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Abstract—Containers are widely used in scientific applications
as they provide greater precision and flexibility in controlling
nearly every aspect of the software environment. They can also
be easily shared, enabling researchers to run with the same
environment on different host systems—an important require-
ment for scientific reproducibility. In this work, we studied logs
of container launches from Binder, a publicly accessible online
service for executing Git repositories. Binder dynamically builds
and deploys containers following a recipe stored in the repository.
These logs capture usage over several years, and include nearly 14
million container launches of around 70,000 unique repositories.
To gain more insight about the types of containers and software
environments in use for container-based scientific computing
services, we downloaded the user-provided recipe repositories
referenced in the logs and captured the software specifications
and repository metadata. We discovered a number of interesting
trends that may be of interest to site administrators provisioning
container-based infrastructure for scientific computing in Python.
Based on this analysis, we found that automatically generated
containers present unique management challenges that are not
well handled by straightforward caching. We used historical
metadata on package releases from Pip and Conda to quantify
difficulties in keeping previously built containers up to date with
changing external dependencies. Finally, we proposed several
management strategies for reducing infrastructure costs and
improving user experience when managing a large container-
based service, and back-tested these strategies against Binder
launch activity and historical package metadata to demonstrate
the value of dependency-oriented container management.

I. INTRODUCTION

The use of containers for scientific applications has in-
creased in recent years, driven by a number of advantages over
previous methods of assembling and distributing applications.
Rather than employing a single statically compiled executable
or a simple script invoking site-provided software tools, mod-
ern scientific applications often consist of a wide variety of
software packages written in high-level languages such as
Python. This affords researchers greater flexibility in choosing
the exact algorithms and procedures to use, but means that
it is not feasible for administrators to prepare and maintain
site-local installations of every software package that may be
used. Instead, scientists and research software engineers must
prepare full software environments by themselves, for example
by compiling and installing packages on a shared filesystem.
Containers serve as a more flexible alternative, as they allow
researchers to control nearly every aspect of the software envi-
ronment, from the very low layers (standard libraries, language
runtimes, etc.), to precise versions of specialized libraries,

to the applications themselves. Containers allow additional
data, such as reference or training data, to be included as
part of the environment. Containers can also be easily shared
enabling researchers to run with the same environment in
different host systems—an important requirement for scientific
reproducibility.

There are a growing number of services that now make use
of containers to provide dynamically deployed and customiz-
able research environments. For example, many academic
institutions, research labs, and supercomputer centers provide
local installations of the JupyterHub service [1], and services
such as Binder [2], Whole Tale [3], and Code Ocean [4],
provide on-demand research environments for reproducible
research computing. These services rely on clusters or cloud
platforms for executing the containers as well as centralized
storage for the container images that researchers generate. In
order to make containers available via a service or at a comput-
ing site, however, administrators must provision storage and
infrastructure for user-provided containers and/or disk images.
Even minimal container technologies like Singularity [5] that
generally operate on simple disk images can carry complicated
storage requirements due to caches and layers used during
container building.

When providing service to a large number of users at a site
(or to the general public), it is important to be able to reason
about the infrastructure cost involved. While there have been
usage studies published for local [6] and shared file systems
at scale [7], information on the usage of container-based
applications is harder to come by. In addition, containerized
applications are not composed solely of the file and directory
data provided by users, but often involve contributions from
various package managers and system components, whose
contributions to resource utilization are not obvious from, for
example, stat()ing files on disk and instead require more
sophisticated handling of different configuration and setup files
to evaluate. Modern container-based applications commonly
employ several layers of package management in one container
to realize complex software stacks on behalf of the user, for
example APT (Advanced Package Tool) provides the base
operating system, Conda provides the Python interpreter and a
set of libraries, and Pip provides additional Python packages.
Given the popularity of Python in scientific computing, it
is important to consider these language-specific components
when exploring container usage patterns.



