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ABSTRACT

The explosion of data in the biological community demands
the development of more scalable and flexible portals for
bioinformatic computation. To address this need, we put
forth characteristics needed for rigorous, reproducible, and
collaborative resources for data intensive science. Imple-
menting a system with these characteristics exposed chal-
lenges in user interface, data distribution, and workflow de-
scription/execution. We describe several responses to these
challenges. The Data-Action-Queue metaphor addresses user
interface and system organization concepts. A dynamic data
distribution mechanism lays the foundation for the manage-
ment of persistent datasets. The Makeflow workflow facili-
tates the simple description and execution of complex multi-
part jobs. The resulting web portal, Biocompute, has been
in production use at the University of Notre Dame’s Bioin-
formatics Core Facility since the summer of 2009. It has
provided over seven years of CPU time through its three se-
quence search modules — BLAST, SSAHA, and SHRIMP —
to ten biological and bioinformatic research groups spanning
three universities. In this paper we describe the goals and
interface to the system, its architecture and performance,
and the insights gained in its development.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures
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General Terms

Design, Human Factors, Performance, Experimentation

1. INTRODUCTION

The field of biology is becoming increasingly reliant on com-
putation. Data collection machines and methods continually
decline in cost and increase in throughput, generating a pro-
fusion of data. This explosion of data has grown the collab-
orative field of bioinformatics, which has in turn generated
many powerful tools for the exploration of large biological
datasets. However, despite the convenient parallelism and
demanding computational requirements present in many of
these applications, there continues to be a dearth of eas-
ily deployable parallel bioinformatics tools. Though many
popular resources for bioinformatic analysis exist, data ac-
quisition has rapidly outpaced their analysis and curation
capabilities.

‘We propose a more collaborative way to do data intensive
scientific computing. Our key goals are to provide collabo-
rative, rigorous, and repeatable analytic results. To achieve
these goals we propose a system in which user data are pri-
mary concerns, computational resources can be shared and
managed, data and computational workflows are parallel,
distributed, and replicable, and parameters of analysis are
persistently maintained. By allowing scientific communities
to pool and curate their data and resources in this way, we
hope to increase the scalability of scientific endeavors be-
yond the scope of monolithic central resources.

To support this collaborative structure, we suggest the Data-
Action-Queue interface metaphor. This model provides users
with a view of their past and current analyses, their raw
data, and the tools they use to analyze that data. Sharing
capabilities allow users to provide their collaborators with
access to user data and job information. The modular de-
sign suggested by this metaphor permits tool developers to
provide the community with new Actions without having to
re-implement interfaces to source data or job runtime infor-
mation.



In pursuit of these goals, we have implemented the Biocom-
pute web portal. Biocompute serves community needs by
providing biologists and their bioinformatician collaborators
a Data-Action-Queue based environment where datasets can
be readily shared and analyzed, results are automatically
documented and easily reproducible, and new tools can be
readily integrated. It runs on top of Chirp and Condor to
facilitate distributed storage and computation on shared re-
sources.

Dataset distribution, effective description and execution of
workflows, and user interface all proved to be challenging in
this context. In this paper, we provide a detailed description
and evaluation of our data distribution methods. We docu-
ment our use of the Makeflow [15] abstraction as a solution
to the workflow description and execution problem, and we
discuss the Data-Action-Queue interface model.

As of the writing of this paper, Biocompute is in production
use by the University of Notre Dame’s Bioinformatics Core
Facility. Since its initial deployment in the summer of 2009,
it has provided over seven years of CPU time through its
three sequence search modules — BLAST [1], SSAHA [11],
and SHRIMP [12] — to ten biological and bioinformatic re-
search groups spanning three universities.

2. SYSTEM GOALS

There exist bioinformatics portals for a variety of biologi-
cal data. These range from broad-base resources, such as
NCBI [7], to more specific community level resources, such
as VectorBase [8], down to organism or even dataset level
web portals. While these portals all rely, at least in part, on
the scientific communities they support for data and anal-
ysis, they share the characteristics of centralized computa-
tion and curation. Additionally, many existing portals suffer
from imperfect data transparency or job parameter storage,
reducing the rigor and reproducibility of the results gen-
erated. As increasing number of organisms are sequenced,
smaller and less well funded biological communities are ac-
quiring and attempting to analyze their data. These commu-
nities rarely have the resources to support the development
of specialized community web portals, and find portals such
as NCBI insufficient for their computation, customization,
or collaboration needs.

