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Abstract—Clusters, clouds, and grids offer access to large scale
computational resources at low cost. This is especially appealing
to scientific applications that require a very large scale to compete
in the research space. However, the resources available across
these platforms differ significantly in their availability, hardware,
environment, performance, cost of use, and more. This requires
the use of elastic applications that can adapt to the resources
available at run-time, transparently handling heterogeneity and
failures. In this paper, we present case studies of several elastic
applications built using the Work Queue programming frame-
work. From this experience, we offer six general guidelines for
the design and implementation of elastic applications that run
on thousands of processors.

I. INTRODUCTION

Clusters, clouds, and grids have grown in popularity by

offering access to large arrays of computational and storage

resources at low costs. As the demand for such resources

continues to increase, the number of providers of clusters,

clouds, and grids, and the pool of resources offered through

them continues to expand. This trend of increasing accessibil-

ity to low-cost resources is especially appealing to scientific

applications with large computing needs.

However, this computing environment is very challenging,

because it consists of heterogeneous resources with rapidly

changing availability and a high probability of failure. For

example, the Spot-Pricing [1] service offered by Amazon

provides virtual machines whenever the market price falls

below the user’s threshold. Someone using this service must

be prepared for the addition and removal of resources at a

moment’s notice. (In this way, it is not unlike using a cycle-

stealing system such as Condor [2] or BOINC [3].)

Traditional scientific applications are not prepared for this

environment, because they are usually built around the as-

sumption of fixed, homogeneous resources at a single loca-

tion. For example, message-passing applications are usually

designed to run on a fixed number of processors – usually a

power of two – that cannot change during runtime. A multi-

threaded program is usually designed to run on a fixed number

of cores selected at startup; changing the number of cores at

runtime results in a serious performance penalty.

In contrast, an elastic application is designed to operate

in the dynamic environment of clusters, clouds, and grids. An

elastic application is a distributed program that can dynam-

ically adapt to the resources available at any given moment

while accommodating heterogeneity and fault tolerance. This

paper presents our experience in designing and implementing

a selection of elastic applications on clusters, clouds, and

grids: Elastic MAKER (E-MAKER), Elastic Replica Exchange

(REPEX), and Folding At Work (FAW). Their case studies

are performed using the Work Queue [4] framework, but the

principles apply to many other programming environments.

While there is much guidance in the literature for how to

design traditional parallel applications (e.g. [5]), there is little

guidance for elastic applications. To that end, we articulate a

set of principles based on our experience: (1) Abolish shared

writes, (2) Keep your software close and your dependencies

closer, (3) Synchronize two, you make company; synchronize

three, you make a crowd, (4) Make tasks of a feather flock

together, (5) Seek simplicity, and gain power, and (6) Build a

model before scaling new heights.

The rest of the paper is organized as follows: Section

II describes the characteristics of elastic applications and

their architecture. In Section III, three different elastic ap-

plications are described. It also studies the factors affecting

their performance in heterogeneous and dynamically changing

environments and presents techniques applied to overcome

or limit their influence. Section IV presents the guidelines

derived and established from our experiences in building these

applications. Section V describes the related work.

II. ELASTIC APPLICATIONS

Elastic applications harness dynamic distributed resources

without imposing limitations on their size, type, platform, and

environment. In order to achieve such functionality, elastic

applications must exhibit the following characteristics:

• Adaptability. They must adapt to resource availability

during run time. That is, they must dynamically expand

their resource consumption to include resources that

become available during execution. At the same time,

they must also adapt to resources being lost or terminated

during execution.

• Fault-tolerance. They must continue execution in the

presence of run-time failures. They must isolate failures

to individual executions or resources and dynamically re-

cover by re-running the failed executions or by migrating

them to successfully operating resources.

• Portability. They must be portable across different plat-

forms and environments with limited effort from users.

They must be able to execute on any platform using the



Fig. 1. Architecture of Elastic Applications.

software components specified by users for that platform

without having to be re-engineered or rewritten.