In this work, we study logs of container launches from
Binder [2], a publicly accessible online service for one-
click interactive execution of Git repositories containing user-
provided notebooks and applications. Binder builds a container
for each repository based on the recipe specified in the
repository. These logs capture usage over several years, and
include nearly 14 million container launches from around
70,000 unique GitHub repositories. These launch logs, how-
ever, only record the sources of container recipes used and
do not contain information about the actual containers or the
software environments they provide. We therefore downloaded
the user-provided container recipes referenced in the logs
and measured various properties, including general filesystem
properties and use of Python and other libraries provided
by package managers. We observed requirements for nearly
8,000 unique Python packages via Pip and Conda, with a
strong focus on scientific computing and machine learning
applications. We discovered a number of interesting trends
in this container usage data that may be of value to site
administrators provisioning infrastructure, as well as provide
insights into how modern Python applications are organized
and distributed. Most Binder repositories referenced in the
logs were fairly small (50% were less than 2 MB), with
Pip and Conda the most popular package managers (75%
of dependency specifications). Looking at the packages used,
scientific and machine learning packages like Numpy, Pandas,
and Scikit-learn were some of the most popular, but there was
a very wide variety of other packages used. We also noted
that most repositories (56% for Pip and 57% for Conda) had
missing or incomplete specifications of dependencies, with the
time a container was built determining what software versions
would be included. From historical metadata on package
releases for Pip and Conda, we found that these underspecified
dependencies became out of date soon after the container was
built (50% of these containers had out of date dependencies
within 8 days).

Based on this analysis, we found that automatically gener-
ated containers present unique management challenges that are
not well handled by straightforward caching of data. We used
the historical release metadata for Pip and Conda to quantify
difficulties in keeping previously built containers in line with
changing external dependencies. Finally, we proposed several
management strategies for reducing infrastructure costs and
improving user experience when managing a large container-
based service, and back-tested these strategies against Binder
launch activity and historical package metadata to demonstrate
the value of dependency-oriented container management.

II. BACKGROUND

A. Interactive Computing

Modern applications are often built around interactive com-
puting environments, such as Jupyter Notebooks [8] and
RStudio [9], which allow users to run computation, store
previous results, and visualize outputs via a single interface.
This approach allows researchers to explore data, conduct
explorative analysis, and to document the procedures used

alongside the code and data. The notebook or runtime can
also be configured to execute the user’s code on a remote
compute node, with the local node (e.g. head node or laptop)
only displaying results.

B. Scientific Reproducibility

Binder1 is an online service that allows users to run in-
teractive notebook-based applications [2] in the cloud. Users
specify the required environment (usually in the form of a
Git repository), which can include datasets, application code,
software requirement specifications, documentation, etc. A
containerized version of this environment is then built using
the repo2docker [10] tool and deployed on one of several
public cloud computing providers. The user can then interact
with this containerized notebook via a web browser, allowing
for simple sharing and collaboration. Binder relies on compute
from several public cloud providers on a donation or grant
basis. Users may also deploy private JupyterHub or BinderHub
instances using their local resources.

Whole Tale [3] is an open platform for conducting repro-
ducible research. The platform allows researchers to discover
and ingest data from external sources, conduct analyses in
various frontend environments (including Jupyter and RStu-
dio), and export “Tales”—reproducible artifacts that capture
the data, analysis, and compute environment. Whole Tale relies
on containers to capture these artifacts in the Tale. Users select
a base “environment” or define their own recipe specifying
various dependencies. Whole Tale uses this information to
build a container and deploy it on available HPC resources
(located at the Texas Advanced Computing Center).

C. Serverless Computing

Serverless computing refers to a design paradigm in which
application designers decompose computational tasks into
fine-grained and self-contained components (often expressed
as functions in a high-level language such as Python), with
the execution provider allocating computational resources on
demand. This approach can free users from capacity planning
and provisioning decisions; the only information provided
by the user is the code to run the task and any necessary
input data. Projects such as FuncX [11] are designed for
running scientific computing workloads in a serverless fashion.
In practice, however, the application tasks are rarely pure
functions: even if all input data is specified, any libraries and
local data (such as reference or training datasets) needed by
the task serve as implicit context that must also be available
on the execution node. Containers offer a way for users
to prepare a customized environment for each task that the
execution provider can deploy automatically. Function-as-a-
Service (FaaS) systems typically use containers internally to
manage software environments, both among commercial cloud
providers (e.g. Firecracker [12] is a lightweight container
technology developed for AWS) and in scientific computing
(e.g. FuncX). In providing this flexibility for the user, the

1https://mybinder.org/
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execution provider takes on responsibility for building, storing,
and transferring containers as needed. Thus in a similar way
to execution sites provisioning resources for local Jupyter
installations, administrators managing serverless execution
providers must plan and provision resources for the container
environments researchers build.

D. Common Issues

While diverse, these examples all use containers in similar
ways: as a basis for creating a reusable and portable execution
environment. However, all face similar challenges regarding
how to efficiently manage a large number of containers for
a large number of users both in terms of service levels (e.g.,
deployment time) and in terms of resource usage (e.g., storage
costs). This raises a number of questions: how much storage
should be allocated to serve a given number of users? should
containers be built centrally (e.g., on the submit node) or on
execution nodes? how long should previously built containers
be retained? how long should user-provided container speci-
fications be retained? It would be helpful when making these
provisioning and policy decisions to have some measurements
on containerized environments used in practice for a variety
of applications.