It seems natural, then, to turn to a more rigorous, repro-
ducible, and collaborative way to do data intensive science.
We believe the following characteristics to be vital to these
goals.

1. User data must be able to integrate with the system
just as well as curator provided data.

2. Data management should be simple for owners as well
as site administrators.

3. Sharing of data and results should be straightforward.

4. Persistent records of job parameters and metadata need
to be kept.

5. Jobs should be easily resubmitted in order to repro-
duce results.
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6. System resources should be shared fairly, productively
and transparently.

7. The resources providing computation and data storage
must be scalable and shareable.

A system meeting these characteristics should permit a user
community to develop and improve a shared resource that is
capable of meeting their computational needs and contains
the data they require. Further, it will allow users to maintain
a clear, traceable, record of the precise sources of datasets
and results.

3. DATA-ACTION-QUEUE

Having the functionality required in section 2 is insufficient if
users cannot effectively use the resource. To provide the req-
uisite interface, we employ the Data-Action-Queue (DAQ)
interface metaphor. Like Model-View-Controller, this sug-
gests a useful intellectual structure for organizing a program.
However, DAQ describes an interface, rather than an imple-
mentation.

The DAQ metaphor rests on the idea that users of a scien-
tific computing web portal will be interested in three things:
their data, the tools by which they can analyze that data,
and the record of previous and ongoing analyses. We believe
this metaphor interacts well with the laid out requirements.
The Data view provides users with means to think about, act
on, and share their custom data. The Action view provides
users access to the analysis tools in the system. This also
suggests a modular design for the implementing system. If
tool developers need only specify the interface for the initial
execution of their tool — without having to concern them-
selves with the incoming data, or with recording parameters
and tracking progress — it greatly simplifies the addition of
new actions to the system. The Queue view documents job
parameters and meta-information, and permits users to drill
down to a single job in order to resubmit it or retrieve its
results. Since the Queue also shows the ongoing work in the
system, it gives users a simple way to observe the current
level of resource contention in the system, and the degree to
which they contribute to that contention. Figure 1 shows
this model.

4. IMPLEMENTATION

Here we present our preliminary implementation of these
ideas into the Biocompute web portal. First, we describe
our implementation of the DAQ interface metaphor. Sec-
ond, we describe the system architecture underlying the
metaphor. Third, we discuss our use of the workflow engine
Makeflow [15] to provide tool developers with a simple and
expressive interface to Notre Dame’s distributed computing
and storage resources. We then describe our solution to the
data distribution challenges introduced by our choice to in-
clude the BLAST [1] tool in Biocompute’s available actions,
and, finally, provide performance results for this solution.

4.1 Software Architecture
4.1.1 System Interface

In accordance with the DAQ model, users have three sepa-
rate views of Biocompute: a filesystem like interface to their
data, a set of dialogues permitting users to utilize actions



BLAST Active job in
Paused job in
User data — Active job in
Finished job in out || err
SSAHA Finished job in || out || err
Finished job in out || err
Data Action Queue

Figure 1: Biocompute interface model.

provided by the system, and a queue storing the status, in-
puts, and outputs of past and current jobs. Figure 1 lays
out this model, and the following sections describe the in-
teraction and sharing characteristics of its components.

4.1.2 Data

Our system stores, generates, and manipulates data. Users
interface with their uploaded data much as they would in
a regular filesystem. They can move files between folders,
delete them, and perform other simple operations.

The same interface used to perform these operations can
be used to promote files to datasets. To perform such a
promotion, a user enters into a dialogue customizable by
Biocompute tool developers. This screen permits users to
set metadata as well as any required parameters. Once the
selected file has been processed by the appropriate tool, the
resulting data are distributed to a subset of the Biocom-
pute Chirp [14] stores. The meta-information provided by
the users is stored in a relational database, along with other
system information such as known file locations. An exam-
ple in which a tool uses metadata to improve performance
is documented in section 4.4.

The data stored in biocompute and the datasets generated
from it are often elements of collaborative projects. User
files and datasets may be marked public or private. A pub-
lically available dataset is no different from an administrator
created one, allowing users to respond to community needs
directly. This primarily facilitates collaboration between bi-
ologists.

