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Abstract—The advent of new sequencing technology has
generated massive amounts of biological data at unprecedented
rates. High-throughput bioinformatics tools are required to keep
pace with this. Here, we implement a workflow-based model
for parallelizing the data intensive task of genome alignment
and variant calling with BWA and GATK’s HaplotypeCaller. We
explore different approaches of partitioning data and how each
affect the run time. We observe granularity-based partitioning
for BWA and alignment-based partitioning for HalotypeCaller to
be the optimal choices for the pipeline. We identify the various
challenges encountered while developing such an application and
provide an insight into addressing them. We report significant
performance improvements, from 12 days to 4 hours, while
running the BWA-GATK pipeline using 100 nodes for analyzing
high-coverage oak tree data.

I. INTRODUCTION

Next generation sequencing (NGS) [1] techniques have
had widespread impact in fields such as molecular medicine,
evolution, human migration, DNA forensics, and agriculture
by inexpensively generating Giga base-pairs (Gbp) per ma-
chine day [2]. As sequencing throughput increases, the major
research bottlenecks are the time and computational resources
demanded for managing, deciphering and analyzing such large-
scale biological data. Genome alignment and variant calling
are the two most important stages of comparative genomics
applications, which often require weeks or months for down-
stream analysis of NGS data. Thus, developing high throughput
workflows for such data-intensive applications is an important
and challenging problem in bioinformatics.

In the last few years, many alignment and variant discovery
tools have implemented sophisticated algorithms to reduce
computational resource requirement and run time for analyzing
massive biological data [3–8]. The extent of parallelism that
can be achieved by adopting the optimization techniques
offered by these tools is often limited. For instance, Burrows
Wheeler Aligner (BWA) [9] is one of the fastest and most
accurate alignment tools currently available. For our test data
of 100-fold coverage of 50 oak individuals’ genome, the
multithreading option provided by BWA could not cause a
significant reduction in run time. On the other hand, GATK’s
SNP and indel calling walker HaplotypeCaller [10] generates
accurate results compared to the other variant calling tools, but
often requires time in the order of weeks or months to analyze
high coverage NGS data. HaplotypeCaller required 12 days to
determine variants for our test data. Again, the in-built options
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for multithreading, pruning, and downsampling was unable to
cause a considerable improvement in run time for our data.

As the underlying algorithms of both the tools support
parallelism, the trade off between accuracy and speedup can
be mitigated by creating a parallelizable workflow [11]. Such
a workflow can harness resources from distributed systems by
dividing the workload into independent tasks and executing
each task parallely. In this regard, one of the key factors
responsible for achieving a considerable speedup is efficient
partitioning of data at the preliminary stage of the workflow.
As BWA and HaplotypeCaller do not provide any method of
data partitioning, we explored different ways of doing so, some
specific to a particular tool. For each tool, we identified the
best partitioning technique and tested the same for the entire
pipeline. We also identified the potential challenges that are
likely to be encountered while developing such data-intensive
applications and proposed solutions for them.

For BWA, we partitioned the data following granularity-
based and individual-based approaches. For the former, we
split the query file based on a predetermined granularity value
whereas for the latter, we split it based on individual names.
We observed that although times taken for the alignment
procedure in both the approaches were similar, there was an
additional cost incurred in the splitting step of individual-based
approach. Here, each read of the query data had to be compared
with the barcode information to match an individual name,
which was time consuming for approximately 140 million
reads. Thus, granularity-based approach of data decomposition
was efficient for parallelized execution of BWA.

The second stage of the pipeline involved variant calling
using HaplotypeCaller. Similar to BWA, we tested granularity-
based and individual-based approaches for the input data in
sorted BAM format [6]. In addition to that, we adopted a
new method, named alignment-based partitioning. We first
split the reference file into multiple bins, each containing
unique contigs. We then split the concatenated SAM output
of BWA into smaller files, each having alignment information
pertaining to a reference bin. For each approach, we executed
HaplotypeCaller for a pair of sorted BAM file and reference
file. Contrary to the other two approaches, the alignment-
based approach caused a significant run time improvement
for HaplotypeCaller as the search space was considerably
reduced and the smaller reference files were guaranteed to
have the necessary contigs corresponding to the alignment
information in each SAM file. The overall run time of the
pipeline for genome mapping and variant calling, which earlier
took approximately 12 days, was drastically reduced to 4
hours.