• Versatility. By leveraging their quick portability, elas-

tic applications must be able to simultaneously harness

resources with diverse operating environments. In other

words, users must be able to run them using resources

federated from any cluster, cloud, or grid platform as long

as the software compatibility with the different operating

environments is established.

These characteristics further enable elastic applications to

achieve scalability and reproducibility without requiring ded-

icated and sophisticated hardware.

Elastic applications are typically implemented by construct-

ing a long-running coordinator that submits a large number of

short-running tasks. The coordinator is responsible for observ-

ing available resources, decomposing the workload into tasks

of appropriate size, submitting and monitoring tasks, handling

fault-tolerance, and interacting with users. The individual tasks

are usually self-contained executable programs, along with

their expected input and output files. The individual tasks may

make use of local physical parallelism in the form of multi-

core machines or accelerated hardware such as GPUs, while

the coordinator operates at a parallelism of anywhere from one

hundred to ten thousand tasks running simultaneously.

As shown in Figure 1, the logical structure of the tasks

in an elastic application may vary widely. It could be a

directed acyclic graph or workflow in which the tasks and their

relationship are fully elaborated in advance. It could be a data

decomposition in which a large dataset is broken into pieces

and processed independently. It could be an iterative algorithm

in which a set of tasks is dispatched, evaluated, and then dis-

patched again until an end condition is met. These structures

can describe a variety of applications, such as Monte-carlo

simulations [6], protein folding [7], and bioinformatics [8].

The development of elastic applications requires the use

of a programming framework that allows the tasks in the

application to be specified, dispatched, and executed across

the allocated resources. In this paper, we use the Work Queue

framework [4] for constructing each of the case studies.

However, the principles discussed here are generally applicable

(a) Outline of a Work Queue
application.

(b) Working of a Work Queue based
elastic application.

Fig. 2. The Work Queue Framework.

to applications written using tools such as such as SAGA [9],

Pegasus [10], Taverna [11], Hadoop [12].

The Work Queue framework consists of the following

components shown in Figure 2:

• The Work Queue Library implements and provides the

functionality for coordinating the application execution

across workers. It schedules tasks on workers, transfers

the inputs and outputs of tasks, and reschedules failed

tasks. The library also provides data management capa-

bilities, such as caching and scheduling policies that favor

workers with pre-existing data.

• The Work Queue API provides the interfaces (in C,

Python, and Perl) to the Work Queue library. The API is

used to create master (coordinator) programs that create,

describe, and submit tasks for execution, and retrieve their

outputs upon execution.

• The Work Queue Worker is a lightweight execution

engine that is run on the allocated resources. It connects

to an available or specified Work Queue master and

executes the dispatched tasks.

Work Queue dispatches tasks to workers as they establish

connection with the master and reschedules tasks running on

terminated workers. This allows applications to aggregate re-

sources during their run-time. Work Queue reschedules failed

tasks and allows the application to examine completed tasks

and resubmit tasks with erroneous results, thereby providing

recovery from errors and failures. It requires developers to

explicitly specify the inputs and outputs for each task so they

can be transferred to the workers. In addition, it distinguishes

workers based on their operating environments and transfers

the version of inputs specified for a certain environment.

III. CASE STUDIES ON ELASTIC APPLICATIONS

In this section, we discuss, profile, and evaluate three

different elastic applications built using Work Queue. Table I

summarizes the properties of these applications.

A. Elastic MAKER (E-MAKER)

Genomic annotation is the process of identifying various

cellular entities, such as genes, exons, mRNA, in the genome



Application Function Input
Computation

Kernel

Work Queue

Code Size

Number of

Tasks

Logical

Structure

E-MAKER
Annotate genome

sequences
Anopheles

gambiae genome
MAKER ∼ 1150 lines ∼ 10000

REPEX
Sample conformational

space of proteins
WW protein

domain
ProtoMol ∼ 700 lines ∼ 20000

FAW
Study of protein

dynamics
Alanine Dipeptide

molecule
Gromacs ∼ 600 lines ∼ 20000

TABLE I
PROFILE AND SUMMARY OF THE ELASTIC SCIENTIFIC APPLICATIONS STUDIED IN THIS WORK.