4.1.3 Actions

Tools provide the core functionality of Biocompute. As Bio-
compute grew from a distributed BLAST web portal to a
bioinformatics computing environment, we quickly realized
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a need for a flexible and low maintenance method for inte-
grating new tools into the system. Specifically, we needed
to provide application developers with simple hooks into the
main site while providing enough flexibility for including di-
verse applications. Further, it was important that applica-
tion developers be provided with a simple and flexible tool
for describing and exploiting parallelism provided by the un-
derlying distributed system.

From these requirements, modules emerged. Conceptually,
each module consists of an interface and an execution unit.
The interface provides a set of php functions to display de-
sired information to users via the web portal. The execution
component is a template for the job directory used by Bio-
compute to manage batch jobs. So far, each Biocompute
module utilizes a local script to generate and run a Make-
flow [15] for execution on the distributed system. Further
discussion of this tool can be found in section 4.3.

In creating this system we greatly facilitated the collabora-
tions between biologists and bioinformaticians. A tool de-
veloper need not be intimately familiar with biocompute in
order to develop a module. In fact, two of the three avail-
able modules have been developed by computer science grad
students not otherwise involved with biocompute.

4.1.4 Queue

While the distributed system beneath Biocompute may not
be of general interest to its users, the details of job sub-
missions and progress are important. Biocompute provides
methods for users to recall past jobs, track progress of ongo-
ing jobs, and perform simple management such as pausing or
deleting jobs. Users may view currently running jobs or look
through their past jobs. Each job has drill down functional-
ity, permitting a user to look through or download the input,
output, and error of the job, and to see pertinent meta-data
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Figure 2: Architecture of Biocompute. The dotted lines indicated possible but unimplemented components.

such as job size, time to completion (or estimated time to
completion if the job is still running), and parameters used
to generate results.

For system administrators and developers, a page showing
the status of the Condor queue for Biocompute jobs and sta-
tus messages for all the computers advertising a willingness
to run Biocompute jobs is also available.

The Queue facilitates collaboration in two primary ways.
As with user data, queue jobs may be marked public or
private. Making a job public effectively exposes the source
data, parameters, and results to inspection and replication
by other Biocompute users. Furthermore, the currently run-
ning Queue and the Condor queue detail pages provide cu-
rious users with a way to evaluate the current resource con-
tention in the system. We discuss the impact of this and
other feedback mechanisms in section 4.6.

4.2 System Description

Biocompute is arranged into three primary components. A
single server hosts the website, submits batch jobs, and
stores data from those jobs such as input and output files.
A relational database stores metadata for the system such
as user data, job status, runtime and disk usage statistics.
Each dataset is stored on a Chirp [14] cluster of 32 ma-
chines that has been integrated into the Condor distributed
computing environment. These machines serve as a primary
runtime environment for batch jobs and are supplemented
by an extended set of machines running Chirp that advertise
availability for Biocompute jobs using the Condor classad

system.

4.3 Workflow Engine for Modules

Makeflow [15] provides application developers needed sim-
plicity and flexibility for developing distributed applications.
Briefly, a developer uses makeflow with make-like syntax to
describe dependencies and execution requirements for their
tool (see figure 3 for an example makeflow). The makeflow
engine is capable of converting this workflow into the nec-
essary submissions and management of batch jobs. Though
Biocompute currently relies on Condor [9], makeflow can
use diverse batch systems and therefore provides the mech-
anism for our system to extend to other batch systems with
minimal changes. Makeflow also provides mechanisms for
fault tolerance that have proven invaluable for maintaining
correctness in large Biocompute jobs.

4.4 Data Management for BLAST

Here, we describe developing and improving our BLAST
functionality. We briefly describe the nature of the BLAST
tool and the data management problem it presents. Next,
we present the distributed BLAST tool used in Biocompute.
Finally, we describe the performance impact of our approach
and discuss ways of mitigating possible negatives in future
versions of the Biocompute system.