III. BINDER CONTAINER DATASET

The Binder project logs the launch of each interactive
container along with some additional metadata such as the
backend compute provider used and the source of the repos-
itory. These logs are available as a public dataset [13], and
include records from 2018 to the present. Each launch record
contains the following information:

1) timestamp
2) version
3) provider Repository source, e.g. GitHub or Zenodo.
4) spec Git repo and branch/tag/commit to use, e.g.

<github-id>/<repo>/<branch>. This is pro-
vided by the user when launching the container.

5) ref Exact commit used at the time of resolving spec.
6) origin Compute provider the container instance ran

on. This is selected automatically and not normally
under the user’s control.

The identity of the user invoking the container launch is
not provided, so any conclusions must be based solely on
the repository being launched. Note that the ref field is
only present on records after June 2020. It is therefore not
possible to determine the exact commit tag used for these
older records. In our analyses, the general patterns observed
in Binder launches did not show sensitivity to time (even
considering only the more recent records for which we have
exact commit data), so this limitation is not of great concern.

While the Binder launch records provide a detailed view
of container activity over time, they do not include sufficient
detail to explore what kind of containers were launched or how
users designed containers. A more in-depth analysis requires
fetching contents from each of the referenced repositories. We
chose to limit this effort to repositories delivered via GitHub,
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Fig. 1. Specification Types Used in Binder Container Launches

The distribution of dependency repository types used in Binder
over time. Top: Absolute number of uses by type. Bottom: Relative
proportion of uses for each type.

TABLE I. Specification Types in Binder Repositories

Format Occurrences Percentage
Pip 54,177 36.9%
Conda 34,466 23.5%
APT 10,627 7.24%
Docker 10,187 6.94%
R 4,846 3.30%
Julia 2,543 1.73%
Pipfile 913 0.622%
Nix 35 0.0239%

We successfully cloned 146,745 repositories from GitHub. Percent-
ages give the percent of repositories containing each specification
type; a single repository can contain multiple specification files. Note
that many (44,049 repositories) did not contain any environment
specifications at all, and were used solely to bundle files and data
directly in the repository.

since they account for the vast majority (97%) of repositories
referenced. The remaining ∼3% of launches used GitLab, Gist,
Git URLs, Zenodo DOIs, Figshare DOIs, Dataverse DOIs,
and Hydroshare resources. Since our goal in this work is
to explore packaging and container use patterns, we were
interested primarily in the various package specifications used
by repo2docker to construct the container environment. Due
to variability in how containers are specified in the Binder
launch records, it is not possible to simply identify repositories
by Git commit. Instead, we considered the exact commit

3



only if available (the most recent 32% of records, after June
2020), and fell back to the branch/tag specified in the records.
This resulted in around 166,000 distinct source repositories
referenced in the dataset. We attempted to download each
source repository, recording all the the package specification
files in use. These were recorded verbatim to allow for further
processing. Since we are also interested in general container
use patterns, we captured the filesystem metadata for each
repository, that is, the layout and sizes of the user-provided
files/directories. This information is useful for exploring the
transfer/storage cost of working with these containers. Due
to the large number of GitHub repositories referenced in the
Binder launch records, the process of collecting this packaging
information required a significant amount of time. To avoid
throttling, we fetched repositories in serial with small delays
inserted. Repositories that were since deleted or made private
after being launched via Binder could not be cloned, so
these repositories were noted but skipped (12% of GitHub
repositories, around 20,000). The repositories were built for a
variety of data encodings and filesystems, so additional care
was necessary to work around unexpected data formats and
special/reserved files. This procedure took roughly two weeks
to process the full set of GitHub repositories used in the Binder
launch records.

The resulting dataset provides a view into the packaging
and container design practices in use over time for widely
varying users and projects. Figure 1 shows the number of
Binder launches over time, broken down based on the types of
package specification formats in use. In order to examine the
contents of these specification files, some additional processing
was required. We chose to focus our analysis on the most com-
monly used specification types, Pip and Conda. As shown in
Figure 1, this selection covers the majority of repositories. The
later analyses involving the packages in repositories looked
only at Pip and Conda specification files. We validated these
specification files, excluding any repositories where we could
not successfully parse and operate on the specifications. Since
some of our analyses in Section IV take into account the set of
transitive dependencies or resulting dependency sizes, it was
also necessary to limit the package sources under considera-
tion. In situations where users fetched packages from arbitrary
URLs or used custom build scripts (such as Dockerfiles, which
are free to make arbitrary changes to the container), it is
not possible to determine the actual dependencies used in the
container without building it. We therefore limited our analysis
of Python dependencies to repositories that used only static
and declarative dependencies available in public repositories,
such as the Python Package Index (PyPI) for Pip and publicly
accessible Conda channels. Even with these restrictions on
“pure” software environments, there was still a fairly large
sample (∼85,000 repositories) under consideration.

