
A Case Study in Preserving a High Energy Physics Application

Haiyan Meng¹, Matthias Wolf², Anna Woodard², Peter Ivie¹, Michael Hildreth², and Douglas Thain¹

¹Department of Computer Science and Engineering, ²Department of Physics

{hmeng, mwolf3, awoodard, pivie, mhildret, dthain}@nd.edu

1. ABSTRACT
The reproducibility of scientific results increasingly depends upon

the preservation of computational artifacts. Although preserving a

computation to be used later sounds easy, it is surprisingly difficult

due to the complexity of existing software and systems. Implicit

dependencies, networked resources, and shifting compatibility all

conspire to break applications that appear to work well. Tools are

needed which can automatically identify both local and remote

dependencies, so that they can be captured and preserved.

To investigate these issues, we present a case study of preserving a

CMS application using Parrot. We analyze the application and

attempt several methods at extracting its dependencies for the

purposes of preservation. We demonstrate a fine-grained dependency

management toolkit which can observe both the local filesystem and

remote network dependencies, using the system call tracing

capabilities of Parrot. We observe that even a simple TauRoast

application depends upon 22,068 files and directories totaling 21 GB

of data and software drawn from 8 different sources including

CVMFS, HDFS, AFS, Git, HTTP, CVS, PanFS and local root

filesystem.

Once the dependencies are observed, a portable execution package

can be generated. This package is not tied to any particular

technology and can be re-run using Parrot, Docker, a chroot Jail, or

as a Virtual Machine Image, depending on the technology available

at the execution site. We will report on the performance and

completeness of re-execution using both public and private clouds

and offer some guidance for future work in application preservation.

3. Observations
(1) Many Explicit External Dependencies

 A) Github repositories for TauRoast source code

 B) CVS server for configuration information

 C) public web page for the PyYAML library

 D) home page of a Notre Dame student for a header file

(2) Many Implicit Local Dependencies

 five networked filesystems: HDFS, CVMFS, NFS, PanFS, AFS

(3) Configuration Complexity

 hardware, kernel, OS, software , data, and environment variables

(4) Rapid Changes in Dependencies

 A) OS upgrades

 B) software has newer version

 C) CMSSW migrates from CVS to Git

(5) High Selectivity of Data and Software Dependencies Table 1: High Selectivity of Data and Software Dependencies

2. Input of TauRaust Program

high selectivity of data and code

RAW

Ntuples

PB level

400TB

11.6TB

20GB

CMSSW Named

CMSSW

CMSSW Used

88.1GB

448.3MB

6.3MB

data

code

TauAnalysis

TauRoast

Output 20MB

AOD

BEAN

Name Location Total Size Named Size Used Size

CMSSW code CVS 88.1 GB 448. 3 MB 6.3 MB

Tau source Git 73.7 MB 73.7 MB 6.7 MB

PyYAML binaries HTTP 52 MB 52 MB 0 KB

.h file HTTP 41 KB 41 KB 0 KB

Ntuples data HDFS 11.6 TB N/A 20 GB

Configuration CVMFS 7.4 GB N/A 103 MB

Linux commands localFS 110 GB N/A 68.4 MB

Home dir AFS 12 GB N/A 32 MB

Misc commands PanFS 155 TB N/A 1.6 MB

Total 166.8 TB N/A 21 GB

4. Challenge 1: How to redirect data source of each dependency?

Evolution of Preservation Methods

Email

5. Challenge 2: How to track the used data?

(1) Local dependencies
 A) local root filesystem

 B) remote filesystems which can be mounted as local directories (CVMFS, HDFS)

Relationship of Roles

(2) Remote Network dependencies
Aim: evaluate the stability of the network dependencies (Linkrot)

Method: track the network sockets

A) Socket and connect syscalls: the port number, service name (such as, http, https, and ssh),

socket type (stream and datagram), and the domain type (inet and inet6);

B) Contents of DNS packets: the hostname and IP address of each remote network dependency;

C) All the http requests and responses.

Problem: as for applications based on https and ssh which encrypt network data using

TLS/SSL, tracking network data on the socket level can only see the encrypted data.

Packaging Utility

Trace the experiment process
Figure out data dependencies

Generate Package1

Publish Package1

Repeat the Program

Obtain Package1

Package

New
Machine

Original
Machine

8. Preserving Multiple Artifacts

9. Open Problems
(1) Measure the Mess or Force Cleanliness?

 A) Preserve the whole execution environment into a VMI or

package?

 B) Specify the execution environment clearly from hardware,

kernel, OS, software, data, and environment variables?

(2) Granularity of Dependencies

 File? Package? Repository?

(3) Scope of Reuse

 A) Exactly repeat what the original other does?

 B) Tune the configuration of the original experiment?

 C) Change the input data of the original experiment?

(4) Dependency Detection

 A) Expert?

 B) Tools that can trace the accessed files (e.g., Parrot, CDE)?

 C) Package management Tools (e.g., RPM)?

(5) Software Preservation Format

 Source code? Binary code? Both?

7. Evaluation
(1) Execution

 time

(2) Correctness

Task Category Original Script Reduced Package

Obtain Namelist N/A 28min 28s

Generate Package N/A 26min 19s

Obtain Software 8min 11s N/A

Build Environment 5min 49s 4s

Analyze Code 20min 31s 13min 04s

Machine
Type

Distribution
Version

CPU
Cores

Memory
(GB)

Execution
Time

Original Machine Red Hat 5.10 64 125 13min 04s

KVM (Notre Dame) CentOS 5.10 4 2 21min 38s

Xen (EC2) Red Hat 5.9 16 60.5 13min 30s

Package1 User1

After Integration

 Package2 User2

Before Integration
Repeat Script1
by User3

A

Script1

B

Script2

B

A

Script1

B A

Script1

B

Script2

Package1 User3 Archive

C

6. One Implementation of Package Method

(1) Generate a dependency list from one successful execution
 parrot_run --name-list namelist --env-list envlist <user cmd>

(2) Generate a Package containing all the dependencies
 parrot_package_create --name-list namelist --env-list envlist

 --package-path /tmp/package

(3) Repeat one Program within the Package

 parrot_package_run --package-path /tmp/package <user cmd>

Copy

Ptrace

each file

Parrot

Trap
system
calls

filename1 --- stat
filename2 --- read
filename3 --- readlink
…
filenameN --- access

Package

One
successful
execution

Original
Machine

Dependency List

DASPOS: www.daspos.org

Cooperative Computing Lab: ccl.cse.nd.edu

This work was supported in part by National Science Foundation grants PHY-1247316 (DASPOS), OCI-1148330 (SI2) and PHY-1312842.

The University of Notre Dame Center for Research Computing scientists and engineers provided critical technical assistance throughout this research effort.

script’ script’

script

GIT CVMFS

map map’

Script Package Abstract Script

GIT + CVMFS : original data GIT’ + CVMFS’: data copied into the package

GIT GIT’ CVMFS CVMFS’

http://www.daspos.org/
http://ccl.cse.nd.edu/