Fig. 3. Logical Structure of E-MAKER

of an organism. Additionally, genomic annotation seeks to as-

sign functional information to these components by assessing

similarity to known genomic components of other organisms.

MAKER [13] is a commonly used toolchain for genomic

annotation. The genomes processed by MAKER are comprised

of contigs, or large contiguous sequences in a genome.

We previously described the conversion of the native

MAKER implementation to a Work Queue based implementa-

tion in [14]. We refer to the Work Queue based implementation

as Elastic MAKER or E-MAKER for the remainder of the

paper. Figure 3 describes the logical structure of E-MAKER.

In this work, we identify the factors affecting its performance,

and the modifications we made to improve its performance.

E-MAKER inherits most of the techniques and mechanisms

in the native MAKER implementation. However, the native

MAKER implementation used MPI to operate in parallel. As

a result, its design and development was heavily influenced

by the execution environment in parallel computing systems

that is homogeneous and consistently available across multiple

resources. For instance, MAKER writes the outputs of its

tasks to a common shared file. This allowed outputs to be

continuously aggregated in a single file. However, this setup

incurs the overheads of file locking mechanisms that enable

concurrent and consistent write accesses. Further, MAKER

requires a shared filesystems to store and manage its inputs and

outputs. Such techniques and requirements limited the ability

and performance of E-MAKER on heterogeneous resources.

To improve the performance of E-MAKER, we made the

following modifications. First, we modified the tasks to write

their outputs in their local execution environment. On com-

pletion of the tasks, we gathered these outputs from their exe-

cution sites to produce the final output. Second, we explicitly

specify the inputs and outputs for tasks to be transfered to

and from the resources chosen for task executions. This elim-
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(a) Failures of E-MAKER using the
shared file system.
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(b) Failures of E-MAKER using dis-
tributed & dedicated accesses.

Fig. 4. Comparison of failures in the E-MAKER versions using shared file
system and dedicated data access.

inated the assumption or requirement of a shared filesystem

spanning the allocated resources, which is impractical when

resources are derived from multiple platforms. In addition,

such operating environments include resources that fail or are

terminated during run-time. Hence, dedicated and distributed

write accesses avoid scenarios where resource failures corrupt

the data stored in a shared filesystem. Figure 4 compares the

failures observed in the E-MAKER implementations using

shared file system and dedicated accesses when running on

the Condor grid at Notre Dame. The failures in Figure 4(a)

are due to (1) failures in write accesses due to locks and (2)

failures due to Condor terminating jobs. The dedicated access

version of E-MAKER eliminates the failures in write accesses

thereby lowering overall failures and improving stability.

Figure 4(b) shows the number of failures to be lower

during run time. We also notice that, despite the lower failure

overheads, the overall completion time is longer compared to

Figure 4(a). From our investigation, we attribute this to two

factors: (1) overheads from explicitly transferring input and

output data, and (2) use of shared and heterogeneous resources.

In studying the transfer overheads, we found E-MAKER to

operate by simply creating a task for each contig in the input

set. This manner of uninformed decomposition often resulted

in high transfer overheads leading to sub-optimal run-time

performance. To overcome this limitation, we first formulated

the running time of E-MAKER as follows:

T (k,m) = α(k) +
β

k
+ ∆(k,m) (1)

In Equation 1, α and β represent the sequential and par-

allel execution components of E-MAKER respectively. β is



dependent on the number of contigs, n, to annotate. β along

with the number of tasks created for annotation, denoted by

k, determine the parallel execution run times. The sequential

component, α, includes the time to partition β and process the

results of k tasks, and therefore is dependent on k. ∆(k,m)
represents the transfer overheads of the k tasks and is dictated

by the average length of the contigs m. Note that this model

differs from Amdahl’s law in that the sequential work done by

coordinator (master) increases with the degree of parallelism.

We acquire information on number of contigs (n), their

average length (m), and the time taken to annotate a contig of

average length (t) using the inputs specified for E-MAKER.