4.4.1 Problem Description

Alignment is a process by which sequences—discrete strings
of characters representing either the DNA bases or amino
acids of proteins derived from an organism—are compared
to one another. Alignments are accompanied by a score
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2111.input.0 2111.input.1 : 2111.input job.sched gen_submit_file_split_inputs.pl
LOCAL ./gen_submit_file_split_inputs.pl 2111

2111.output.0 2111.error.0 2111 total.0: 2111.input.0 distributed.script job.params
./distributed.script O

2111.output.1 2111.error.1 2111 total.1: 2111.input.1 distributed.script job.params
./distributed.script 1

2111.output: 2111.output.0 2111.output.1
LOCAL touch 2111.output;find . -name "2111.output.*" -exec cat {} \\\; >> 2111.output

2111.error: 2111.error.0 2111.error.1
LOCAL touch 2111.error;find . -name "2111.error.*" -exec cat {} \\\; >> 2111.error

2111.total: 2111.total.0 2111.total.1
LOCAL touch 2111 total;find . -name "2111.total.*" -exec cat {} \\\; >> 2111 total

2111.complete: 2111.output 2111.error 2111.total finishjob.sh
LOCAL .ffinishjob.sh 2111

\/

Figure 3: Example Makeflow file.

gen_submit_file_split_inputs.pl ‘ job.sched ‘ ’ZL‘L’Linput ‘

/gen_submit_file_split_inputs.pl

’ 2111.input.0 ‘ ’ distributed.script ‘

distributed.script

job.params

[t

distributed.script

’ 2111.total.0 ‘ ’ 2111.output.0 ‘ ’ 2111 total .1 ‘ ’ 2111.error.0 ‘ ’ 2111.output.1 ‘ ’ 2111.error.l
finishjob.sh ‘ ’ 2111.total ‘ ’ 2111.output ‘ ’ 2111.error
Jfinishjob.sh

2111.complete

Figure 4: Graph of the execution of a small work-
flow. The distributed acyclic graph of this job is
typical of Biocompute jobs .
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noting the similarity of the two sequences, and a visual rep-
resentation that lines up corresponding characters in both
strings. Such alignments can be invaluable to biologists at-
tempting to identify the function, origin, or structure of bi-
ological sequences through comparison to other well-studied
sequences. While optimal alignments can be performed al-
gorithmically using a technique known as Smith-Waterman
[13], the quadratic runtime of this technique makes it im-
practical for large problems.

BLAST [1], or Basic Local Alignment Search Tool, is a com-
monly used bioinformatics tool that implements a substan-
tially faster heuristic to align a set of one or more query se-
quences against a set of reference sequences. The sequences
can be either DNA or amino acid strings, and BLAST has
options that permit comparison of any query type to any
type of preformatted database. Because biologists often
wish to compare hundreds of thousands of sequences against
databases containing gigabytes of sequence data, these jobs
can take prohibitively long if executed sequentially. How-
ever, BLAST jobs are conveniently parallel in that the out-
put of a single BLAST is identical to the concatenation of
the output from BLASTSs of all disjoint subsets of desired
query sequences against the same reference database. Be-
cause most BLAST jobs are run against the same small sub-
set of databases, we avoid considerable data transfer over-
head by pre-staging BLAST databases where computation
is expected to take place. This allows us to run a distributed
BLAST across the campus grid.

While pre-staging is a simple solution to the data transfer
problem, it falls short in a number of ways. First, it is im-
practical and expensive to stage databases on every machine
available. Even if this was possible, it would be wasteful as
the majority of jobs on our Biocompute system can be run
quickly on our dedicated cluster of 32 machines. Further,
some user generated databases are used rarely while com-
mon system databases are heavily used.

Initially, we sought to address these difficulties by only run-
ning BLAST jobs on a cluster of 32 machines administered
by the Cooperative Computing Lab (CCL) at Notre Dame.
We modified the Condor settings on these machines to give
priority to jobs initiated by Biocompute. BLAST databases
were prestaged to this cluster. While this solution was sim-
ple, it became insufficient as the demands on the system in-
creased. Disk failures on some older machines in the cluster
quickly undermined an assumption of data homogeneity, and
resulted in mismatches and unused machines. Network out-
ages, machine downtime, and other factors helped prevent
uniform distribution of newly created databases. Finally, a
lack of a coherent system to track the locations of working
databases made maintaining consistency in the cluster very
difficult.