As Table I shows, Pip and Conda together were used in
nearly 75% of specifications in the repositories. APT also
makes up a significant portion of the specifications used, but
provides system packages largely orthogonal to the Python
dependencies provided via Pip and Conda. Dockerfiles are
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Fig. 2. Total sizes of Binder repositories.

also commonly used, but present additional difficulties for
analysis. An interesting point to note is that a large number
of repositories did not use any specifications at all. These
repositories simply used the default environment provided
by repo2docker, which includes a recent Python version and
Jupyter notebook. These repositories thus used Binder solely
as a way to package notebooks, code, and data into a more
convenient container form, giving little consideration the the
software environment in use.

IV. OBSERVATIONS

We explored a wide variety of properties of the Binder
repositories, with some of the interesting results presented here
in cumulative distribution function (CDF) form to highlight
the distribution of data. We focused on three primary areas:
general properties of the repositories (e.g. size and filesystem-
related properties), Python usage, and package manager usage.
Since the focus of this work is Python applications, we
limited our package manager analysis to Pip and Conda,
which account for most of the Python packages used (see
Figure 1). Due to the wide variation in properties across
repositories, most of the results here are presented as CDFs
with a logarithmic scale on the x axis.

A. General Repository Properties

The original Binder launch dataset is stored in chronological
order, so we initially attempted to plot the properties explored
here in the same way. Figure 1 shows the types of specification
files in use over time in this way. An increasing trend in
volume of container launches as well as seasonal variation are
clearly visible. When we present the same data as proportions
of the total launches, however, this time variance disappears.

Figure 2 shows the distribution of total sizes of the Binder
repositories. This was computed by summing the sizes of all
the files present in a Binder repository. We do not consider
the size of packages to be downloaded as specified in the Pip,
Conda, or APT files. We note that most of the repositories
are small (around half take up 1 MB or less), but it is quite
common for repositories to contain significantly more data.
Some of the largest repositories took up tens of gigabytes of
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Fig. 4. Sizes of Files Across All Binder Repositories

space. On examination, the largest repositories were bundling
reference or training data used for machine learning applica-
tions. This was a recurring trend when examining outliers and
heavy users: containers for machine learning were generally
responsible for the most extreme resource usage among the
Binder repositories we observed. Figure 3 shows the number of
inodes included in each Binder repository. Again the majority
of repositories were small, but some included a very large
number of filesystem entries. Table II gives the frequencies
of file extensions across Binder repositories. Figure 4 shows
the distribution of file sizes across all Binder repositories.
This result is similar to previous studies of shared filesystem
usage patterns [6], with repositories generally consisting of a
large number of small files. Approximately 2% of the files
were empty. As with the other measurements, some outliers
included much larger files (up to approximately 450 MB). The
largest files observed were reference or training data used for
machine learning.

These general measurements of the Binder repositories may
be useful for administrators provisioning storage or defining
resource limits on containers. Assuming a container system
that allows for sharing of base operating system layers, fairly
modest limits would be sufficient for most users (e.g. 100 MB
would be sufficient for over 90% of repositories). The distri-

TABLE II. Frequency of File Extensions

File Extension Occurrences Percentage
.py 3,881,323 12.6%
.png 3,157,166 10.2%
.txt 2,897,633 9.44%
.jpg 2,128,205 6.94%
.js 1,605,104 5.23%
.ipynb 1,511,060 4.92%
.md 1,194,985 3.89%
.json 840,116 2.74%
.csv 833,132 2.72%
.html 771,808 2.52%
Other 11,862,608 38.7%

butions of file size and number of inodes are important consid-
erations for a storage backend. Depending on the filesystem in
use, the number of inodes available may become a significant
limitation. On shared filesystems in particular, these can often
become a precious resource that require per-user quotas. Many
shared filesystems are optimized for bulk access to large files,
which is the opposite of the usage patterns we observe here.
It would thus be better to treat container storage in the same
way as user home directories than as bulk scratch storage. For
a container service that operates on disk images, however, it is
not necessary to store the unpacked container contents, instead
storing each image in a single large, self-contained file. Even
simpler storage without full POSIX filesystem semantics such
as an object store would be well suited for hosting disk images.
The primary concern in this situation is the total storage
space available. These considerations may affect the choice
of container system, filesystem, and storage/inode limits used
for serving containers to users at large sites.