The rest of the paper is organized as follows. We discuss
our adopted methods for this work in Section II. In Section III,
we present the results obtained by parallelizing different phases
of the pipeline and how each of them scale in a heterogeneous
cloud environment. We explore different approaches of data
distribution and their effects on run time. Section IV discusses
the challenges we came across while developing this data-
intensive framework and our proposed solutions. Section V
provides an overview of the literature related to our work.

II. METHOD

A. Overview of Genome Alignment and BWA

The millions of short reads generated by next generation
sequencing techniques are usually compared to the genome
of a model organism, known as the reference genome, for
further biological analysis. One accurate means of genome
comparison is genome alignment. In Fig. 1, the vertical bars
denote the positions of matches whereas the hyphens represent
insertions or deletions, commonly known as indels. There
are two major categories of mapping algorithms. The first
implements the Burrows Wheeler Transform (BWT) [12] for
data compression, and the second one is based on hashing
to speed up alignments. Depending on the genome size, the
entire alignment procedure may take several days to compute.
For instance, short read alignment tools like MAQ [13] and
SOAP [14] typically require more than 5 CPU-months and
3 CPU-years, respectively, for aligning 140 billion base pairs
(Bbp) [15].

Fig. 1: Genome alignment between sequences A and B show-
ing matches, mismatches, and indels

One of the widely used alignment tools, Burrows Wheeler
Alignment (BWA) employs the Burrows Wheeler Transform
(BWT) algorithm to align short queries with low error rate
as well as long queries with higher error rates. BWA is
light-weight, supports paired-end mapping, gapped alignment,
and various file formats, like ILLUMINA [16] and ABI
SOLiD [17]. The default output format for all its algorithms
is SAM (Sequence Alignment Map), which can further be
analyzed using the open-source SAMtools package and others
to visualize the alignments and call variants [6].

B. Overview of Variant Calling and HaplotypeCaller

Variants are allelic sequences that differ from the reference
sequence by a single base pair or a comparatively longer
interval. For instance, in Fig. 1, at the fifth position of the
aligned sequence there occurs a mismatch or single nucleotide
polymorphism (SNP). SNPs can account for the variation in
phenotypic traits and disease susceptibility among different in-
dividuals. These variants can also serve as markers in genome
wide association studies (GWAS) and help in identifying genes
associated with various traits or diseases. The performance of
a variant calling tool is largely dependent on the quality and

coverage of sequencing datasets. Popular variant calling tools
like SAMtools and MAQ use a Bayesian statistical model to
evaluate the posterior probability of these genotypes.

GATK employs similar, yet more sophisticated Bayesian
algorithms. Here we consider its HaplotypeCaller walker
which is often preferred over the UnifiedGenotyper tool be-
cause of the former’s higher sensitivity. HaplotypeCaller func-
tions by indexing the input set and creating walkers to locate
variations between the query and reference. Once a difference
is detected, HaplotypeCaller performs local assemblies to
fill gaps or correct mistakes. Though it generally has more
accurate results than UnifiedGenotyper, it is less frequently
used because it takes substantially longer to complete. This
difference in performance is due to the fact that Haplotype-
Caller checks more variants, both indels and SNPs, for a given
sequence. To remedy the slower performance, we opted for
parallel execution of different subtasks.

C. Framework of the parallelized pipeline

For our active projects, BWA (version 0.7.5) and GATK’s
(version 2.5-2) SNP and indel calling walker HaplotypeCaller
produced the best biological results (unpublished). As seen
in TABLE VI, the method of genome alignment, preparation
of inputs for subsequent variant calling, and determination of
variants using these tools in a sequential order took 12 days
to complete. Many newly developed variant detection tools,
including GATK’s HaplotypeCaller improves genotype calling
by increasing runtime [18], which is a major bottleneck.

