TRANSPARENTLY DISTRIBUTING CDF SOFTWARE WITH PARROT

Douglas Thain and Christopher Moretti, University of Notre Dame, Notre Dame, IN 46556, USA
Igor Sfiligoi, INFN-Frascati and Fermi National Laboratory, Batavia, IL 60510, USA

Abstract

The CDF software, like many toolkits for high energy
physics, was designed to be executed in a dedicated en-
vironment, with easy access to a large set of executables,
shared libraries, and configuration files. In order to meet
the computing needs of CDF, it is necessary to move the
software on to a computational grid. However, in such an
environment, the necessary software components are not
easily accessible, nor is it practical to copy the software in
its entirety to each CPU. To address this problem, we are
applying the Parrot virtual filesystem to the CDF software
stack. Parrot allows an application to access remote data
sources as if they were local filesystems. No special privi-
leges or application changes are needed to employ Parrot,
so it is well suited to the environment of a computational
grid. We describe the strengths and weaknesses of this ap-
proach and measure the performance of CDF code in the
wide area. Although Parrot imposes a high cost on individ-
ual system calls, the overhead is approximately five percent
of runtime when amortized across CPU-intensive jobs.

INTRODUCTION

The CDF software, like many toolkits for high energy
physics, was designed to be executed in a dedicated en-
vironment, with easy access to a large set of executables,
shared libraries, and configuration files. As might be ex-
pected, the CDF code is a conglomeration of contributions
from many different authors working in different languages
and contexts. Each component of the system has many run-
time dependencies that are difficult to decompose.

In order to meet the computing needs of CDF, it is nec-
essary to move the software on to systems such as EGEE
and the Open Science Grid and take advantage of as many
CPUs as possible. [11] However, in a grid computing envi-
ronment, the necessary software components are not easily
accessible. We cannot expect every grid administrator to
install a distributed shared filesystem and mount a server
for the benefit of any one application. On the other hand,
it is not practical to copy the CDF software to each node
of the grid as is needed: the total system consists of GB of
data in many thousands of files. Transferring this amount
of data per job will not scale, nor can we expect users to
disentagle the various components merely to run codes on
the grid.

For the sake of end users, we would like to provide a
filesystem interface to CDF code, no matter where jobs
happen to execute. The challenge is to do this without

requiring special privileges. We have developed a proto-
type solution to this problem by applying the Parrot [15]
virtual filesystem to the CDF software stack. Parrot al-
lows an application to access remote data sources as if they
were local filesystems. No special privileges or application
changes are needed to employ Parrot, so it is well suited
to the environment of a computational grid. We describe
the strengths and weaknesses of this approach and measure
the performance on CDF simulation codes in the wide area.
Although Parrot imposes a high cost on individual system
calls, the overhead is approximately five percent of runtime
when amortized across a CPU-intensive application.

OVERVIEW OF PARROT

Parrot is a personal virtual filesystem for perform-
ing Unix-like 1I/O on remote data services, includ-
ing HTTP, FTP, GridFTP [2], Nest [5], Chirp [14],
RFIO [3], SRB [4], and DCAP [6]. Parrot presents
these services to the application as entries in the filesys-
tem namespace. For example, a user may start a
shell by invoking parrot tcsh and then simply access
filesin /http/www.fnal.gov/index.html using normal
command-line tools like cp, 1s, and vi.

A custom namespace may be constructed for applica-
tions running under Parrot. The user may define a mountlist
which is similar in spirit to the system-wide fstab file in
Unix. For example, the following mountlist allows a CDF
user to employ a directory on a web server at Fermilab as a
consistent global home directory:

/home/cdfsoft =
/httpfs/cdfsoft.fnal.gov/base

Parrot operates by running applications using the
ptrace debugging facility in the operating system kernel.
As shown in Figure 1, each time the application attempts a
system call, the application is halted, and Parrot is notified
by the kernel. Parrot then interprets the arguments to the
system call, and then implements the system call, perhaps
by invoking operations on a remote storage device.