B. Python Usage

We next consider several container properties particular to
Python. In addition to libraries, users have the option of
requiring a particular version of Python itself. Pip does not
support this functionality, but Conda can distribute the full
Python environment, along with its required base libraries.
repo2docker also supports another configuration file to set
the Python version used, but internally this configuration is
simply translated to a Conda requirement. Table III shows
the most commonly used Python versions across the Binder
repositories. Note that a significant number of repositories
did not require a specific version, which will result in Conda
providing the most recent version at the time the container is
created. Section V discusses this issue further.

C. Library Usage

Finally, we examined the usage patterns of Python libraries
among the Binder repositories. As mentioned in Section III,
we only considered repositories with static dependencies for
publicly accessible Conda and/or Pip packages. Since Pip
and Conda are by far the most commonly used specification
formats, this still left a large sample of Binder repositories to
examine.

Table IV lists the most commonly used Pip and Conda
packages across the Binder repositories. As expected, widely-

5



TABLE III. Python Versions Requested

Version Total Percentage Version Total Percentage
Uses Uses

3.0 2 0.0202% 2.7 722 7.28%
3.4 13 0.131% 2.* 1 0.0101%
3.5 135 1.36%
3.6 2,393 24.1%
3.7 4,214 42.5%
3.8 1,986 20.0%
3.9 42 0.424%
3.* 406 4.10%

If no version of Python was requested, repo2docker includes a default
version (3.7 at the time of writing).

TABLE IV. Most Frequently Used Packages.

Pip Package Total Uses Conda Package Total Uses
matplotlib 20,517 numpy 11,006
numpy 20,361 matplotlib 10,068
pandas 16,269 python 9,691
scipy 9,574 pandas 8,719
ipywidgets 8,299 scipy 5,369
seaborn 5,669 pip 4,945
voila 4,456 seaborn 3,303
pillow 4,293 ipywidgets 3,261
scikit-learn 3,818 scikit-learn 3,175
ipython 3,505 jupyter 2,194
Other 205,749 Other 166,433

used scientific and machine learning packages were the most
commonly used. The other packages, however, make up a
substantial portion of those seen. This “long tail” of depen-
dencies makes it difficult to prepare standard/multipurpose
containers to support many users; there is a common core of
regularly used packages, but there is no straightforward way
to choose a selection of other packages that maximizes future
utility of the container. This in part explains the necessity
of using container-based solutions when dealing with ever
growing numbers of computational researchers: the cost of
storing a large number of specialized containers is less than the
operational and administrative cost of coordinating the precise
and ever-changing requirements of a large number of users into
site-provided environments.

We also examined the sizes of the software environments
requested for the containers, both in terms of number of
packages and size on disk. This is complicated by the fact
that the set of packages explicitly requested in the container
specification is generally not the same as those that will
actually be installed during container build. Package managers
recursively include necessary dependencies of the packages,
significantly increasing the size of software environments.
We therefore considered both the direct dependencies (those
listed explicitly by the user) and the total dependencies (the
closure of all indirect and transitive dependencies collected by
the package manager). Figure 5 gives the distribution of the
number of packages for Pip and Conda, and Figure 6 shows
the same plot for on-disk storage.

In terms of both number of packages and storage, we
observe that set of user-specified packages is much smaller
than the total set required for most containers. This would
indicate that comparatively few users include a complete
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Fig. 5. Number of Python Dependencies per Binder Repository
Direct indicates dependencies directly listed in the user-provided
specification file; Total indicates the dependencies after recursively
collecting all indirect dependencies in addition to the direct ones.

environment specification for their containers. This can also
be a source of surprises when estimating storage costs, as
the bulk of the packages for a container are not explicitly
listed in the recipes and are only realized when the container
is actually built. We note here that the storage required for
the Binder repository itself (Figure 2) and the storage for the
software environments assembled when building containers
(Figure 6) show markedly different distributions. Especially
for Conda installations, the storage required for the realized
container normally far outweighs the storage used by the
Binder repository used to create it, even considering the
arbitrary user-provided data that can be included in Binder
repositories. Standard techniques to reduce container storage
like Docker’s reuse of layers offer little benefit here, since only
identical layers can be reused; only Binder repositories with
specification files that are bit-for-bit identical can share layers
containing the Conda and Pip environments. This effectively
limits any layer-based deduplication to the base operating
system image; each realized container will have to include
a complete copy of all software dependencies as well as the
contents of the Binder repository. Site administrators may
benefit from treating these two types of storage separately, e.g.
using durable storage with tighter limits for Binder repositories
while keeping realized containers on bulk scratch storage.
Realized containers can be rebuilt as needed, allowing for
substantial space savings.