These can either be provided by the user or derived by a simple

benchmark or profiling script run on the input set. We evaluate

β as the product of the number of contigs and the average

time to annotate a contig in the input set. We profile the

execution of E-MAKER to measure the sequential execution

overheads along with partitioning and processing overheads

incurred with respect to the number of tasks. For simplicity

in modeling, we assume that the allocated resources exhibit

similar performance characteristics.

Variable Value Comments

α(k) (a ∗ k) + b a, b are empirically determined
as 0.08 and 65 respectively

β t ∗ n t is obtained from input

∆(k, m) (c ∗ n) + (d ∗ k) c is obtained from input; d is
empirically determined as 10

TABLE II
VALUES USED TO ESTIMATE T (k, m) IN E-MAKER.

Table II describes values for the simple model used in

computing T (k,m) for E-MAKER. Using this model, we

estimate the run times for an input set of 20 sequences each

containing 20,000 contigs. For this set, we estimate each

annotation to take about 500 seconds on the Condor grid at

Notre Dame (i.e., t=500 seconds). These sequences together

incur less than 1MB of data transferred as inputs and outputs of

tasks. We use a conservative network bandwidth of 1 MB/s and

therefore derive c∗n to be 1. Figure 5(a) shows the estimated

running time using Equation 1 and the actual running time for

annotation of this input set on the Condor grid at Notre Dame.

Equation 1 assumes that the resources allocated for execu-

tion is equivalent to the number of parallel tasks k. So let us

consider the case where the number of allocated resources r is

smaller than k. Here, only r tasks can be executed in parallel

at any given time. As a result, the execution of k tasks will

be prolonged by a factor of ⌈k/r⌉. Equation 1 now becomes:

T (k,m, r) = α(k) +
β

k
∗ ⌈

k

r
⌉ + ∆(k,m, r) (2)

The values in Table II also apply in this setup except for

∆(k,m, r). In E-MAKER, we cache the software components

and other run-time dependencies after the initial transfer. In

Equation 1, these transfer overheads were incurred for each

task and modeled as d ∗ k. In Equation 2 these overheads

are incurred for each resource (since they are transferred once

and cached), and therefore are modeled as d ∗ r. Further, we
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Fig. 5. Illustration of the estimated running time from Equation 1 and the
actual running time of E-MAKER with two different input sets.

ignore the transfer overheads specific to each task since they

are negligible. ∆(k,m, r) is computed here as (c∗n) + (d∗r).

Using Equation 2, we estimate the running times for an

input set of 5418 sequences each containing 2,000 contigs.

For this set, we estimate t to be 50 seconds on the Notre

Dame Condor pool. The transfer overhead for these sequences

is estimated around 6 seconds with a 1 MB/s bandwidth.

Figure 5(b) shows the estimated running time using Equation 2

and the actual running time when r is 100 resources.

We have several observations from Figure 5. First, we notice

from Figure 5(a) and 5(b) that increasing the number of tasks

have contrasting effects on the running time. This shows that

the run-time performance of E-MAKER varies based on the

input set and size of allocated resources. Second, this model

can guide the user in determining the size of resources to

allocate. For instance, in the experiment in Figure 5(a), the

user can benefit from increasing the size of allocated resources

to 20. Third, when the resource allocation is fixed due to user

constraints, it becomes important to adapt task decomposition

to the resource allocation. In Figure 5(b), decomposing the

parallelism into 1000 tasks or less is beneficial compared to

larger task sizes. Our ongoing work is focussed on improving

the accuracy of the model and incorporating it in E-MAKER

to adapt its task decomposition and guide resource allocation.

Finally, the native implementation of MAKER utilized a

global logging and failure recovery mechanism. This mecha-

nism restarted MAKER at the last successfully logged global

state on encountering a failure. We modified E-MAKER to

use the failure recovery mechanisms offered in Work Queue.