The next iteration of the system used a set of tables in Bio-
compute’s relational database to store database sizes and lo-
cations. Datasets were tracked generically, with a separate
table storing BLAST-specific metadata. The addition of a
few simple screens based on these tables permitted users to
track detailed information regarding their own databases.
This modification, along with a few simple scripts to dis-
tribute datasets to new machines, provided additional flex-



ibility and power when based on a host cluster. Shortly
after implementing this solution, however, a number of new
machines were added to our campus grid. As these ma-
chines had Chirp and Condor resources, it made sense to
leverage these underutilized resources for Biocompute’s com-
putational tasks. Because these systems were spread be-
tween three physically distinct locations, we supplemented
our static distribution and tracking scheme with dynamic
data distribution to adjust to a larger, more heterogenous
computing environment.

Given new resources, it seemed reasonable to examine mov-
ing databases at runtime. By transferring required databases
on a per distributed task basis we hoped to avoid unaccept-
able costs in terms of bandwidth and disk utilization. We
wanted to avoid unnecessary file transfers, and efficiently
utilize existing resources whenever possible. Additionally,
we wanted to be sure that the network load incurred by
runtime file transfers was well distributed and that failures
didn’t result in data corruption or any future errors.

We achieved these goals by carefully modifying the script
used by the BLAST module. The previous script used a
simple check to determine presence or absence of any of the
databases needed. A failure to find the appropriate database
was reported such that the Condor job would be evicted and
rescheduled rather than being considered complete with er-
ror. This provided a failsafe if the assumption of uniform
database distribution was violated (as it often was in our
experience). We used Chirp’s put and get functions to per-
form data transfers and performed several tests for correct-
ness. BLAST’s wrapper script was modified to exit with the
“database not found” error code if the data transfers failed.

While these modifications ensured that failed data transfers
didn’t leave a lasting impact, they did nothing to mitigate
spurious data transfers. To minimize the amount of unneces-
sary data transfer, we decided to experiment with Condor’s
rank functionality. Condor provides a convenient option by
which users can define a rank equation for a given job. This
rank equation calculates the value of a given machine based
on characteristics advertised. Jobs are run on the highest
ranked available machine. We found that using the dataset
metadata stored in our relational database, we could rank
machines by the number of bytes already pre-staged to that
machine. This rank function schedules jobs to the machine
requiring the least dynamic data transfer. While this ap-
proach naturally ties our BLAST module to Condor, similar
concepts could be used to provide job placement preferences
in other batch systems.

This technique requires that the list of database locations
be correct. To maintain correct lists, we use the following
method. Any successful job was run on a machine containing
all required databases. Jobs returning with the database not
found error are known to lack one of the needed databases.
Therefore, we parse job results and update the mysql database
with data locations accordingly. For those jobs that run
against only one database, this is sufficient information to
update the database, however in the general case we cannot
simply determine the appropriate action and therefore make
no modifications to the database.
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To balance load, we transfer databases from a randomly se-
lected machine in the primary cluster. If the chosen machine
does not to have the appropriate database, the transfer fails
and the job is rescheduled.

Even with random source selection load balancing, poten-
tial network traffic is significant. For example, the largest
BLAST database hosted in Biocompute is over 8 GB. Fur-
ther, many Biocompute jobs run in hundreds or even thou-
sands of pieces, and therefore it is possible that a job could
request 8GB transfers to dozens or even hundreds of ma-
chines simultaneously. To mitigate this unreasonable de-
mand we limit the number of running jobs to 300. Addi-
tionally, we cap transfer time at 10 minutes. This effectively
prevents us from transferring files overly large for the avail-
able bandwidth. Under high load or over low speed networks
only small files will be transferred, whereas connections with
abundant bandwidth will support the movement of signifi-
cant databases. Concisely put, the process is as follows:

1. Check for database in local Chirp store

2. if missing database initiate database transfer from a
random host, else run normally

3. if transfer successful run move the database to the ex-
pected location in the Chirp server and set ACLs to
permit local read and execute.

4. repeat 1-3 until all necessary databases are acquired
or one of 2, or 3 fail.

5. if failure, return with database not found error code,
else run executable

6. On logfile parse (triggered by user accessing a job page),
mark all machines hosting successful runs as possessing
all databases used by job.