The dependency specifications themselves also give some
important insights. Both Pip and Conda allow for flexible
dependency specifications, given by a package name and op-
tional version constraints. Multiple version constraints can be
given for a single dependency, and the constraints can include
complex logical predicates for precise control over dependency
versions. For the greatest reproducibility and consistency over
time, all dependencies for a repository should specify an exact
version, ensuring that software environment can be rebuilt.
Looking at the Binder repositories in Table V, however, we
observe that most specification files included only partial or
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TABLE V. Completeness of Specifications in Repositories

Specification
Completeness Pip Conda Total Percentage
Complete Versions 15,305 7,681 22,986 44.1%
Partial Versions 6,952 6,653 13,605 26.1%
No Versions 12,163 3,354 15,517 29.8%

Repositories that included a version constrain on every requirement
are considered to have Complete Version information. Likewise
repositories that included no versions constraints at all (i.e. listed
only package names) are considered to have No Version informa-
tion. Partial Versions indicates that some of the dependencies in a
specification file did not include version information.

no version information. These underspecified requirements are
satisfied by the most recent package versions at container build
time. Thus the software environments in a large proportion of
containers based on underspecified repositories are sensitive
to the time at which they were built.

V. INVALIDATION OF CONTAINERS OVER TIME

Based on these observations, an important distinction arises
between generated container environments and the recipe
repositories from which they are derived: since in practice
users very often leave the version(s) of dependencies unspec-
ified (see Table V), the contents of the container are sensitive
to the time when the repository is built. Even while the
contents of the base repository remain the same (no changes
to the dependency specifications or additional data provided
by the user), the available versions of these dependencies
change over time as new versions are released. Thus we
cannot treat generated container environments as immutable
data for the purposes of comparison and caching. Short time
discrepancies of this kind are often harmless (e.g. a depen-
dency releases a new minor version that provides essentially
the same functionality), but the greater the time difference
between container build and use, the more likely that at least
one of the dependent packages undergoes a significant change
that makes the previously built container functionally different.
We assume here that the correct behavior for a container
management service is to match the result of a user building
a container manually (i.e. downloading the source repository
and running repo2docker themselves).

As a case in point, one of the most commonly launched
containers on Binder is a demo2 used in the documentation for
Jupyter Notebooks to introduce basic functionality and provide
an interesting environment for users to explore (i.e. it includes
several scientific and machine learning packages such as
Numpy, NetworkX, Pandas, and Scikit-learn). This repository
was last modified approximately two years ago at the time
of writing, and has been regularly used on Binder since then.
Also note that this repository does not specify versions for
many of its dependencies. Treating the generated container as
plain data without respect to the details of the dependency
specifications, it would be perfectly reasonable to keep using
a cached build until the source repository is updated. Even
with a strategy like least recently used (LRU) in place to
limit container storage, the popularity of this repository would
ensure that the previously built container always stays in cache.
A user looking at the repository and launching it through the
Binder service might be surprised, however, to find that the
machine learning packages actually present in the container
may be up to two years old, and that building the same
repository locally gives the current versions of dependencies.
This demo repository provides a prominent illustration, but is
unlikely to cause real harm due to version mismatch. When
generated containers are used behind the scenes for scientific
reproducibility or serverless computing, however, we have a
source of confusion and bugs. If a user registers a software
environment without fully specifying the software versions
needed (i.e. only includes dependencies on packages without
specifying version constraints, as was very commonly seen
among Binder repositories), it would be incorrect to cache this
environment indefinitely. If the user wants a feature added to
one of the dependencies in a subsequent release, the container
system would need to rebuild the environment. If the user-
provided specification has not changed, however, the container
system would not have any way to detect that the previously
generated container has become outdated.