This allowed E-MAKER to isolate failures to individual tasks

or resources, migrate tasks from failed resources, validate task

outputs, and resubmit tasks with erroneous outputs. With this

modification, E-MAKER eliminates the overheads and costs

of global logging and recovery in the presence of failures.

We also noticed that the software executables of the tasks

in E-MAKER required libraries, such as BioPerl, for their

execution. Since the operating environments of the allocated

resources are diverse and are not guaranteed to include these

software dependencies, we explicitly specify the executables

along with their required libraries as the inputs of each task.

This allowed the operating environment for each task to be

transferred and correctly setup at the allocated resources.

This modification enabled E-MAKER to (1) harness resources

irrespective of the suitability of their native operating en-

vironment to task executions, and (2) handle heterogeneous



(a) Global synchronization (b) Localized synchronization

Fig. 6. Logical Structure of REPEX.

operating environments by transferring the version of the

software components compatible with those environments.

Summary. We made the following modifications and im-

provements to E-MAKER: First, E-MAKER transfers required

files and data to the resources running the tasks and avoids

reliance on shared filesystems. This simplifies the run-time

environment and avoids the bottleneck in using file locking

mechanisms. Second, E-MAKER transfers the software com-

ponents required for execution as input files to the resources.

This enables the execution environment to be setup correctly

on heterogeneous resources and avoid imposing limitations on

the operating environments that can be used for task execu-

tions. Third, E-MAKER uses the failure isolation and recovery

mechanisms in Work Queue to eliminate the overheads of a

global logging and recovery system. Finally, we formulate a

model of the run-time performance of E-MAKER to determine

task decomposition strategies and guide users on the size of

resources to allocate.

B. Replica Exchange simulations (REPEX)

Replica Exchange is a sampling method applied in study-

ing protein molecules and their movements across different

geometric boundaries in their conformational spaces. It sam-

ples the protein molecule in different geometric spaces and

configurations by creating multiple replicas of the molecule.

Replica exchange simulations (REPEX) work by creating

multiple replicas of a protein molecule at different temperature

configurations and simulating their dynamics over multiple

time steps. These replicas are independent of each other and

therefore, can be simulated concurrently. At the completion of

each step, a pair of neighboring replicas are randomly selected

and an exchange of their configuration is attempted.

Our earlier work [15] described the construction of the

replica exchange simulations as an elastic application using

Work Queue. Similar to the native MPI implementation, elastic

replica exchange was implemented using global synchroniza-

tion barriers. That is, the entire set of simulated replicas were

synchronized at the end of each time step when an exchange

is attempted. Each time step, therefore, served as a global

barrier. These barriers were used to ensure the two random

neighboring replicas chosen to attempt an exchange were at

the same time step in the simulation. Figure 6(a) illustrates

the logical structure of replica exchange with global barriers.

These global barriers worked effectively in ensuring cor-

rectness of the replica exchange in parallel computing envi-

ronments that typically consisted of dedicated homogeneous

resources. Due to the homogeneity in these environments,
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Fig. 7. Comparison of the running time and transfer overheads of the global
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of allocated workers.

the performance impact of using each time step as a global

barrier was minimal and often overlooked. However, in the

heterogeneous operating environments of elastic applications,

global barriers introduce delays and overheads which ad-

versely impact the overall performance of the application.

Therefore, to run replica exchange simulations efficiently

as elastic applications, the presence of global barriers must be

removed. In this work, we replace the global barrier at each

time step with barriers spanning two neighboring replicas. We

pre-compute the pairs of replicas used for an exchange attempt

at each step, and require only those pairs to synchronize at

their exchange step. That is, the barriers span a replica pair and

occur at the exchange step of that pair. Figure 6(b) illustrates

the replica exchange logical structure with localized barriers.

The use of local barriers resulted in improvements in the

run-time performance over the globally synchronized version

as illustrated in Figure 7. Figure 7(a) plots the running time

of experiments involving 150 replicas averaged over 10 runs.

It shows the average running time as the number of workers

allocated on the Condor grid at Notre Dame is varied. We

observe that the running times of the local barrier version

were faster in the presence of shared resources, heterogeneous

hardware, resource failures (these factors are also the reasons

behind the uneven run times observed for both versions).