4.5 Semantic Comparison of Manual and Dy-
namic Distribution Models

The transition from manual to dynamic distribution required
a shift in dataset storage semantics within Biocompute. This
shift was brought about by the new authentication require-
ments introduced by node to node copying, and by the au-
tomatic updating characteristics provided by our logfile in-
spection technique. In Table 1 we document the character-
istics of datasets before and after dynamic distribution. In
Table 2 we describe the failure and execution semantics for
several common dataset operations.

4.5.1 Performance of Data Management Schemes
In this section we will explore the performance characteris-
tics of Biocompute, and evaluate the impact of data distri-
bution model, and data availability on these characteristics.

Table 3 illustrates the cost of the current timeout policy for
the dynamic distribution model, as compared to the origi-
nal static distribution model. Figure 5 shows the runtime of
the dynamic BLAST query, which was executed against the
NCBI Non-Redundant (NR) BLAST database. This dataset
is 7.5GB - well outside the transferable size for our network.
This effectively causes any job assigned to a machine with-
out the database to immediately reschedule itself (in the



Table 1: Object Characteristics Before and After Implementing Dynamic Distribution

Object Before Dynamic After Dynamic
record permissions record | permissions
New Primary Machine Replica local fs | Biocompute, local global | Biocompute, local,
nd
Audited Primary Machine Replica | global Biocompute, local global | Biocompute, local,
nd
New Dynamic Replica n/a n/a global | Biocompute, local

Table 2: Operation Characteristics Before and After Implementing Dynamic Distribution

Operation Before Dynamic After Dynamic

atomic | synchronous | recorded | times out | automatic | atomic | synchronous | recorded | times out | automatic
Create no yes yes no no no no yes no no
Delete yes yes yes no no yes yes yes no no
Make Replica no yes yes no no yes no yes yes yes

Table 3: Worst case cost of dynamic distribution.
While the dynamic case shows a 167% increase in
badput, it only suffers an 18% increase in runtime

Distribution Method | Execution Badput (hours)
Time (hours)

dynamic 17.09 517.3

static 14.49 193.7
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Figure 5: Worst case dynamic distribution run. The
high variation in number of jobs running is a result
of failed data transfer attempts.

static case) or to wait for some time and then reschedule
(in the dynamic case). Though one might expect this be-
havior to significantly increase the overall runtime, we only
observe an 18% increase in runtime for the dynamic distribu-
tion worst case run. The characteristics of the rank function
ensure that dynamic jobs are only assigned to database-less
machines when all of the usable machines are already oc-
cupied. In the static case, these jobs would simply wait in
the queue until a usable machine became available. Essen-
tially, the change to dynamic distribution forces a transition
to a busy-wait. While this increases badput, and is perhaps
suboptimal from the perspective of users competing with
Biocompute for underlying distributed resources, it has a
limited impact on Biocompute users.
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Figure 6: Runtime of BLAST versus a medium sized
(491 MB) database for varying initial dataset repli-
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Figure 6 shows the impact of initial replication level on the
runtime of a BLAST job. It is important to note that the
Rank function remains unmodified throughout the runtime
of a particular job, so the number of jobs arriving at ma-
chines which have acquired the required databases during
runtime is statically determined. The naivety of our source
selection algorithm ensures that many transfer attempts will
fail if the primary cluster is saturated. This reduces our
ability to grow the level of parallelism as the job progresses.
However, because 300 subjobs may be submitted at any one
time, it is likely that each wave of execution will propogate
at least a few databases. The results demonstrate that over
the course of a job the distribution task is accomplished
quickly.

Figure 7 shows the impact of varying timeout times on the
runtime of a BLAST job. For this test, each database was
initially distributed to the 32 core nodes and, depending on
timeout, potentially distributed to any of the nodes open
to Biocompute jobs. The lowest timeout time never trans-
fers the target database, the middle one sometimes succeeds
and sometimes fails, and the final one always succeeds. As
expected, the increased parallelism generated by successful
distribution reduces runtime.

In both of our experiments, long tail runtimes for some sub-
jobs created limitations on the benefit of increased paral-
lelism. A more sensitive input splitting scheme might be
better able to control for this.

Our final timeout value was set high in order to maximize the
transferrable database size, as the impact on performance
was acceptable even for untransferable databases. Our final
replication value was set to 32, the size of our dedicated clus-
ter. Since the introduction of dynamic distribution, some
datasets have been spread to up to 90 machines, tripling the
parallelism available for those data.

