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Abstract Research in the field of biometrics depends on
the effective management and analysis of many terabytes of
digital data. The quality of an experimental result is often
highly dependent upon the sheer amount of data marshalled
to support it. However, the current state of the art requires
researchers to have a heroic level of expertise in systems
software to perform large scale experiments. To address this,
we have designed and implemented BXGrid, a data reposi-
tory and workflow abstraction for biometrics research. The
system is composed of a relational database, an active stor-
age cluster, and a campus computing grid. End users inter-
act with the system through a high level abstraction of four
stages: Select, Transform, AllPairs, and Analyze. A high de-
gree of availability and reliability is achieved through trans-
parent fail over, three phase operations, and independent
auditing. BXGrid is currently in daily production use by an
active biometrics research group at the University of Notre
Dame. We discuss our experience in constructing and using
the system and offer lessons learned in conducting collabo-
rative research in e-Science.

1 Introduction

Research in the field of biometrics depends on the effective
management of large amounts of data and computation. Cur-
rent research projects in biometrics acquire many terabytes
of images and video of subjects in many different modes and
situations, annotated with detailed metadata. To study the
effectiveness of new algorithms for identifying people, re-
searchers must exhaustively compare large numbers of mea-
surements with a variety of custom functions. The quality of
the end results is often dependent upon the sheer amount of
data marshalled to support it.
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Unfortunately, large scale experiments currently require
a heroic level of expertise in computer systems. Users must
be effective at configuring and using grid computing sys-
tems, relational databases, distributed filesystems, and be
aware of the many underlying functional constraints and per-
formance interactions. Once a problem is solved at a small
scale, there is no guarantee that it can be simply expanded
without employing new techniques. Data, tools, and tech-
niques are difficult to share even between researchers at the
same institution, because they rely on a complex stack of
hand tuned software.

To address these challenges, we have constructed BX-
Grid, an end-to-end computing system for conducting bio-
metrics research. BXGrid assists with the entire research
process from data acquisition all the way to generating re-
sults for publication. Because the entire chain of research is
kept consistently within one system, multiple users may eas-
ily share tools and results, building off of each other’s work.
BXGrid also helps to ensure scientific integrity by automat-
ing a variety of consistency checks, external data audits, and
reproduction of existing results.

In this paper, we describe the motivating scientific need,
the design and architecture of the system, and our expe-
rience in building and operating it in a production mode.
A brief introduction to biometrics is necessary to describe
the nature of the data and the high level abstraction of four
stages: Select, Transform, All-Pairs, Analyze. We describe
the architecture of the system, which consists of a relational
database, an active storage cluster, and a computing grid,
each specialized to carry out one component of the work-
flow. We describe how the system is used to ingest, manip-
ulate, and preserve data throughout its liftime. Our current
implementation has been used to store about 172,864 images
and movies totalling 2.1 terabytes, and is currently ingesting
data at the rate of one terabyte per month.

BXGrid is a collaboration between a systems research
group and a biometrics research group at the University of
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Notre Dame. The development of the system has taken a
number of unexpected turns. Along the way, we have learned
the following lessons which may prove to be useful to others
embarking on similar projects. We briefly state each lesson
here, and then elaborate upon them in Section 8 below.

1. Get a prototype running right away.
2. Ingest provisional data, not just archival data.
3. Allow objects to have many different names, each serv-

ing a distinct purpose.
4. Use crowdsourcing to divide and conquer burdensome

tasks.
5. Don’t use an XML representation as an internal schema.
6. Treat data consistency as an important goal, but not an

operational invariant.
7. Embed deliberate failures to achieve fault tolerance.
8. Allow outsiders to perform integrity checks.
9. Expect events that should “never” happen.

10. Let the users guide the interface design... up to a point.

2 Biometrics Research at Notre Dame

Biometrics systems are designed to verify an identity claim
or choose an identity from a known set using a measurement
of a physical trait. The most popular biometric today is the
fingerprint [13]. Other biometrics such as the iris [2], the
shape of the hand [9], and the face [22] have been studied
and characterized to a point where commercial products are
available, and more esoteric biometrics such as the shape or
photometric appearance of the ear [21] are currently being
explored. There remain many open research questions in the
field, particularly how to make biometrics effective for im-
perfect recordings and diverse populations.

The Computer Vision Research Lab (CVRL) at the Uni-
versity of Notre Dame acquires a large amount of biomet-
ric data. This data is used internally to design and test new
biometric algorithms, and is also exported to national stan-
dards agencies to develop rigorous tests for commercial bio-
metric systems. All data are collected under the provisions
of an experimental protocol reviewed annually by the Uni-
versity and Human Subjects Review Board; a consent form
is required from every subject at each data acquisition op-
portunity. Multiple images over time from a wide variety
of subjects from different demographics are needed. Sample
collection efforts have generated approximately 10 terabytes
of raw and processed data since 2002, and 75 gigabytes per
week is likely to be collected in the near future. Assuming
we keep two copies of all the data, this gives us 150 giga-
bytes of data being acquired every week. This means every
seven weeks, which is about the number of times we ac-
quire data every semester, we need another terabyte of stor-
age space for all the data acquired. Once we acquire data,

<Recording id="nd4R25000">
<URL root="nd4/"

relative="Fall2007/02463d1650.tiff"/>
<CaptureDate>11/13/2007</CaptureDate>
<CaptureTime>13:00:00</CaptureTime>
<Format value="tiff"/>
<Camera name="LG2200"/>
<Subject id="nd1S02463">
<Application>