A possible approach of addressing this problem is to
develop efficient algorithms or data structures to reduce the
search space during the computationally expensive task of
mapping or variant calling [19]. Considering the massive
size of NGS data and the considerably high computational
resource requirement for their analysis, parallelizing the tools
using a workflow-based model that can harness resources from
clusters, clouds, and grids is a more tractable solution. We
developed workflows to divide the tasks of genome alignment
and variant discovery and ran each independent task parallely
on remote machines. We used the Makeflow [20] language
to define each task along with its dependencies. Makeflow
can apply various systems, including multi-core machines,
batch systems like the Sun Grid Engine (SGE) [21] and
Condor Pool [22] to execute the tasks. For our experiments, we
enabled Makeflow to use the Work Queue [23] master-worker
framework as an alternative scalable framework to process data
across clusters, clouds, and grids. The Work Queue framework
used available machines by handling the data transfer and
caching of files when running jobs remotely. Each worker
executed an assigned task and reported to the master after
completion or if there was a discrepancy.

We identified that a key feature for assuring improved
run time during parallelization is efficient partitioning of data.
We adopted different approaches of data decomposition for
BWA and HaplotypeCaller and compared and contrasted each
combination using Work Queue-derived resources.

• For granularity-based partitioning, we tested the
workflow by varying the number of reads contained
in each smaller file. We determined the optimal gran-
ularity value or partition size to be the one for which



run time was the lowest. The number of partitions or
smaller files was proportional to the partition size. For
our query data containing approximately 140 million
reads, splitting it into smaller chunks such that each
contained 200000 reads proved to be the optimal
choice. The splitting resulted in the generation of 715
smaller files, which were then analyzed parallely.

• For individual-based partitioning, we used coarser
granularity by dividing the pooled data into multiple
files, each corresponding to an individual. As our data
comprised genomic sequences of 50 individuals, we
divided it into 50 files based on individual names.

In both cases, we assigned the task of running BWA on each
pair of small query data and reference data to a work queue
worker. At the completion of mapping phase, we added read
group and platform information to each output (SAM file)
and compressed them into sorted and indexed binary versions
(BAM) to be compatible with HaplotypeCaller.

In the next phase of the pipeline, we tested three ways of
partitioning mapped data for variant calling.

• For granularity-based partitioning, similar to BWA,
we split the input data for HaplotypeCaller on the basis
of the determined optimal granularity value.

• For individual-based partitioning, the mapped data
was split based on individual names, resulting in 50
smaller files.

• For the new mechanism, called alignment-based par-
titioning, we split the SAM file based on alignment
information. We first split the reference file into mul-
tiple smaller files, each having a fixed number of non-
overlapping contigs. For each small reference file, we
split the pooled SAM file such that the smaller SAM
file would contain information of reads that aligned
only to the contigs of that particular reference subset.

For each approach, we executed HaplotypeCaller for a
pair of smaller sorted BAM file and the reference sequence
on a work queue worker. The output of HaplotypeCaller
was in VCF format [24]. In the final step of the pipeline,
we concatenated individual VCF files into a single VCF file
containing variant information of the entire population, that
we began the analysis with. As we will discuss in Section
III, granularity-based and alignment-based data partitioning
were the most efficient approaches for running the parallelized
pipeline for BWA and HaplotypeCaller, respectively.

III. RESULTS

For our experiment, we aligned and detected variants for
50 Quercus rubra (northern red oak) individuals’ ILLUMINA
HiSeq RAD [25] data with over 100-fold coverage. The tempo-
rary reference sequence for this non-model species contained
approximately 400000 individual loci. The system used for
these analysis consisted of a cluster of 26 machines, each
with 8 cores and 32 GB RAM. To illustrate our base, BWA
(single end) required about 4 hours to complete the alignment
procedure sequentially, and GATK’s HaplotypeCaller required
12 days to detect SNPs and indels. Run times for BWA does
not include the time for indexing the reference, which can be

done once and re-used for each alignment task. Next, we will
discuss different techniques explored for partitioning the data
to find an optimal solution.

A. Partitioning

The first approach of data partitioning involved splitting
the input file into multiple smaller files based on a granularity
value. It allowed the size of the smaller files to vary depending
on the number of reads allowed in each file, as specified in
the split script. For this particular instance, we tested different
sizes and chose 200000 reads in each file, which was within
the same order of size as the reference, to be the optimal
granularity value. This was known as the granularity-based
approach of data decomposition. For this optimal value, the
test data created 715 files and tasks, which were then run in
parallel.