This mechanism can be used to run most end-user ap-
plications. Programs need not be modified, re-compiled,
or re-linked to run under Parrot. The ptrace mechanism
allows Parrot to trace multiple processes at once, so ap-
plications may be complex scripts or interpreted programs.
Currently, Parrot works with a wide variety of programs,
including most standard system tools, and many applica-
tions written in C, C++, FORTRAN, Java, Perl, Python,

Physics Parrot

Application
1. syscall

3. do syscall
[
9. return 7. modify
result

A

8. resumereturn Nest

6. trap return

i ., 4 resume enter
5. getpid SRB
v 2. trap enter

Operating System Kernel

Figure 1: Trapping System Calls in Parrot
Parrot traps system calls via the ptrace interface. (1) The
application attempts a system call, which the kernel (2) for-
wards to Parrot. (3) Parrot implements the system call per-
haps by contacting a remote file service. (4) Internally the
system call is converted (5,6) to a harmless getpid. (7)
Parrot modifies the system call result and passes control
back to the kernel (8) and then to the application (9).

and shell scripting languages. There are some restrictions.
The ptrace interface will not allow Parrot to run setuid
applications. More importantly, Parrot must have detailed
knowledge of the underlying system calls, so the current
implementation is closely tied to the Linux kernel.

Parrot is designed to work best with the Chirp [14] 1/O
protocol. A Chirp server distributed with Parrot provides
an /O interface very similar to that of Unix, along with
a fine-grained security mechanism. However, deploying a
new type of server into a production system is a complex
matter. Administrators may be (rightfully) suspicious of
a new server, which may have bugs introducing security
concerns. Likewise, protocols using custom port numbers
present difficulty in traversing firewall and network trans-
lation devices.

Instead, we have chosen to use HTTP as the data ser-
vice for distributing CDF code to applications running on a
grid. Users may employ servers already established by in-
stitutions, traverse most firewalls designed to accomodate
the protocol, and employ shared proxy servers in order to
share bandwidth and storage space. The CDF software may
be modified at the central repository, but it is read-only with
respect to clients on the grid.

HTTP ASA FILESYSTEM

Although HTTP has many administrative benefits, it has
one severe drawback: it is not a true filesystem protocol.
HTTP allows a client to get and put whole files over the net-
work, it is missing three key components necessary to sup-
port arbitrary filesystem actions: directory listings, meta-
data operations, and partial-file access. Even the simplest
of applications and scripts require these operations (meta-
data retrieval is the most common filesystem operation [7]),

Jobs Dispatched
by Grid Middleware

fallback:
direct access

Figure 2: HTTP as a Filesystem
Jobs are dispatched to the grid middleware, augmented
with Parrot. Once running, the applications access data
remotely via the HTTP protocol. A mountlist controls the
visible namespace. Intermediate caching proxy servers are
selected by Parrot. In the event of a proxy failure, the home
server is accessed directly.

so it is not practical to ask users to use HTTP “carefully”
and avoid certain operations.

We note that some HTTP servers may support some of
these operations. For example, many HTTP servers return
an HTML formatted directory listing when a web browser
requests a path that corresponds to a directory. A client
could attempt to parse this output to obtain a structured di-
rectory listing. In response to a carefully formatted HEAD
request, some HTTP servers may respond with the size,
owner, and other metadata describing a file. HTTP 1.1 de-
fines range units that allow a client to request part of a file,
although the server is not obliged to respect the request. If
we carefully prescribe what HTTP server, version, and op-
tions to employ, it would be possible to use HTTP directly
as a filesystem. However, we wish to make our solution as
generally applicable as possible; many people make use of
an institutional server that they cannot modify. Therefore,
we decline these approaches to using HTTP.