<Iris>
<Eyes>

<Eye which="Left"
color="Brown" Pose="0"
Motion="Still"
treatment="No"
conditions="default">

</Eye>
</Eyes>
<Stage id="nd4T00014"/>
</Subject>
<Collection id="nd4C00010"/>
<Environment id="nd4E00029"/>
<Sensor id="nd4N00016"/>
<Illuminant id="nd4I00011"/>
<Illuminant id="stdI0001"/>
<Weather condition="Inside"/>
<Wearing glasses="No"

source="Retrospectively"/>
</Iris>

</Application>
<Description>shot number=1</Description>

</Recording>

Fig. 1 Sample Iris and Metadata

it needs to be organized in such a way that is easily acces-
sible for future use. Furthermore, we need to store multiple
copies of the data for redundancy so that we can recover
data if it is lost, and ensure the integrity of all copies of data.
Finally, biometric samples include metadata in addition to
images, videos, and other sensor outputs. Every biometric
sample is accompanied by the identity of the corresponding
subject, the sensor in use, the time of day, a characteriza-
tion of illumination (if applicable), and other extrinsic la-
bels. Each human subject also has a metadata record storing
ethnicity, age, and other demographic attributes. This meta-
data accompanies the samples, is used to index them to gen-
erate subsets for experiments, and must be maintained along
with sample data.

Currently, images are stored in an AFS [7] filesystem
named by (1) the date the data was acquired (2) the bio-
metric acquired and (3) the sensor used to acquire the data.
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For example, we are currently acquiring 12 still images and
video of each subject’s iris on an LG 2200 EOU iris cam-
era. So, for a particular day of acquisition, we have a folder
labeled with the date of acquisition and type of data, called
200x-xxx-lg-still, that contains 12 images per subject. Sim-
ilarly, we have another folder called 200x-xxx-lg-video. We
then know that the iris data of the 14th subject’s data ac-
quired on day 64 of 2008 is located in folders 2008-064-
lg-still and 2008-064-lg-video and has the prefix 2008-064-
014 before each of the corresponding images. Correspond-
ing files store the metadata in a format mandated by govern-
ment sponsors, shown in Figure 1

While this organization is simple to achieve, it has many
drawbacks. It is difficult to search for samples with given
properties, because this requires combing through each meta-
data file exhaustively. Adding new data to the system is very
labor intensive because each acquisition session requires cus-
tom scripting to generate the metadata and name the files,
and each image must be studied manually. Because a sin-
gle file server cannot support the load imposed by large ex-
periments, users typically work by copying data out of the
repository to local disks for execution. As a result, results are
scattered across many different computers in many different
forms, and it is almost impossible to share results in any rig-
orous way. Instead of a filesystem, we need a repository that
supports all of these activities efficiently, encouraging users
to reuse and share results as much as possible.

3 Abstractions for Biometrics Research

We are motivated by the advice of Gray [6], who suggests
that the most effective way to design a new database is to
ask the potential users to pose several hard questions that
they would like answered, temporarily ignoring the tech-
nical difficulties involved. In working with the biometrics
group, we discovered that almost all of the proposed ques-
tions involved combining four simple abstractions shown in
Figure 2:

– Select(R) = Select a set of images and metadata from the
repository based on requirements R, such as eye color,
gender, camera, or location.

– Transform(S, F) = Apply function F to all members of
set S, yielding the output of F attached to the same meta-
data as the input. This abstraction is typically used to
convert file types, or to reduce an image into a feature
space such as an iris code or a face geometry.

– AllPairs(S, F) = Compare all elements in set S using
function, producing a matrix M where each element M[x][y]
= F(S[x],S[y]). This abstraction is used to create a sim-
ilarity matrix that represents the action of a biometric
matcher on a large body of data.

– Quality(M, D) = Reduce matrix M into a metric D that
represents the overall quality of the match. This could be
a single value such as the rank one recognition rate, or a
graph such as an ROC curve.

Given these abstractions as an interface to the reposi-
tory, we can now compose a variety of fundamental research
questions in biometrics. As a starting point, we will show
some examples of Select() that can be expressed in SQL:

Q1 Find all irises for subjects who are male, Asian, and born
after 1985.
SELECT * FROM irises LEFT JOIN subjects
USING(subjectid) WHERE gender = ’Male’
AND race=’Asian’ AND YOB>1985

Q2 Find all face images for whom the corresponding subject
also has blue eye images.
SELECT * FROM faces WHERE subjectid IN
(SELECT subjectid FROM irises
WHERE color=’Blue’)

Q3 Find all subjects for whom we have both a video clip and
a still image acquired in the last week.
SELECT * from subjects WHERE subjectid IN
(SELECT DISTINCT subjectid FROM face_videos
WHERE date > "2008-01-01" INTERSECT
SELECT DISTINCT subjectid FROM faces
WHERE date > "2008-01-01")

So far, these queries allow us to extract data of inter-
est from the repository, but the real power comes from the
ability to execute an entire experiment using the remain-
ing abstractions. In the following examples, a query like
those above has been compressed into a Select() expression
whose results are further processed:

Q4 For a given selection of data, which matcher (M or N)
provides more accurate results? To answer this, compute
the quality of a similarity matrix for each:
S = Select(D)
Q1 = Quality(AllPairs(Transform(S,F),M))
Q2 = Quality(AllPairs(Transform(S,F),N))

Q5 Does matching function M have a demographic bias? To
answer this, compute the quality of its matches across
several different demographics:
foreach demographic D {

S = Select(D)
Q[D] = Quality(AllPairs(Transform(S,F),M))

}

Q6 Is it effective to combine results from different biometric
matchers? To answer this, compute a similarity matrix
for multiple matchers, then average them and compare
to each of the individual matchers.
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Fig. 2 Workflow Abstractions for Biometrics

T = Transform(Select(R))
foreach matcher M[i] {

A = AllPairs(T,M[i])
T += A
Q[i] = Quality(A)

}
Q[T] = Quality(T)

Many different research questions in biometrics follow a
similar form. By simplifying and standardizing each of these
stages, we can accelerate discovery and enable more direct
comparison of competing techniques.