4.6 Social Challenges of Biocompute

Up to this point, we have only addressed how Biocompute
meets the purely technical challenges described in section
2. However, as a shared resource and a nexus of collabo-
ration, Biocompute requires several mechanisms to balance
the needs of all of its stakeholders. We believe that this is
best achieved through fair policies and transparency. In this
section we discuss the policies and tools we have used to fa-
cilitate the management of our two most limited resources -
data and compute time.

4.6.1 Data

While the Center for Research Computing (CRC) at Notre
Dame generously provides campus groups with several ter-
abytes of storage at no cost, the sheer size and number
of available biological datasets require consideration of disk
space costs of Biocompute. The two simplest ways of achiev-
ing this are motivating users to control their disk consump-
tion, and convincing our users to provide or solicit funding
to increase available space. In either case, it is necessary to
provide users with both comparative and absolute measures
of their disk consumption. To this end we track disk space
consumption and CPU utilization for all users, and publish
a "scoreboard” within Biocompute. Pie-charts have thus far
provided particularly heavy users with sufficient motivation
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to delete jobs and data that they no longer need, and have
given us useful insights into common use cases and overall
system demand.

4.6.2 Compute Time

Resource contention also comes into play with regards to the
available grid computing resources. Utilization of Biocom-
pute’s computational resources tends to be bursty, generally
coinciding with common grant deadlines and with the begin-
nings and ends of breaks when users have extra free time.
These characteristics have produced catastrophic competi-
tion for resources during peaks. Without a scheduling pol-
icy, job portions naturally interleaved, resulting in the wall
clock time of each job to converge on the wall clock time
necessary to complete all the jobs. To combat this prob-
lem we implemented a first in first out policy for large jobs,
and a fast jobs first policy for small (less than five under-
lying components) jobs. This has allowed quick searches to
preempt long running ones, and prevents the activities of
users from seriously impacting the completion timeline for
previously started jobs. This modification also made Bio-
compute’s job progress bars into accurate predictors of re-
maining runtime, rather than a simple visualization of work
already completed. Significantly, system users were much
more satisfied (as measured in substantially reduced com-
plaints) following these changes.

5. RELATED WORK

The provenance system at work in Biocompute bears sim-
ilarity to the body of work generated by The First Prove-
nance Challenge [2,3,5,10]. For biologists, the queue and
detail views provide extremely high level provenance data.
At the user interface level, we were most interested in giv-
ing the user an easily communicable summary of the process
required to produce their results from their inputs. To this
end, Biocompute displays the command that would be used
to execute the equivalent BLAST job using only the unmod-
ified serial executable. This model hides the complexity of
the underlying execution, and gives our users a command
that they can share with colleagues working on entirely dif-
ferent systems. Obviously, such information would be in-
sufficient for debugging purposes, and Makeflow records a
significantly more detailed record of the job execution, in-
cluding the time, location and identity of any failed subjobs,
and a detailed description of the entire plan of execution.
However, while the records necessary to support detailed
provenance queries are available, we have thus far relied
exclusively on manual inspection for debugging and trou-
bleshooting. In contrast, formal provenance systems are ex-
pected to have a mechanism by which queries can be readily
answered [10]. We selected Makeflow as our workflow-engine
for its simplicity, and its ability to work with a wide variety
of batch systems. A similarly broad workflow and prove-
nance tool could be selected in its place without modifying
the architecture of Biocompute.

BLAST has had many parallel implementations [4,6]. While
the BLAST module of Biocompute is essentially an imple-
mentation of parallel BLAST using makeflow to describe the
parallelism, we do not mean to introduce Biocompute as a
competitor in this space. Rather, we use BLAST to high-
light common problems with the management of persistent
datasets, and show a generic way to ease the problems gen-



erated without resorting to database segmentation or other
complex and application-specific techniques. The BLAST
module, like all of Biocompute’s modules, uses an unmodi-
fied serial executable for each subtask.