The use of localized barriers also enabled the workload to

be partitioned such that the tasks within a partition share data

and generate outputs that serve as inputs for other tasks in

that partition. This avoids the transfer of input and output

files at every time step and makes better use of the available

storage capacities at allocated resources. Figure 7(b) illustrates

the lower transfer overheads of the localized barrier version

compared to the global barrier version.

In this work, we use ProtoMol [16] to run simulations on

the replicas in REPEX. Similar to E-MAKER, we explicitly

specify and transfer the software components of ProtoMol,

such as its executable, to the allocated resources.

Summary. We replaced the global synchronization barriers in

REPEX with localized barriers spanning two replicas. This

resulted in two improvements: (1) lower time to completion

and (2) lower data transfer overheads.

C. Folding@Work (FAW)

A number of biologically significant events in proteins

happen at very small timescales (micro-seconds to femto-



Fig. 8. Logical Structure of FAW.

seconds). To capture these events at such small resolutions,

the sampling of these systems has to happen at unprecedented

speeds and scales. This requires the use of sophisticated or

supercomputing hardware and therefore is constrained by costs

and access to these resources. As a result of this limitation,

biomolecular scientists have developed alternative approaches

that run on commodity hardware. These approaches leverage

parallelism in the analysis and simulations techniques of

such systems. Specifically, these approaches decompose long

trajectories in the protein folding studies into smaller and

parallel trajectories that are close approximations.

The Folding@home project is one such framework that ap-

plies parallelization to capture the protein folding phenomenon

by running on idle commodity hardware [17]. We build on the

Folding@home project to create a framework, called Fold-

ing@Work or FAW, that is customizable and flexible to suit

the needs of the users and their studies. In FAW, we allow users

to specify and customize the simulation environments and the

nature of their analysis. We also allow resources from multiple

sources and platforms such as Amazon EC2, Microsoft Azure,

Condor, etc., to be federated by users to achieve the scale and

performance they desire in their experiments.

The FAW framework is built using Work Queue to run as an

elastic application. This framework is invoked with the speci-

fication of several experimental parameters such as molecular

structure, temperature, etc. FAW applies these specifications

to construct and decompose its workflow into tasks. Our work

in [4] describes in detail the construction of FAW using Work

Queue. In this paper, we focus on studying and improving the

performance of the FAW framework.

We begin by observing that a typical FAW workflow in-

volves a collection of clones called trajectories that are simu-

lated in parallel. Each trajectory represents the path taken by

a protein molecule in achieving a folded state. A fully formed

trajectory contains the path taken by a protein molecule to

reach folded state. The goal of such workflows is to aggregate

and study as many fully formed trajectories as possible. As

a result, the number of fully formed trajectories dictates the

throughput of an experimental run in FAW.

We now describe the technique used to improve the perfor-

mance of FAW in terms of its throughput. FAW decomposes its

workflow into a set of tasks corresponding to each trajectory in

the simulations. It uses a round-robin approach in creating and

submitting tasks for each trajectory. By replacing the round-

robin approach with a mechanism that clusters and prioritizes

tasks corresponding to a trajectory closer to achieving fully

folded state, the throughput of FAW can be enhanced. Using

this insight, we modified the design of FAW to cluster tasks

Fig. 9. Plot comparing the throughput of the prioritized and round-robin
approaches in FAW.

such that trajectories closer to completion are prioritized

during execution. The benefit of this approach is illustrated

in Figure 9 where we compare the throughput, which is

the percentage of completed trajectories, with and without

prioritization. The experiments in this figure involved 100

clones each running 20 simulations using 50 workers on the

Notre Dame SGE cluster. We observe that the clustering and

prioritization approach yields fully folded trajectories through-

out its run time. This provides opportunities to analyze and

gather scientific data much earlier in the runs. This also implies

that users can quickly achieve scientific output in running

FAW, even with smaller or shorter resource allocations.