4 System Architecture

The BXGrid data repository is designed to assist in all stages
of research from initial data acquisition to generating results
for publication. It consists of three major components – a
database, an active storage cluster, and a computing grid –
each used to carry out the portion of the workload for which
it is most suited. The entire system is accessible through a
command line tool that facilitates batch processing, and a
web portal for interactive data exploration.

Database. A conventional relational database is used to
manage all of the metadata and perform the Select portion
of each workload. Each category of data: iris images, iris
videos, face images, face videos, etc. has a distinct table with
a strong schema, so as to maximally exploit the query and
constraint capabilities of the database. Additional relations
record ancillary data such as subjects, cameras, recording
environments, and so forth. An open source database run-
ning on a single conventional machine with a dual core CPU,
2 GB of RAM, and 1 TB of storage can easily scale to mil-
lions of records and serve tens of users simultaneously, so
no extraordinary measures are required to achieve good per-
formance in this component.

Active Storage Cluster. The actual images, videos, and
other large data files are stored in a scalable active storage
cluster. This cluster is composed of conventional machines
with large local single disks, each running a Chirp [18] ac-
tive storage server. Each unique file in the system is identi-
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Stores Files, Arrays, Funcs

Performs AllPairs(A,B,F)
Stores Transient Data

Computing Grid

Database
Stores Metadata

Performs Select(R)

500 CPUs + 40 TB
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Commands

IMPORT
EXPORT
QUERY
DELETE
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Web Portal
Validate
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AllPairs
Analyze

Collaborators
Technicians
Researchers

Fig. 3 System Architecture

fied by a unique integer file ID, and then replicated multi-
ple times across the cluster. The database records the list of
unique files, and the location of each replica of that file. Files
are immutable once added to the repository, which makes it
easy to implement both fail-over and recovery: a reader must
simply find any available file replicas, and a writer must sim-
ply find any available disk. Figure 4 gives an example of
the relationship between metadata, files, and replicas. The
iris recording R3206 refers to fileID 1290, whose size and
checksum are stored in the Files table. The Replicas ta-
ble indicates that this file currently has two replicas on the
file servers fs04 and fs05.

This is an active storage cluster [14] because it also pro-
vides embedded computing power. Most Transform oper-
ations are I/O bound and operate on a significant subset of
the repository, so those small codes are shipped to the stor-
age nodes for execution. As we will show below, this im-
proves the performance of individual operations, and also
exploits the natural parallelism of the system. In addition,
we can improve capacity and performance simultaneously
by provisioning new nodes without a service interruption.
Our current storage cluster is an array of 16 dual-core ma-
chines, each with 2 GB of RAM and 750GB of disk.

Computing Grid. Finally, a campus computing grid is
used to perform AllPairs operations, which are much more
CPU intensive. For this purpose, we use our local 500 CPU
Condor pool, where each node is also equipped with a Chirp
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Fig. 5 Performance of the Repository Operations

fileserver to export each local disk. However, unlike the ac-
tive storage cluster, these resources are neither reliable nor
dedicated to BXGrid. CPUs may be used to run jobs, but
they may be evicted at anytime according to the needs of
the owner. Local disks may be used for temporary data, but
may be deleted at any time. Data being processed might be
intercepted by the owner of a machine or a snooper on the
network, so we cannot process raw biometric data. Despite
those challenges, this system is appropriate for executing the
All-Pairs component of the workload. Once a dataset has
been transformed to a non-invertible feature space in the ac-
tive storage cluster, it can be replicated to the various nodes
of the computing grid to perform an All-Pairs computation.
In a previous paper [10], we described how to make All-
Pairs robust and efficient for large workloads.

Command Line Tool. The lowest level interface to the
system is a command line tool that automates data ingestion,
export, deletion, and recovery. The operations are:

IMPORT <set> FROM <metadata>
EXPORT <set> WHERE <expr> AS <pattern>
LOCATE <set> WHERE <expr>
QUERY <set> WHERE <expr>
TRANSFORM <set> TO <set> USING <function>

ALLPAIRS <set> AND <set> USING <function>
DELETE <expr>
AUDIT <n>
REPAIR <n>

IMPORT loads metadata and data into the repository from
the caller’s workstation. EXPORT retrieves both metadata and
data from the repository. LOCATE does the same, but only re-
turns the location of files, instead of retrieving them. QUERY
simply returns the metadata without the files. TRANSFORM
and ALLPAIRS invoke the corresponding abstraction on the
active storage cluster and the computing grid. DELETE de-
stroys all of the metadata and files matching a particular ex-
pression; this is most commonly used to reverse an IMPORT
of bad data. AUDIT and REPAIR are used to detect and repair
corrupted data and react to reconfigurations.