The ideal solution here is that all users fully specify versions
of all dependencies. As we have seen, however, this does
not reflect actual use. When designing future container-based
scientific platforms, or when training scientists and research
software engineers, it might be prudent to encourage/require
all environment specifications to be complete. Wherever in-
complete specifications are allowed, it is important to con-
sider the time factor in built containers diverging from the
source repositories/specifications in addition to any storage
constraints. To measure this effect, we collected all of the
Python repositories in the Binder records which included
one or more dependencies without version information (see
Table V). For each of these underspecified repositories, we
first determined the current dependency versions at the time
the repository was launched using historical metadata for
Pip and Conda releases. We then looked forward in the
historical release data to determine the amount of time until
the dependency versions no longer matched those at launch

2https://github.com/ipython/ipython-in-depth/tree/master
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Fig. 7. Time Underspecified Containers Remain Valid

This figure shows the fraction of under-specified containers that
remain up-to-date after a given amount of time. For example, ap-
proximately 20% of containers using pip dependencies were out of
date after two days, because a dependent package had released a new
version since the container was first launched.

time for the underspecified dependencies. Figure 7 shows
this distribution of the validity periods for built containers.
We observe that most containers became out of date with
respect to the packages available at the time within 10 days.
Of course, many of these updates were likely to be minor
and non-breaking changes; however, since it is not possible
to automatically determine which updates are functionally
significant (packages use a variety of versioning schemes with
varying stability guarantees), the most conservative approach
would be to rebuild containers on every update. This raises
the question of how to balance container storage, compute
time spent building and rebuilding containers, and mismatch
between source repositories and cached containers.

VI. REDUCING OUTDATED CONTAINER USE

To evaluate the impacts of different container management
strategies, we simulated the effects of replaying the Binder
repository launches using historical Python package metadata
to determine the past versions of dependencies that would
have been included in containers, as well as the degree to
which build containers became out of date. Note that since our
evaluation depends on historical Conda and Pip package meta-
data, we only considered those repositories which contained
static Conda and/or Pip dependencies. When determining if
a previously built container was out of date, we considered
only the underspecified dependencies, since these are subject
to change based on conditions external to the repository.

We chose several management strategies to evaluate:
1) Always Retain: containers are cached indefinitely
2) Dependencies: containers are deleted as soon as one of

their underspecified dependencies received an update
3) Time: containers are deleted after a fixed period of time

(1 week, 1 month, and 3 months after their build).
For these simulations, we consider the general case where

there is no hard limit on storage for containers. In practice
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Fig. 8. Number of cached containers.

there would be some sort of site-local storage limit or bud-
get for commercial cloud services. These constraints can be
applied alongside the strategies presented here.

For administrators of a local notebook provider, container
management service, or serverless computing platform, there
are several key operational characteristics. First, it is important
to cache and reuse previously built containers. Since the time
to build a container is typically on the order of tens of minutes
depending on the particular contents, it is highly desirable
to reuse containers when re-launching the same repository to
reduce the time users spend waiting. For serverless comput-
ing, where the execution time of a task is often measured
in seconds, the overhead of rebuilding containers for every
task is unacceptable. Administrators must also consider the
storage space used to store containers. The particular container
technology available at a site significantly impacts storage.
Docker’s layer model can store common layers (e.g. base
operating system components) only once and share them
between multiple containers. Container runtimes that operate
on disk images (e.g. Singularity) require a complete copy of all
container contents in each image, significantly increasing the
storage cost. This does come with advantages, such as simpler
management and the ability to store images using any available
shared filesystem, object store, etc. We also measured the
extent to which repository launches used outdated containers
under each of the strategies by counting the total number of
outdated launches, as well as computing the median amount of
time by which each container was out of date (the difference in
time between the container launch and the dependency update
that rendered the container outdated).

Figure 8 shows the number of containers stored under each
strategy over the course of the Binder dataset. As expected,
the number of containers monotonically increases under the
Always Retain strategy. The time-based strategies significantly
reduce the rate of increase of cached containers, with the
more aggressive options holding the total number of containers
mostly constant. The Dependencies strategy shows the exact
number of valid containers at each point, so the difference
between Dependencies and Always Retain gives the number of
containers that have become outdated due to dependency up-
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Top: storage only for the repository-specific layers.
Bottom: total cost of repository-specific and base components as for
disk images.

dates. This strategy only removed containers for dependency-
related reasons, so like Always Retain it does not reflect the
working set of repositories in use at a given time. Figure 9
shows the estimated storage required for the container cache
under each strategy. We compute the storage measurements
both for repository-specific layers (software dependencies plus
user-provided data from the repository) as in the Docker
model, as well as the size of complete disk images as used
with other container systems. These measurements follow
the same trends as Figure 8. They also give a sense of the
scale of resources involved when operating a large public
notebook service. While storing these container caches using
commercial cloud providers would incur significant costs (at
the time of writing, storing the full set of containers under the
Always Retain strategy using AWS ECR for layered images
and AWS S3 for disk images would cost approximately $950
and $1150, respectively, per month), provisioning enough local
storage to hold all the containers built over these simulations
would be feasible for individual sites.