For the second approach, we adopted individual-based par-
titioning of data. As mentioned earlier, our test data comprised
genomic data of 50 oak individuals. This organization lead to
a simple structure of splitting the data based on individual
names, which was the basis for individual-based partitioning.
This method required comparing each read in the query file
with the barcodes provided by RAD data to find the name of
the individual to which it belonged.

The above two methods were used to evaluate both BWA
and GATK’s HaplotypeCaller. Fig. 2 illustrates the workflow of
these approaches while parallelizing BWA. The split function
refers to the creation of smaller query files based on a
granularity value (for granularity-based partitioning) or indi-
vidual names (for individual-based partitioning). Fig. 3 depicts
the workflow for executing parallelized HaplotypeCaller for
granularity-based and individual-based approaches.

The third approach, alignment-based partitioning, was
applicable only to HaplotypeCaller as it depended on the
alignment information obtained from the output of mapping
procedure. First, we split the reference sequence into several
chunks, each containing unique and contiguous contigs. Once
the allocation of contigs to each bin was known, the output
of BWA, in concatenated SAM format, was split based on
the contigs to which the reads aligned. Each pair of smaller
reference file and its corresponding small SAM file was
then executed parallely with HaplotypeCaller. Although this
implementation was specific to HaplotypeCaller, the use of
alignment information in pruning the search space could be
adopted in a wide variety of parallelized genomic applications.
This method resulted in 10 tasks, involving a more directed
searching. Fig. 4 provides a visualization of this approach as
implemented in HaplotypeCaller.

B. Tool Improvement

Once a splitting script was created implementing each of
the above-mentioned partitioning schemes, BWA and Hap-
lotypeCaller were executed using 100 workers. TABLE I
presents the runtimes for BWA and HaplotypeCaller using
different data partitioning approaches. For BWA, the alignment
and concatenation stages of granularity-based and individual-
based approaches required similar time. The step of splitting
the query in individual-based partitioning was a bottleneck due
to the higher look up time to match an individual’s name from



Fig. 2: Framework of granularity-based and individual-based
data partitioning approaches in BWA. For granularity-based
approach, the query data was split into several smaller files
(N=715) based on a granularity value. For individual-based
approach, the query file was split into multiple files (N=50)
based on individual names. The remaining steps were identical
for both approaches.

Fig. 3: Framework of granularity-based and individual-based
data partitioning approaches in HaplotypeCaller. The SAM
file was split (N=50 for individual-based and N=715 for
granularity-based) into multiple smaller files. The reference file
and each sorted BAM file was sent to a worker for executing
HaplotypeCaller. The individual outputs were joined to create
a single VCF file.

Fig. 4: Framework of alignment-based data partitioning ap-
proach in HaplotypeCaller. The reference file was split into
bins and the SAM file was split into smaller files based on the
contigs in the bins to which the reads aligned. Each pair of
smaller reference file and its corresponding sorted BAM file
was then sent to a worker to run HaplotypeCaller. The outputs
were concatenated into a single VCF file.

barcode information. The granularity-based approach did not
involve this searching step and hence was more efficient (TA-

BLE I: shown in bold font). For HaplotypeCaller, preparation
of input comprised the times for splitting the concatenated
SAM file based on each approach, adding read group informa-
tion, and converting SAM to sorted and indexed BAM formats.
Although there was an additional cost in splitting the SAM
file for alignment-based partitioning, the overall runtime was
significantly lower (TABLE I: shown in bold font) than the
other two approaches.