Figure 5(a) shows the runtime of each of the key opera-
tions on up to 50,000 iris images of about 300KB each, with
triple replication. Most operations require multiple transac-
tions against the database and the storage cluster. IMPORT
operates at one-third the speed of EXPORT, because it must
make three copies of each data. LOCATE is significantly faster
than EXPORT because it does not actually fetch any data, and
QUERY is essentially instantaneous. TRANSFORM is used to
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convert images from JPEG to TIFF format, which is a com-
mon conversion. Figure 5(b) shows the most expensive op-
eration, ALLPAIRS, on a 4000x4000 comparison on the com-
puting grid over the course of eight hours. The performance
of this step depends on the availability of CPUs. As can be
seen, only 150 CPUs were initially available, but nearly 350
became available after 2.5 hours.

Web Portal. Most end users interact with the system
through the web portal, which allows for interactive brows-
ing, data export in various forms, dataset management, and
system administration. Figure 6 shows some example pages
from the portal: (a) shows the validation interface, where
end users match newly acquired data against existing data,
(b) shows the interface for selecting and browsing datasets,
and (c) shows the interface for drilling into records.

5 The Data Lifecycle

In this section, we describe how the various users and stake-
holders of BXGrid interact with the system at each stage
in the life of the data. Althuogh BXGrid is not directly in-
volved in data acquisition, it is a useful starting point that
explains the nature of the data and the possible errors that
can be introduced.

Acquire. Several data acquisition campaigns are run each
year. Each campaign involves a particular physical setting
(e.g. hallway, outside), multiple sensors (camera, video, 3-
D), and different poses (sitting, standing) for each subject.
As subjects arrive at the lab, they must check in with an ID
card, and then are guided from station to station by a lab
technician. On any given day, up to eighty subjects partici-
pate, producing as many as twenty recordings each. Each is
labelled with a globally unique “shot id” that indicates the
date, time, subject, sensor, and comment. A number of errors
can creep in at this stage. An error in transcription at check-
in could associate the wrong subject with a set of images. If
a subject steps out of line, an entire sequence of recordings
could be mis-labeled. If a technician errs in taking a picture,
a left eye could be recorded as a right eye, or vice versa.
An image could be misaligned or overexposed, rendering it
useless to experimentation.

Import. The lab operator imports data in batch at the
end of each day or week using the command line tool. The
tool checks for basic schema correctness in the input, and
rejects the entire batch if the schema is incorrect or the files
are missing. Otherwise, it generates a new batch number and
loads the metadata and data into the repository, replicating
as needed. Figure 5(a) shows the time to import, export, or
delete a large number of records in BXGrid. Although the
system is not yet highly optimized, the performance is suffi-
cient to support the actual rate of data acquisition.

Validate. Because of the high probablity of errors in ac-
quisition, newly imported data must be validated. All records

are initially marked as unvalidated. For an record to be
validated, a technician must review the image and meta-
data via the web portal. The portal displays the unvalidated
image side by side with images taken of the same subject
from several previous acquisition sessions, shown in Fig-
ure 6(a). If the technician identifies an error, they can flag it
as a problem, which will require manual repair by a domain
expert. Otherwise, the image may be marked as validated.
By exposing this task through the web portal, the very labor
intensive activity can be “crowdsourced” by sharing the task
among multiple students or technicians.

Enroll. A second mark of approval is required before
a recording is accepted into the repository. The curator su-
pervising the validation process may view a web interface
that gives an overview of the number of records in each
state, and who has validated them. The quality of work may
be reviewed by selecting validated records at random, or
by searching for the work of any one technician. At this
point, decisions may still be reversed, and individual prob-
lems fixed by editing the metadata directly. In the case of
a completely flubbed acquisition, the entire dataset can be
backed out by invoking DELETE on the batch id. Once sat-
isfied, the supervisor may enroll the entire dataset through
the web interface, which will mark all of the records as
enrolled, and assign various identifiers required by outside
agencies. The dataset is then fully accepted into the reposi-
tory and may be used for experimentation.

Select. The first step in experimentation is to select a
dataset through the web portal. Because most users are not
SQL experts, the primary method of selecting data is to en-
tire collections of data with labels such as “Spring 2008 In-
door Faces”. These results can be viewed graphically and
then successively refined with simple expressions such as
“eye = Left”. Those with SQL expertise can perform more
complex queries through a text interface, view the results
graphically, and then save the results for other users.

Transform. Most raw data must be reduced into a fea-
ture space or other form more suitable for processing. To
facilitate this, the user may select from a library of standard
transformations, or upload their own binary code that per-
forms exactly one transformation. After selecting the func-
tion and the selected dataset, the transformation is performed
on the active storage cluster, resulting in a new dataset that
may be further selected or transformed. The new transformed
dataset is considered to be derived from a parent dataset.
Therefore, it retains most of the metadata which comes from
the parent set. For example, a function transforms an iris im-
age to an iris code. The correspondent will inherit informa-
tion such as: left eye, subjectid, environmentid... from the
original iris image.

All-Pairs. Likewise, to perform a large scale compar-
ison, the user uploads or chooses an existing comparison
function and a saved data set. This task is very computation
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(a) Validate Page (b) Select Page (c) Record Detail Page

Fig. 6 Examples of the Web Portal Interface

intensive, and requires dispatch to a computational grid. Our
implementation of All-Pairs is described in an earlier pa-
per [10] and briefly works as follows. First, the system mea-
sures the size of the input data and the sample runtime of
the function to build a model of the system. It then chooses
a suitable number of hosts to harness, and the distributes
the input data to the grid using a spanning tree. The work-
load is partitioned, and the function is dispatched to the data
using Condor [19]. Figure 5(e) shows a timeline of a typi-
cal All-Pairs job, comparing all 4466 images to each other,
harnessing up to 350 CPUs over eight hours, varying due
to competition from other users. As can be seen, the scale of
the problem is such that it would be impractical to run solely
in the database or even the active storage cluster.