For the experiments in this work, we use Gromacs [18]

to simulate the protein trajectories and we explicitly specify

and transfer the components and environment required for the

execution of Gromacs to the allocated resources.

Summary. We modified the construction of FAW to cluster

and prioritize the tasks corresponding to the trajectories closer

to achieving completion. This clustering and prioritization

technique improved the throughput of the FAW framework.

IV. GUIDELINES FOR ELASTIC APPLICATION DESIGN

From our experiences in building the three elastic applica-

tions in the previous section, we observe an absence of general

principles to guide their design and construction. Developers

currently devise and apply application-specific strategies using

their knowledge of the application or by profiling execution

to improve performance. However, such techniques are error-

prone, time-consuming, or ineffective when applied across a

selection of elastic applications.

In this section, we derive general guidelines for the design

and development of elastic applications using the lessons

learned in building such applications and improving their

performance. While these guidelines are not exhaustive, we

believe they are a necessary and useful first step in helping

developers build efficient elastic applications.

We first identify and define the metrics used in this work to

describe the performance and efficiency of elastic applications:

(1) Time to completion: This represents the overall execution

time of the application. A lower time to completion

presents benefits to users such as lower costs incurred in

maintaining resources for execution.

(2) Scientific throughput: This measures the scientific output

achieved per time unit per allocated resource. Applications

with good throughput allow users to quickly gather useful

data and results, even with smaller resource allocations.



(3) Transfer overheads: This tracks the overheads in trans-

ferring data required for execution on allocated resources.

Lower transfer overheads result in lower network latencies

and costs.

(4) Cost of failure: This represents the costs of encountering,

handling, and recovering from failures. These costs nega-

tively impact the time to completion and throughput.

(5) Ease of deployment: This evaluates the effort expended by

users in deploying the application on allocated resources.

It includes the effort in configuring resources to provide

the operating environment required by the application.

These metrics determine the costs, overheads, and effort

incurred by users, and the achievable scale in running elastic

applications. We use these metrics to illustrate the benefits of

the following guidelines for the design of elastic applications.

1) Abolish shared writes: The use of a shared file to

write and aggregate the outputs of tasks during execution

are prone to locking overheads and failures as shown in

Section III-A. Elastic applications must therefore implement

dedicated and distributed write accesses where files are created

and written locally at the site of the task execution. These

files can then be transferred from the execution sites (allocated

resources) and aggregated at the controller (master). This also

allows the storage capabilities at the allocated resources to be

utilized effectively. Further, distributed write accesses isolate

the performance characteristics and failures of the individual

resources thereby minimizing their impact on the overall

performance of the application. We showed the benefits of ded-

icated and distributed write accesses in lowering failures in E-

MAKER in Section III-A. In addition, such accesses simplify

the execution environment by avoiding the requirement of a

shared file system, and hence improve the ease of deployment.

2) Keep your software close and your dependencies closer:

Elastic application are often deployed on resources with di-

verse operating environments. To effectively utilize these allo-

cated resources irrespective of their operating environments,

elastic applications must transfer and setup the execution

environment of each task on the allocated resources. That

is, the software components and dependencies of each task,

such as executables and libraries, must be encapsulated in the

task inputs transfered to its execution site. We applied this

technique in the elastic applications described in Section III to

successfully harness resources without imposing any assump-

tions or requirements on their operating environments. Further,

this results in high ease of deployment since the user can

deploy and run the application on resources or environments

of his choice without any additional effort.

3) Synchronize two, you make company; synchronize

three, you make a crowd: Elastic applications with depen-

dencies between iterations or sets of tasks require synchro-

nization mechanisms to maintain these dependencies. One

such mechanism is the global synchronization barrier that

span the entire set of concurrent tasks in the application.

However, such global barriers introduce inefficiencies in the

presence of heterogeneous resources with diverse performance

characteristics and adversely impact the time to completion.

Therefore, elastic applications must diligently isolate the syn-

chronization requirements to the smallest feasible set of tasks.

The use of this technique and its effects in lowering the time to

completion were described in Section III-B. We also observed

from the evaluations in Section III-B that removing the global

barrier yields other benefits, such as lower transfer overheads.