After inferring granularity-based approach to be the best
for BWA, we tested its run time behavior from 2 workers up
to 100 workers. Fig. 5 shows how the framework performed
with increased number of workers. As more workers were
used, the increase in performance diminished rapidly. For this
particular data set and machine configuration, we achieved the
best performance with 100 workers, after which adding more
workers did not improve run time. However, when compared to
20 workers, the 50 and 100 worker iterations had only a minor
performance improvement, showing the system did not scale
linearly. This was due to the additional time incurred in data
transfer, particularly in sending all the query files, reference
and index files to each worker, which caused an overhead as we
added more workers. TABLE II supports this fact as we can see
the amount of data sent and the time required for it increased
with more workers. Fig. 6 presents a histogram for running
715 tasks in each stage (bwa aln and samse) of BWA. It
gives an overview of the overall behavior of granularity-based
BWA tasks when allowed to use 100 workers. Similarly, Fig.
7 provides a visualization of the run time behavior of the same
approach for 100 workers. The number of tasks submitted and
completed followed a similar pattern until the former reached
a plateau denoting submission of all tasks while there were
some tasks yet to be complete. The number of tasks running
followed a steady line due to the use of a dedicated cluster.
We also tested how the framework behaved when doing more
work (using the ‘k3’ and ‘k4’ flags of ‘bwa aln’ to increase
the run time search space). The parallelized implementation of
BWA could handle more load and exhibited similar behavior
when subjected to more tasks, as shown in Table III.

As seen in TABLE I, for HaplotypeCaller, alignment-based
approach was most efficient. While splitting the SAM file
into smaller SAM files, based on the contigs to which the
reads aligned, we optimized the method of looking up the
reference sequence to detect variants. Instead of searching the
entire reference file, we searched through a small section of
the reference sequence that was guaranteed to contain contig
information for all the alignments in the small SAM file.
During splitting of the SAM file we also ignored the entries
that did not align to contigs, reducing the number of elements
to process. The other two approaches did not have the scope of
reducing the search space during variant detection. Also, the
overhead of sending the entire reference file to a worker for
each task was responsible for increased run times in individual-
based and granularity-based approaches of HaplotypeCaller.

C. Pipeline Improvement

Based on the aforementioned results, we generated an
optimized pipeline for genome alignment and variant calling
combining BWA and GATK’s HaplotypeCaller, as shown in
Fig. 8. TABLE IV presents the average time taken by a
task running BWA and Haplotyper. This time represents the



Runtime (mins.)

Partitioning BWA HaplotypeCaller

Split Alignment Concatenation Total Preparation of input Variant Calling Concatenation Total

Granularity 13 21 22 56 17 1272 5.5 1294.5

Individual 73 18 20 111 74 1007 9 1090

Alignment - - - - 158 24.6 4 186.6

TABLE I: Comparison of runtimes (in minutes) for different approaches of data partitioning in BWA and HaplotypeCaller using
100 workers. Due to lower splitting time, granularity-based partitioning was the best approach for BWA. For HaplotypeCaller,
alignment-based partitioning of data was the most optimal choice due to reduced search space.
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Fig. 5: Runtime of granularity-based BWA for increasing
number of workers. The time accounts for the parallelized
alignment step of BWA, and does not consider the times for
splitting the query sequence or concatenating the outputs. The
run time gradually decreases with more workers. For large
number of workers the overhead of data transfer hindered
further improvement.
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Fig. 6: The histogram for BWA is bimodal due to the alignment
(aln) and generation of reads in SAM format (samse) steps.
These times were measured for 1430 tasks, where 715 tasks
were attributed to each process.

generalized functioning of the pipeline and can be considered
to be independent of the underlying batch system. On the
other hand, TABLE V gives an insight into the runtimes
specific to our pipeline which employed 100 work queue
workers in a heterogeneous, distributed system. The table
provides a breakdown of run times for individual components
of the pipeline. The efficient data partitioning followed by
parallelization of tasks reduced the runtimes of each phase,
resulting in a considerable overall performance improvement.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5  10  15  20  25  30

T
a
s
k
s

Time (Minutes)

Task Evaluation over Time

Running
Waiting

Complete
Submitted

Fig. 7: Run time behavior of granularity-based BWA using 100
workers.

Workers Total data transferred (Mb) Total transfer time (s)

2 64266 594

5 65913 593

10 67522 598

20 70350 623

50 74534 754

100 80276 765

TABLE II: Total amount of data transferred and total time
taken while using up to 100 workers for granularity-based
BWA. It transferred the reference file of size 36.7 MB, 715
small query files, each of size approximately 46 MB and index
files of size 80 MB. The amount of data transferred and time
taken caused an overhead in the case of more workers.

Runtime (mins.)