Analyze. The result of an All-Pairs run is a large ma-
trix where each cell represents the result of a single com-
parison. Because some of the matrices are potentially very
large (the 60K X 60K result is 28.8 GB), they are stored by
a custom matrix library that partitions the results across the
active storage cluster, keeping only an “index record” on the
database server. Because there are a relatively small number
of standardized ways to present data in this field, the sys-
tem can automatically generate publication-ready outputs in
a number of forms. For example, a histogram can be used to
show the distribution of comparison scores between match-
ing and non-matching subjects. Or, an ROC curve can repre-
sent the accept and reject rates at various levels of sensitivity.

Share. Finally, because BXGrid stores results at every
intermediate step of the data lifecycle, users can draw on one
another’s results. The system records every newly created
dataset as a child of an existing dataset via one of the four
abstract operations. Figure 7 shows an example of this. User
A Selects data from the archive of face images, transforms it
via a function, computes the similarity matrix via AllPairs,
and produces an ROC graph of the result. If User B wishes
to improve upon User A’s matching algorithm, B may sim-
ply select the same dataset, apply a new transform function,
repeat the experiment, and compare the output graphs. A
year later, user C could repeat the same experiment on a
larger dataset by issuing the same query against the (larger)
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Fig. 7 Sharing Datasets for Cooperative Discovery

archive, but apply the same function and produce new re-
sults. In this way, experiments can be precisely reproduced
and compared.

6 Naming

Designing a naming system for BXGrid was a considerable
challenge. The CVRL already had several concurrent nam-
ing schemes that satisfied different stakeholders. However,
these naming schemes were used in an ad-hoc manner, and
the generation and meaning of names was not clearly doc-
umented. BXGrid requires some sort of name to uniquely
identify an object, and none of the existing names applied
through the entire data lifecycle. It was necessary for a joint
group to meet regularly over the course of a year before the
entire naming scheme was clearly defined and in production
use.
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Each object in the system gains the following names
through the data lifecycle. Each plays a different role in the
repository: For each, we state the name and give an example
of an identifier.

ShotID (2008-093-020-3 R-lg4000.tiff)
This is the first name assigned to a recording in the lab, serv-
ing as the simple file name before importing into BXGrid.
It specifies the date, the shot number (with respect to that
date), and the sensor used to record the image or video. In
the lab, a running metadata file records additional informa-
tion, such as the subject’s identity, indexed by each ShotID
for that date.

BatchID (1232662885)
For each IMPORT command, BXGrid generates a BatchID,
which serves as a transaction number for the operation. A
batch usually consists of a few hundred recordings from a
day or a week of acquisition. The primary purpose of this
name is to give the importing user an easy way to DELETE
recently imported data that has some systematic problem.

FileID (233336)
For each imported recording, BXGrid generates a FileID
integer, which uniquely identifies the metadata and the as-
sociated data file (image or video). A FileID is simply in-
cremented for each new recording, and is never re-used or
changed, regardless of other names in use.

ReplicaID (698583)
Each imported file has several replicas in the system, each
of which is identified by a unique ReplicaID. This allows
BXGrid to unambiguously refer to a particular copy of a
file, in case of data loss or corruption.

SequenceID (02463d1890)
This identifier is used internally by the CVRL as a unique
identifier within experiments. It consists of the subject num-
ber (02463) and the number of recordings taken of that sub-
ject (1890). Because the subject associated with a recording
is not yet verified, this name is not assigned until the record-
ing is validated and enrolled. BXGrid records the maximum
SequenceID for each subject, and automates the assignment
of names during enrollment.

RecordingID (nd5R65000)
A RecordingID uniquely identifies a recording transmitted
to the sponsoring agency. It uniquely identifies a record-
ing across projects at multiple institutions, so nd5 indicates
Notre Dame, series 5, and 65000 indicates the recording
number. BXGrid also automates the assignment of RecordingIDs
to recordings during enrollment.

7 Reliability and Availability

BXGrid must be a highly robust system. First, it must be re-
liable: once imported, data in the system should survive the
expected rate of hardware failures, and automatically mi-
grate as new hardware is provisioned. Second, it must also
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be available. Acquisition of data occurs on dozens of week-
days during the academic year. Students and faculty interact
with the system to do research at all hours of the night and
day. Data analysis tasks may take days or weeks. Good per-
formance is also desirable, but not at the expense of reliabil-
ity and availability.

Figure 8 shows the expected probability of data loss due
to disk failure based on the values observed by Google [12],
which are significantly higher than those reported by man-
ufacturers. For years one through five in the life of a disk,
the annualized failure rate f is the probability that the disk
will fail in that particular year. The probability of data loss of
two disks is simply f 2, three disks f 3, and so forth. For three
data copies, the probability of failure is less than 0.001 per-
cent in the first year, and less than 0.1 percent in years two
through five. To sustain the data beyond the conventional
disk lifetime of five years, we should plan to provision new
equipment

Transparent Fail Over. Because the active storage clus-
ter records each replica as a self-contained whole, the fail-
ure of any device does not have any immediate impact on
the others. Operations that read the repository retrieve the
set of available replicas, then try each in random order un-
til success is obtained. Operations that import new data se-
lect any available file server at random: if the selected one
does not respond, another may be chosen. If no replicas (or
file servers) are available, then the request may either block
or return an error, depending on the user’s configuration.
Given a sufficient replication factor, even the failure of sev-
eral servers at once will only impact performance.