In addition to the storage required, we also examine the
number of container builds required under each strategy. Since
we are not actually carrying out the builds, and since the
Binder launch records do not include details on the time spent
building containers, we cannot determine the amount of time
or CPU-hours used for building. Table VI gives the number of

TABLE VI. Summary of Container Cache Simulations

Outdated Median
Strategy Builds Evictions Launches Age
Always Retain 27,641 0 5,913,039 64 days
Dependencies 92,831 85,400 0 0 days
Time (3 Months) 40,227 31,117 5,675,235 21 days
Time (1 Month) 58,052 54,691 5,055,746 8 days
Time (1 Week) 106,794 105,319 3,567,261 2 days

All numbers are totals over the entire simulation using the Binder
launch records. The Median Age refers to the amount of median
time between a launch and the container becoming out of date for
each repository with outdated container launches.

builds over the course of each simulation. The Always Retain
strategy gives the minimum number of builds required to carry
out the repository launches from the Binder records. Under the
Dependency strategy, containers are removed exactly when
their underspecified dependencies become out of date. This
conservative approach requires a large increase in the number
of builds. As a practical matter, it would be difficult to
track this for a large collection of container images without
the benefit of historical data. The Time-based strategies also
increase the number of builds compared to Always Retain,
since some actively-used containers are discarded and rebuilt.

We finally consider the use of outdated containers under the
various strategies. We are interested both in the frequency of
launch for these containers, as well as the degree to which
their dependencies are out of date. Looking at Table VI, all
of the strategies (except Dependencies of course) launch a
comparable number of outdated containers. Aggressive Time-
based removal (1 week) reduces this somewhat. The median
age of outdated containers, however, shows greater variation.
As before, the Dependencies strategy never launches outdated
containers so its median age is zero. The Time-based strategies
impose an upper limit on how out of date a container may
be, equal to their time limit. In the simulation, however, all
three time-based strategies kept the median age much lower
than their respective limits. Thus in practice a generous limit
on the worst-case behavior is still helpful for improving the
average case. As expected, under Always Retain the containers
tended to be most out of date. Comparing the storage costs,
number of builds required, and age of cached containers,
setting a Time limit of 1 month on retaining built containers
offers a good balance. Despite not being optimal along any
axis, this policy is simple and avoids extremes of storage and
compute usage while ensuring reasonably up-to-date software
in containers. Sites with specific requirements (e.g. absolutely
minimize storage) may benefit from the other strategies, but
removing previously built containers after 1 month would
serve as a good general recommendation based on the activity
on Binder and Python package activity over several years.

VII. RELATED WORK

To aid in managing software environments in containers,
Kubernetes package managers such as Helm [14] can instanti-
ate specific versions of each software component and clean up
outdated containers. PyWren [15], a Python library for running
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Python functions on Amazon Lambda, supports determining
dependencies semi-automatically, though the user may need
to employ Conda themselves to package more complicated
environments. Landlord [16] manages container caches for
distributed computing by merging container specifications,
but is focused on reducing storage and does not consider
out of date software. There has been extensive research on
deduplication of filesystem data [17] and disk blocks [18],
as well as container caching [19] to improve storage use and
latency. Filesystem usage studies such as [6] provide insights
into the usage patterns and properties of files/directories across
local machines. Large-scale studies at supercomputing sites [7]
provide characterizations of data and IO behavior for high-
performance applications.

VIII. SUMMARY

Myriad systems—from campus deployments of Jupyter-
Hub through to online scientific reproducibility services—
make use of containers as a way of encapsulating complex
computing environments and abstracting underlying system
heterogeneity. In this paper we analyzed a large dataset of
14 million container launches spanning over 166,000 GitHub
repositories used by the Binder service. After downloading
these repositories we found that 75% used either Pip or
Conda package managers and that most repositories are small
(around 50% are less than 2 MB). We further explored Python
usage in these repositories, identifying diverse use of Python
packages and quantifying both the number and size of indirect
and direct packages imported. Finally, we investigated the
time that cached containers may remain valid by looking at
the rate at which underspecified dependencies were updated.
Our results showed that approximately 20% of repositories
would be out of date after only two days. This sensitivity to
time means that straightforward caching techniques are not
sufficient for container-based applications. Our analysis using
Binder logs and historical package release metadata shows
that dependency-aware management can effectively mitigate
usability and reproducibility issues where dependency version
information is incomplete. We also give a simpler time-based
strategy that container systems should use to manage cached
containers.
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