Workers -k 2 -k 3 -k 4

2 141.9 482.3 576.0

5 74.5 222.9 260.4

10 68.7 123.8 163.7

20 59.0 99.5 115.0

50 57.1 77.6 77.4

100 56.0 64.3 68.33

TABLE III: Run times for granularity-based BWA aln with ‘-
k2’, ‘-k3’, and ‘-k4’ options of alignment. For more load (with
‘-k3’ and ‘-k4’), BWA scaled better with increased number of
workers.



Runtime / task (mins.)

BWA HaplotypeCaller

Average S.D. Average S.D.

7.2 3.5 7.5 5.9

TABLE IV: Average time and standard deviation for each
task executing BWA and HaplotypeCaller for the parallelized
framework. This information indicates the performance of the
generalized workflow and can be useful if the framework is
later designed to harness other batch systems.

Table VI compares the times when running the individual tools
sequentially to that when run in our optimized pipeline with
100 workers in a cloud environment.

IV. CHALLENGES

Understanding the extent of parallelism: One of the most
important factors while developing a parallel application is
understanding if the underlying algorithm exhibits potential
for parallelism. In each step of this pipeline, individual tasks
were independent, without one task having to wait for the
completion of another, but the data decomposition was critical.
In this context, the commands written in the Makeflow script
represented the order of execution of tasks as a directed acyclic
graph (DAG) [26] but additional work was needed to do it in
the best manner. As shown in our results, adding more workers
does not guarantee reduced run time. Resource contention, lack
of sufficient tasks to exploit the availability of all workers,
few tasks with abnormally long run time, network traffic, and
higher data transfer time often cause an overhead in such data-
intensive parallel applications.

Using a heterogeneous environment without shared
file system: The procedure of data transfer while executing
tasks in a distributed environment becomes challenging in
the absence of a shared file system. The use of work queue
workers mitigates this problem as they solely depend on the
files transferred by the masters, as specified in the makeflow
rules. For even larger data-intensive applications that require
various clusters to scale up their performance, a hierarchical
implementation of work queue comprising a multi-slot worker
and a foreman [27] can reduce the overhead of data transfer,
causing an improvement in performance. For our application,
because the shared data (reference file) was comparatively
smaller than unique data (sequence/BAM), we did not benefit
from these features, but others may.

Determining the granularity value: One of the important
challenges in developing parallel programs is determining the
optimal granularity to balance the times spent on commu-
nication, particularly the overhead due to file transfer, and
computation. Earlier studies [28] have shown that a significant
improvement in performance can be achieved if the number
of tasks and size of each task can be optimized. This trade
off is based on the underlying algorithm as well as the
configuration of the machine on which the program runs. For
a heterogeneous system like the Condor pool, care should
be taken while determining the optimal value of granularity;
however we have shown our framework is consistent under
load and will use the maximum parallelism available.

Connecting to the master programs: We recognize that a
generic master-worker framework should be secure, specially

while dealing with sensitive patient data. These challenges can
be addressed by using the Catalog server, which advertises the
master processes along with their project names, port numbers,
resource requirements. The workers connect to the masters by
matching the requirements. This connection can be password
protected to ensure secure data transfer between the masters
and the workers.

Maintaining workers: Although our scalable application
was tested with Condor, it can use any other batch system
to generate workers. If a worker in the pool failed or was
evicted, an advantage of the pool is that a new worker could
be started and the task reassigned, increasing fault tolerance
without affecting available parallelism.

V. RELATED WORK

Genome mapping and assembly have traditionally been
refactored using MPI (Message Passing Interface) [29] or
MapReduce [30] frameworks. ClustalW-MPI [31] is a dis-
tributed version of the multiple sequence aligner ClustalW [32]
that uses MPI to run on distributed memory systems. Cloud-
Burst [33] is an early application that implements the seed-
and-extend genome mapping algorithm on a Hadoop [34]
based MapReduce framework. Although CloudBurst can align
millions of reads in a reasonable time, it takes longer to process
billions of reads when compared to a multi-core version
of another cloud-based variant calling tool Crossbow [35].
Further, CloudBurst identifies all possible alignments in a
read, which is often not a requirement in current comparative
genomics projects. Crossbow employs Hadoop to parallelize
Bowtie for alignment and SOAPsnp [36] for variant calling.
It does not natively support gapped alignment. SEAL [37] is
another scalable aligner based on BWA and Picard that uses
the MapReduce framework for parallelization of tasks.