Sustaining acceptable performance during a failure re-
quires some care and imposes a modest performance penalty
on normal operations. Each file server operation has an in-
ternal timeout and retry, which is designed to hide transient
failures such as network outages, server reboots, and dropped
TCP connections. Without any advance knowledge of the
amount of data to be transferred, this timeout must be set
very high – five minutes – in order to acommodate files mea-
sured in gigabytes. If a file server is not available, then an
operation will be retried for up to five minutes, holding up
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the entire workload. To avoid this problem, we add an in-
expensive test for server health before downloading a file:
the client requests a stat on the file with a short timeout of
three seconds. If this succeeds, then the client now has the
file size and can choose a download timeout proportional to
the file size. If it fails, the client requests a different replica
and tries again with another service. Of course, this test also
has a cost of three seconds on a failed server, so the client
should cache this result for a limited time (five minutes) be-
fore attempting to contact the server again.

Figure 9 demonstrates this by comparing the performance
of several variations of transparent failover while exporting
50,000 iris images. The “Optimistic” case has all 16 servers
are operating and simply downloads files without any ad-
ditional checks. The remaining cases have one file server
disabled. “File Timeout” relies solely on the failure of file
downloads, and makes very little progress. “Fast Check”
does better, but is still significantly slower, because approxi-
mately every 16th request is delayed by three seconds. “Cached
Check” does best, because it only pays the three second
penalty every five minutes. However, it is still measurably
worse than the optimistic case, because each transaction in-
volves the additional check.

Three Phase Updates. Most updates on the repository
require modifying both the database server and one or more
storage servers. Because this cannot be done atomically, there
is the danger of inconsistency between the two after a fail-
ure. To address this problem, all changes to the repository
require three phases: (1) record an intention in the database,
(2) modify the file server(s), (3) complete the intention in the
database. For example, when adding a new file to the sys-
tem, the IMPORT command chooses a location for the first
replica, writes that intention to the database and marks its
state as creating. It then uploads the file into the desired
location, and then completes by updating the state to ok.
Likewise, DELETE records the intention of deleting to the
database, deletes a file, and then removes the record entirely.
Other tools that read the database simply must take care to
read data only in the ok state. In the event of a failure, there
may be records left behind in the intermediate states, but the

REPAIR tool can complete or abort the action without ambi-
guity.

Asynchronous Audit and Repair. An important aspect
of preserving data for the long haul is providing the end user
with an independent means for checking the integrity of the
system. Although the system can (and should) perform all
manner of integrity checks when data are imported or ex-
ported, changes to the system, software, or environment may
damage the repository in ways that may not be observed un-
til much later. Thus, we allow the curator to check the in-
tegrity of a set or to scan the entire system on demand.

The AUDIT command works as follows. For every file,
the system locates all replicas, computes the size and check-
sum of each replica, and compares it to the stored values.
An error is reported if there are an insufficient number of
replicas in the ok state, inconsistencies in the checksums,
and replicas for files that no longer exist. In addition, the au-
diting tool checks for referential integrity in the metadata,
ensuring that each recording refers to a valid entry in the
ancillary data tables. (We do not use the database to en-
force referential integrity when inserting data, because we
do not wish to delay the preservation of digital data simply
because the paperwork representing the ancillary data has
not yet been processed.)

This is a very data intensive process that gains signifi-
cant benefit from the capabilities of the active storage clus-
ter. The serial task of interrogating the database can be ac-
complished in seconds, but the checksumming requires vis-
iting every byte stored, and it would be highly inefficient to
move all of this data over the network. Instead, we can per-
form the checksums on the active storage nodes in parallel.
To demonstrate this, we constructed three versions of the
auditing code. The first uses the repository like a conven-
tional file system, reading all of the data over the network
into a checksum process at the database node. The second
uses the active storage cluster to perform the checksums at
the remote hosts, but only performs them sequentially. The
third dispatches all the checksum requests in bulk parallel to
sixteen active storage units. We measure the performance of
each method on 50,000 iris images of about 300KB each:

Audit Method Execution Time Speedup
Conventional File System 5:43:12 1X
Sequential Active Storage 1:39:22 3.4X
Parallel Active Storage 0:08:21 41.1X

When the repository is scaled up to a million record-
ings, then the parallel active storage audit can be done in a
few hours, while the conventional method would take days.
For even larger sizes,the audit can be done incrementally by
specifying a maximum number of files to check in the given
invocation. This would allow the curator to spread checks
across periods of low load. The REPAIR command does the
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same as AUDIT but also repairs the system by making new
replicas and deleting bad copies.

8 Lessons Learned

Like many e-Science projects, BXGrid is a collaboration be-
tween two research groups: one building the system, and the
other using it to conduct research. Each group brought to the
project different experience, terminology, and expectations.
Although the overall system has been a success, the overall
development did not proceed exactly according to plan. The
following lessons summarize some of our experiences that
may be of value to other e-Science projects.

Lesson 1: Get a prototype running right away. In the
initial stages of the project, we spent a fair amount of en-
ergy elaborating the design and specifications of the system.
We then constructed a prototype with the basic functions
of the system, only to discover that a significant number of
design decisions were just plain wrong (We describe many
of these below). Simply having an operational prototype in
place forced the design team to confront technical issues that
would not have otherwise been apparent. If we had spent a
year designing the “perfect” system without the benefit of
practical experience, the project might have failed.