6. CONCLUSIONS
6.1 Usability

As with any service, the true metric of Biocompute’s suc-
cess is the degree to which it assists those it is meant to
serve. During the past year, Biocompute has grown from
a fledgling tool, only used by its bioinformatician develop-
ers, to a workhorse for a wide variety of users. Regular
users range from faculty to support staff to students, and
cover all areas of computational expertise from faculty in
Computer Science to undergraduate biology majors; they
span 10 research groups and 3 universities. The SSAHA
and SHRIMP modules were developed by computer science
grad students without prior knowledge of the properties of
SSAHA, SHRIMP, or Biocompute. In a year we provided
our users with more than seven years of CPU time, and en-
abled them to perform research using datasets that are not
available or explorable anywhere outside of Notre Dame.

6.2 Challenges Revisited

The primary technical challenges encountered in Biocom-
pute stemmed from the absence of effective systems to man-
age data and execution. Our work with the Makeflow ab-
straction has convinced us that generally deployable tools
are needed. Decoupling parallelization of Biocompute’s mod-
ules by basing them on Makeflow has provided consistent
semantics and interfaces for our batch jobs for independent
tool development.

The burden of managing dataset replicas, however, has re-
quired module specific modifications and a significant amount
of custom development, which would have to be repeated
in the current implementation. The addition of dynamic
data transfer impacted the permissions semantics for pri-
mary replicas. Permission complications and monitoring re-
quirements limited our ability to communicate and rely on
data at various levels. For instance, tasks are unable to
modify their execution parameters to take advantage of new
information regarding dataset locations. While the concepts
learned from our approach to dataset management for the
BLAST module are generally applicable, the implementa-
tion of a system using those ideas is essential for the con-
tinuing development. Such a system would require a simple
tool for the replication, distribution, location, verification,
and access control of large files in a distributed system in
addition to providing hooks to facilitate on-demand replica-
tion.

The requirements of modularity also proved a significant
source of complexity. For a modular system to be effective
it must encapsulate many possible concepts within a single
usable framework - essentially an abstraction. The compo-
nents of our module abstraction - a parameter file, an exe-
cution workflow, and a set of presentation functions - form
the rough shape of any non-interactive program. Adding in-
teractive functionality would present a significant challenge
to Biocompute, and would likely require an alternative sys-
tem architecture. Furthermore, the constraints on the inter-
face between module and system increased the complexity
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of permissions management significantly. Consider that per-
mitting a module’s sub-jobs the ability to intelligently up-
date module specific tables at runtime would require grant-
ing not only the module, but all distributed machines in the
grid system, the ability to write to some elements of our
system infrastructure. While this would undeniably provide
additional power to modules, it would also incur significant
risk - even within the boundaries of Notre Dame’s internal
network.

6.3 Closing Observations

Finally, we return to our motivating goals. We stated that
our system should integrate user data, and make its manage-
ment simple. Job parameters and meta-information should
be kept and results easily shared and resubmitted. System
resources should be scaleable, and fairly, productively and
transparently shared.

Our system has, at least in pilot form, achieved these goals.
User datasets are indistinguishable from administrator cre-
ated datasets. Job parameters and meta-information are
kept and shared, and jobs can be resubmitted with two
clicks. Condor and Chirp, our system backends, are time-
tested scaleable shared resources. We report relative usage
of both space and computation, and maintain a fair schedul-
ing scheme. We facilitate access to this system with the
Data-Action-Queue interface.

However, our solutions are for the most part initial steps. By
implementing the current version of Biocompute we have ex-
posed a need for a much more complex dataset management
tool. With the addition of such a tool, Biocompute’s abil-
ity to usefully classify user data and vary its storage and
presentation policies based on these classifications could be
expanded to any kind of data. Our first attempt at imple-
menting a Data-Action-Queue interface came out effective,
but complex. Finally, we find that user data is constrained
by website upload speeds. User data cannot become fully
integrated until it can be accessed directly from the source
machines. At Notre Dame, in-house biological data gener-
ation is commonplace, and an effective system to pipeline
this data directly into biocompute would be a very useful
to our user community. Likewise, mechanisms to efficiently
import data from online resources would be welcomed.

Biocompute addresses a broad spectrum of challenges in
scientific computing web portal development. It illustrates
some of the technical solutions to social challenges presented
by collaborative and contentended resources, implements
techniques for mitigating the performance impact of large
semi-persistent datasets on distributed computations, and
provides a useful framework for exploring and addressing
open problems in cluster storage, computation, and socially
sensitive resource management.
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