Although the MPI framework allows execution of parallel
programs, it requires complicated software development for
refactoring tools. With Hadoop’s MapReduce-based paral-
lelization, it is not easy to tune the parameters for granularity,
as was required in our experiments. Hadoop implements its
own method of mapping tasks and reducing them on comple-
tion. Also, our application was capable of dynamically scaling
up or down the workers as needed, which is difficult to imple-
ment in Hadoop’s MapReduce-based framework. Finally, un-
like Hadoop, our developed framework could harness resources
from a heterogeneous system. Our system supported these
features by implementing the Makeflow language and Work
Queue master-worker framework to generate a parallelized
workflow for comparative genomics applications. In this paper,
we also analyzed the effect of different data partitioning
approaches on the runtime of mapping and variant calling
tools. Although we considered BWA and HaplotypeCaller as
a test case, the approaches of data decomposition presented in
this paper are generic and can be implemented to improve
the performance of other bioinformatics tools. Particularly,
the tools whose underlying algorithm or data structure is
similar to our test tools, can potentially benefit from our
proposed approach of optimized data partitioning. Moreover,
the discussion on the possible barriers and the solutions to
overcome them is useful for adapting parallelized workflows
on ad hoc clouds. This in turn can aid the development of



Fig. 8: Framework of the optimized pipeline incorporating granularity-based BWA and alignment-based HaplotypeCaller.

Runtime (mins.)

Split Query Parallelized BWA Concat SAM Split Ref Split SAM Add RGs SAM to BAM Parallelized GATK Concat VCF Total

13 21 22 3 107 11 40 24 4 4.08 hrs.

TABLE V: Run times of individual steps of the optimized pipeline using 100 workers. Splitting of data in BWA follows
granularity-based partitioning and that for HaplotypeCaller implements alignment-based partitioning of data.

Runtime

BWA HaplotypeCaller Pipeline

Sequential 4 hrs. 04 mins. 12 days 12 days

Parallel 0 hr. 56 mins. 0 hr. 24 mins. 4 hrs. 05 mins.

TABLE VI: Comparison of run times for sequential and parallel execution of the pipeline. The total time for running the pipeline
also includes the time required for preparing the input files for Haplotypecaller, like addition of read groups and conversion of
SAM file to sorted and indexed BAM formats. The run time for the parallelized execution represents the times taken by the
optimized pipeline for 100 workers.

efficient bioinformatics applications that can harness resources
from a heterogeneous, distributed environment.

VI. CONCLUSION

We addressed the problem of performance improvement
in a pipeline for genome mapping and subsequent variant
discovery by developing a workflow to run parallely on a
heterogeneous, distributed system. We identified that one of the
important factors to enable efficient parallelism is optimized
partitioning of data. In this regard, we discussed different
techniques of data decomposition, namely granularity-based,
individual-based, and alignment-based partitioning. We consid-
ered BWA for genome alignment and GATK’s HaplotypeCaller
for SNP and indel calling as our test tools. We tested both the
tools for all the approaches of data partitioning and concluded
that granularity-based partitioning was the best approach for
BWA. Unlike individual-based partitioning, this method did
not require the overhead of comparing each read in the query
with the barcode information to find a matching individual
name. For HaplotypeCaller, alignment-based approach was
proved to be the most efficient technique. By splitting the
reference file and the SAM file accordingly, it reduced the
search space to a considerable extent, which in turn lowered
the runtime from days to hours. After selecting the optimized
data partitioning approach for each tool, we combined them
into a pipeline framework that could efficiently analyze NGS
data in a substantially reduced time. For the test dataset
comprising genomic data of 50 oak individuals, our optimized
pipeline required approximately 4 hours when run parallely
with optimized number of workers, in this case 100 workers,

as opposed to 12 days, when the tools were run sequentially.
We further discussed the potential challenges that are likely to
be encountered while parallelizing such data-intensive appli-
cations and proposed a solution to each.
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