Lesson 2: Ingest provisional data, not just archival
data. In our initial design for the system, we assumed that
BXGrid would only ingest data of archival quality for per-
manent storage and experimental study. Our first prototype
ingested an entire semester’s worth of enrolled data at a
time, which resulted in several problems. Ingesting a semester’s
worth of data took days, after which it was often discovered
that there was some problem in the data, requiring the entire
batch to be backed out, repaired, and ingested again. Be-
cause so much time had elapsed between acquisition and in-
gestion, it was often difficult for lab operators to remember
the exact context of a session, making it much more difficult
to correct errors. Finally, leaving valuable data in a tempo-
rary space for so long left it vulnerable to system failures.
With the current BXGrid design, data is ingested in a provi-
sional state daily. In addition to minimizing the window of
vulnerability, this makes the provisional data easy to explore
with the entire machinery of the system. Validators can dis-
cover problems shortly after acquisition and work with lab
operators to fix problems as soon as possible. An unexpected
benefit of this technique is that it eliminated a number of ad-
hoc methods for storing image metadata, thus enforcing a
strong schema at an early stage in the data lifecycle.

Lesson 3: Allow objects to have many different names,
each serving a distinct purpose. Establishing a clear defi-
nition of each of type of name used by the system was a sig-
nificant and time consuming challenge in the collaboration.
In our initial design, we struggled to make use of an existing
name as a unique key to name every object in the system.

This turned out to be a mistake, because the existing names
were not stable, or did not apply throughout the lifetime of
the data. For example, the RecordingID is not assigned until
enrollment, and only applies to data transmitted to an ex-
ternal standards agency. The ShotID is unique, but might
change during validation if the subject was mis-identified.
After several attempts to work with these names, we finally
fell back to defining a distinct set of names (FileID, Repli-
caID) whose only purpose is to provide uniqueness within
BXGrid. Once this was done, we could employ the system to
automatically generate the other categories of names, while
leaving the operators free to rename and correct errors with-
out compromising the integrity of the system.

Lesson 4: Use crowdsourcing to divide and conquer
burdensome tasks. As described above, validation is the
process of manually identifying what data objects to ac-
cept for archival. In the past, validating an entire semester’s
worth of data was an enormous task left to one lab techni-
cian at the end of each semester. A large, monotonous task
performed under time pressure by one person is inevitably
error prone. In the intial design of BXGrid, we did not con-
sider data validation to be in the scope of the project. How-
ever, once we began ingesting provisional data (Lesson 2),
it became clear that portion of the data lifecycle could be
machine-assisted, shared between multiple users, and per-
formed incrementally. With the new system, a backlog of
several semesters of data has been validated in a matter of
days, and newly acquired data is validated by a team of ten
lab technicians who can do higher quality work in much
smaller increments.

Lesson 5: Don’t use an XML representation as an in-
ternal schema. An important consumer of data from BX-
Grid is a national standards agency that accepts metadata
according to a specific XML schema. Our initial design for
the system used the agency’s XML schema for our inter-
nal representation, and as our preferred external representa-
tion. However, this did not work well, because the agency
often made minor changes in the XML representation, each
of which required changes to all layers of our system. In ad-
dition, the local users of the system preferred a simpler text
representation of the metadata, because this facilitated script
processing of the data. After several iterations, we divorced
our internal schema from the XML representation, estab-
lished a simpler text representation for external use, and im-
plemented conversion to XML as an external script. This
arrangement made our internal users happier, and also em-
powered those in charge of communicating with the agency
to tweak the XML output as needed.

Lesson 6: Treat data consistency as an important goal.
but not an operational invariant. BXGrid has a number
of internal consistency requirements. However, the system
does not guarantee that each of the consistency requirements
will hold any given time, because such guarantees would
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significantly reduce the availability of the system, or oth-
erwise inconvenience the users. Further, events outside our
control (e.g. server failure) may cause these constraints to
be violated, requiring the system to be unavailable until re-
pair. For example, at the storage level, each committed file
must have a minimum of three data replicas, and the state
of each replica must be reflected correctly in the database.
At the metadata level, each recording should have a corre-
sponding subject. Neither of these can be fully guaranteed,
because an import process may fail before completion. Fur-
ther, it is not desirable to roll back incomplete operations: it
is better to have two replicas than none, and it is better to
preserve an incomplete record than to not preserve it at all.
These and other consistency constraints are handled by the
periodic scan of the auditor process.

Lesson 7: Embed deliberate failures to achieve fault
tolerance. While the system design considered fault toler-
ance from the beginning, the actual implementation lagged
behind, because the underlying hardware was quite reliable.
Programmers implementing new portions of the system would
(naturally) implement the basic functionality, leave the fault
tolerance until later, and then forget to complete it. We found
that the most effective way to ensure that fault tolerance
was actually achieved was to deliberately increase the fail-
ure rate. In the production system, we began taking servers
offline randomly, and corrupting some replicas of the under-
lying objects which should be detected by checksums. As a
result, fault tolerance was forced to become a higher priority
in development.