4) Make tasks of a feather flock together: Ensemble work-

flows, where a set of independent simulations or computations

are run and aggregated as part of a scientific study, can be

implemented as elastic applications. In such instances, the

outputs of each task or a cluster of tasks contribute directly to

a scientific result or output. Elastic applications of ensemble

workflows must therefore cluster and prioritize the execution

of sub-workflows or tasks that immediately contribute to the

scientific output expected during their execution. We showed

the application of this technique in the FAW framework (in

Section III-C) to enhance its scientific throughput. Another

benefit of improving the scientific throughput through such

techniques is that it allows useful scientific output to be

obtained quickly even with resource allocations of smaller

sizes or shorter durations.

5) Seek simplicity, and gain power: The choice of the

programming abstraction for elastic applications plays a signif-

icant role in achieving scale and good performance. In our con-

struction of the elastic applications in Section III, we employed

Work Queue, that offers a simple and essential set of interfaces

to implement and run programs in a master-worker framework.

The simplistic and minimalist design of Work Queue requires

applications to explicitly (i) decompose workflows into tasks,

(ii) specify the inputs to be transferred to the workers for

each task, and (iii) aggregate the outputs of completed tasks.

However, these explicit requirements allowed applications to

harness heterogeneous operating environments, manage and

cache data across the allocated resources, and isolate failures.

In other words, the sophistication in fault-tolerance, elasticity,

handling heterogeneity, and data management directly follows

the use of a simple and minimalist interface.

6) Build a model before scaling new heights: Elastic

applications run large computations by decomposing them

into tasks. The decomposition of tasks allows concurrent

execution but incurs transfer overheads. This decomposition

also dictates the size of resources that achieve optimal running

time. Therefore, it becomes imperative to formulate a model

that captures the effects of task decomposition on the run-time

performance of the application as shown in Section III-A. This

model must be incorporated in the application and used to (i)

drive the decomposition of the workflow into tasks, (ii) inform

the user of the estimated performance for a given input, and

(iii) guide the user in allocating resources for execution with

a given input. Such models are especially useful when the

applications are designed to achieve scale and are deployed

on resources that incur monetary costs to the user.

V. RELATED WORK

Several efforts have studied the design and engineering of

applications for heterogeneous computing platforms. Wolski et



al, were the first to describe the characteristics for programs

that run on grids and present a framework for running such

programs [19]. More recently, [20] demonstrates a framework

that transparently runs applications across resources in both

cloud and grid platforms.

There have been numerous efforts in studying scientific

workflows, and identifying guidelines for their execution on

distributed systems. The authors in [21] provide a characteri-

zation of scientific workflows in terms of their size, complex-

ity, composition, and computation requirements. The authors

in [22] study the evolution of distributed infrastructure such

as grids, and profile a set of applications deployed on such

infrastructure. They use this study to offer critical insights on

the challenges facing the developers of distributed comput-

ing systems (such as grids) and the distributed applications

deployed on these systems. The work in [23] describes the

characteristics of workflow execution systems and identifies

design guidelines to improve their usability and adoption

rates. The work in [24] identifies the incorrect assumptions

and practices observed among designers and developers of

applications for cloud environments.

The work in [6] presents experiences in running Monte-

Carlo based scientific applications using a master-worker

framework on the Condor grid. The authors in [25] report

and evaluate their experiences in running scientific applica-

tions in a virtualized cloud environment. They show that the

scheduling and communication overheads need to be carefully

considered in evaluating the benefits of running scientific

applications on a cloud platform. Lu et al, in [26], describe

their experiences in running a bioinformatics application on

Microsoft’s Windows Azure and present best practices for

handling parallelism and overheads in such platforms. Our

work differs from these efforts by presenting a systematic

study of the construction of different scientific applications.

We then use this study to establish guidelines to follow in their

construction to achieve scale and efficient performance when

running on inexpensive, dynamically changing, and multiple

heterogeneous operating environments and platforms.
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