416.2443417

[2] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work Queue +
Python: A Framework For Scalable Scientific Ensemble Applications,” inWorkshop
on Python for High Performance and Scientific Computing (PyHPC) at the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage,
and Analysis (Supercomputing) , 2011.

[3] Z. Zhang, D. S. Katz, M. Wilde, J. M. Wozniak, and I. T. Foster, “Mtc envelope:
Defining the capability of large scale computers in the context of parallel scripting
applications,” in HPDC’13, 2013.

[4] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice:
The Condor Experience,” Concurrency and Computation: Practice and Experience,
vol. 17, no. 2-4, pp. 323–356, 2005.

[5] Amazon, “What is amazon ec2?” http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/concepts.html.

[6] (2017) Bwa-gatk workflow example. [Online]. Available: https://github.com/
cooperative-computing-lab/makeflow-examples/tree/master/bwa-gatk

[7] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A cost-effective strategy for intermediate
data storage in scientific cloud workflow systems,” in 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), April 2010, pp. 1–12.

[8] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based
heuristic for schedulingworkflow applications in cloud computing environments,”
in 2010 24th IEEE International Conference on Advanced Information Networking
and Applications, April 2010, pp. 400–407.

[9] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, “An algorithm in swindew-c
for scheduling transaction-intensive cost-constrained cloud workflows,” in 2008
IEEE Fourth International Conference on eScience, Dec 2008, pp. 374–375.

[10] G. Wang and T. S. E. Ng, “The impact of virtualization on network performance
of amazon ec2 data center,” in 2010 Proceedings IEEE INFOCOM, March 2010, pp.
1–9.

[11] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing
360-degree compared,” in 2008 Grid Computing Environments Workshop, Nov
2008, pp. 1–10.

[12] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, and
R. Biswas, “Performance evaluation of amazon ec2 for nasa hpc applications,” in
Proceedings of the 3rd Workshop on Scientific Cloud Computing, ser. ScienceCloud
’12. New York, NY, USA: ACM, 2012, pp. 41–50. [Online]. Available:
http://doi.acm.org/10.1145/2287036.2287045

[13] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and P. Maech-
ling, “Scientific workflow applications on amazon ec2,” in 2009 5th IEEE Interna-
tional Conference on E-Science Workshops, Dec 2009, pp. 59–66.

[14] ——, “Data sharing options for scientific workflows on amazon ec2,” in 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2010, pp. 1–9.

[15] S. Akioka and Y. Muraoka, “Hpc benchmarks on amazon ec2,” in 2010 IEEE 24th
International Conference on Advanced Information Networking and Applications
Workshops, April 2010, pp. 1029–1034.

[16] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing amazon ec2 spot instance pricing,” ACM Trans. Econ.
Comput., vol. 1, no. 3, pp. 16:1–16:20, Sep. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2509413.2509416

http://doi.acm.org/10.1145/2443416.2443417
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://github.com/cooperative-computing-lab/makeflow-examples/tree/master/bwa-gatk
https://github.com/cooperative-computing-lab/makeflow-examples/tree/master/bwa-gatk
http://doi.acm.org/10.1145/2287036.2287045
http://doi.acm.org/10.1145/2509413.2509416

	Abstract
	1 Introduction
	2 Background
	3 Architecture
	4 Evaluating Workflow Systems
	5 Evaluation
	6 Conclusion
	7 Related Work
	References