Lesson 8: Allow outsiders to perform integrity checks.
Our initial claims of fault tolerance within BXGrid were met
with some understandable skepticism from users. Many had
lost data on commercial RAID arrays that claimed to be re-
liable and yet failed to reconstruct properly after a failed
disk. How could an experimental system like BXGrid be any
better? While we cannot claim that BXGrid is bug-free, we
have found that allowing users to perform their own integrity
checks can increase trust in the system. The location of each
replica of a file is exposed to the user, who can directly con-
nect and verify that data is stored correctly. Any authorized
user may run their own audit process to check the integrity
of the system as they see fit.

Lesson 9: Expect events that should “never” happen.
In our initial design discussions, we deliberately searched
for invariants that could simplify the design of the system.
For example, we agreed early on that as a matter of scientific
integrity, ingested data would never be deleted, and enrolled
data would never be modified. While these may be desirable
properties for a scientific repository in the abstract, they ig-
nore the very real costs of making mistakes. A user could
accidentally ingest a terabyte of incorrect data; if it must be
maintained forever, this will severely degrade the capacity
and the performance of the system. With some operational

experience, it became clear that both deletions and modi-
fications would be necessary. To maintain the integrity of
the system, we simply require that such operations require
a high level of privilege, are logged in a distinct area of the
system, and do not re-use unique identifiers.

Lesson 10: Let the users guide the interface design...
up to a point.
The system designers proved to be very poor at predicting
how the end users wanted interact with the system. For ex-
ample, we built a general-purpose search feature into the
validation interface, that would allow users to refine the view
by any property: eye color, subject, camera, etc. As it turns
out, the users always wanted to group by one property –
subjects – and found the general interface to be cumber-
some. With a few lines of code, we were able to provide
a much simpler interface that grouped all work automati-
cally by subject, thus increasing productivity dramatically.
On the other hand, end users often have no understanding
of whether a proposed feature will be easy or hard to imple-
ment. For example, we have received a number of requests
to make the interface more interactive by adding AJAX tech-
nologies. While this might certainly be useful, the cost to
implement far outweighs the potential benefit.

9 Related Work

BXGrid is preceded and inspired by several previous ex-
amples of scientific data repositories. Like the SDSS Sky-
Server [17], we map the primary user interactions to a cus-
tom query language and a relational database. However, we
have chosen a different set of abstractions suited to the do-
main and applied different underlying computer systems (an
active storage cluster and a computing grid) that are more
closely aligned with the user’s goals. BXGrid is also simi-
lar to SDM [11] in that we have coupled a database to a file
system. However, in the case of SDM, the data model is cen-
tered around n-dimensional arrays, and multiple disks are
used to support high throughput I/O in MPI [5], rather than
active storage and data preservation. HEDC [16] is another
example of a filesystem-database combination implemented
on a single large enterprise-class machine. The Storage Re-
source Broker [1] and its successor iRODS [20] are pow-
erful, general-purpose tool for managing filesystem hierar-
chies spread across multiple devices, tagged with searchable
metadata implemented as a vertical schema. BXGrid differs
in that the top-level interface is a database with a strict hori-
zontal schema pointing to files in a hierarchy (rather than the
other way around) which allows for the full expressiveness
of SQL to be applied.

A common design question is whether large binary ob-
jects should be stored as binary objects in a database or as
files in a filesystem. Searcs [15] observes that filesystems
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are more efficient than databases for objects above a cer-
tain size; 1 MB is the critical value in the particular case of
NTFS and SQL Server. Although BXGrid could have been
implemented solely as a clustered database, such a model
would have a much more complex (and opaque) fault tol-
erance model, and would not allow legacy codes to address
storage objects directly.

Our use of abstractions to represent high level work-
load structures is inspired by other systems such as Map-
Reduce [3], Dryad [8], Swift [23], and Pegasus [4]. How-
ever, different categories of applications need different kinds
of abstractions. Our workflow does not cleanly fit into any of
the just-named abstractions because it encompasses several
modes of data (relational, file, array) and types of computer
systems (database, cluster, grid.)

10 Conclusion

Figure 10 shows the growth of BXGrid over time. The sys-
tem began production operations in July 2008, and ingested
a terabyte of data from previous years by September 2008.
Through fall 2008, it collected daily acquisitions of iris im-
ages. Starting in January 2009, BXGrid began accepting video
acquisitions, and is currently ingesting data at approximately
one terabyte per month. At the time of writing, BXGrid is
storing 172,864 recordings with triple replication, totalling
2.1 TB spread across 16 file servers for both reliability and
performance.

The system is used daily by a dozen undergraduate op-
erators, all of whom are trained in its use. We can confi-
dently assign subsets of newly acquired data to students for
validation, generate summaries of results to identify strong
and weak performers, and handle exceptional cases (such
as errors requiring metadata updates, file manipulation, or
expert inspection of samples to resolve problems). The Web
front-end and the support of multiple simultaneous users has
removed a critical production bottleneck, and enabled data
validation and enrollment within days of acquisition rather
than months. Graduate students make use of the command-

line interface to carry out experiments using the Select, Trans-
form, AllPairs, Quality abstraction.

There are many avenues of future work. In biometrics
specifically, there are many possible ways of computing on
archived data to accelerate the scientific process. For exam-
ple, the process of validating iris data is more time consum-
ing and error prone than validating face data. Given the abil-
ity to perform All-Pairs on the computing grid, newly ac-
quired data could be automatically compared against already
acquired data to detect errors in the metadata. More gener-
ally, we believe that the concept of high level abstractions
is an appealing method of making large scale computing ac-
cessible to the experts in other domains. Future work should
identify what abstractions are needed in other fields of study,
and what degree of re-use is possible across fields.
Acknowledgment: This work was supported by National Sci-
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