Instead, we use an approach that relies only on the most
basic facilities found in any HTTP server. On top of HTTP,
we layer filesystem functionality and call the combination
HTTP-FS: HTTP with FileSystem extensions. First, we
ask the user to run a small script make httpfs on the data
to be exported. This script recursively scans the directories
and in each creates a file .httpfsdir. This file contains
a listing of the directory and the metadata for each entry.
Using this, the three problems are solved as follows:

e Directories. When accessing a pathname /x/y, Par-
rot first attempts to access /x/y/ .httpfsdir. If suc-
cessful, the path is known to be a directory. On failure,
Parrot then accesses /x/y directly. Note that the pro-
cedure cannot be reversed, because if /x/y is a direc-
tory, many servers will generate a “helpful” HTML
directory listing that would appear to be an ordinary
file. The basic type of a file is determined only by the
accessibility of these path names.

100000 - -
: —— unmod -
10000 - <ocd parrot -
i R httpfs
> 1000 - = cached -
3 -
o) 100 - N
E .
= 10 -
1
0.1 < -
getpid stat open- read read
close 1B 8KB

Figure 3: System Call Latency
The impact of Parrot and remote file access on system call
latency. Parrot itself increases the latency of system calls
by an order of magnitude compared to an unmodified pro-
gram. HTTP adds another order of magnitude, but this can
be amortized with caching. Note the overall effect on ap-
plications in Figure 5 is much less dramatic.

e Metadata. When obtaining metadata about a file
(such as the information returned by stat), Parrot ob-
tains the .httpfsdir file in the directory containing
that file. This file must be searched for the entry corre-
sponding to the name, and then the appropriate meta-
data returned to the application.

e Caching. To support efficient partial file access, Par-
rot maintains an HTTP cache on disk. When a file is
first opened, it is retrieved in its entirety, and then ac-
cessed on local disk. This cache also applies to the
.httpfsdir auxiliary files. Even with cached data,
the process of determining the type and metadata of
a pathname may involve several expensive disk oper-
ations, so these are cached in the internal memory of
Parrot as well.

Figure 2 shows how all of the pieces fit together. Simple
jobs are submitted to the grid middleware. These jobs are
merely scripts which obtain Parrot via an HTTP download,
and then use HTTP via Parrot to load scripts and run the
desired executable. For each job, a custom mountlist and
list of proxy servers is given to Parrot to create the desired
environment. Parrot selects an intermediate proxy server at
random, so that multiple jobs may share access to nearby
data. If access to a proxy should fail, direct access to the
central HTTP server is used as a backup.

The entire system relies only on the presence of the wget
tool at each grid node. Using only this tool, Parrot itself can
be retrieved and then used to access any scripts or executa-
bles necessary to run the desired job.

PERFORMANCE

We may consider the performance of this system from
two perspectives. First, what is the cost of the low-level
interposition technique that traps and transforms system

Throughput | Traps/s | Unmodified | w/Parrot
1 MB/s 15k 199s 199s

8 MB/s 120k 199s 199s

20 MB/s 300k 201s 205s

40 MB/s 600k 204s 215s

Figure 4: Bandwidth Available to Parrot
The impact of Parrot on available 1/O bandwidth. This
chart shows a synthetic code consuming CPU time while
attempting to load data continuously from local disk at
the specified rate. There is no overhead for speeds up to
8MB/s, which are rarely exceeded by real codes.

Appl | Unmod | w/Parrot | w/HTTPFS
Real Simulation 11.9h 12.1h 12.5h
Toy Monte Carlo 16.6m 16.8m 17.3m

Figure 5: Performance of CDF Applications
The impact of Parrot and HTTP-FS on overall execution
time of simulation codes. Although the cost of individual
system calls is increased, the actual effect on real CPU-
bound physics jobs is approx five percent. This overhead
is acceptable, given that it allows the harnessing of CPUs
that would otherwise go idle.

calls? Second, what is the effect of this low-level cost on
real applications?

Figure 3 shows the low-level expense of trapping system
calls via ptrace and forwarding them to remote 1/O ser-
vices. This measurement was performed on dual 2.8GHz
Pentium IV CPUs running Linux 2.4.21 and Parrot 2.0.13.
Measurements were performed by issuing 1000 cycles of
1000 iterations of system calls measured with the system
timer. Four configurations are shown: unmodified calls ap-
plied to a local filesystem, calls trapped by Parrot but ap-
plied to a local filesystem, and calls trapped by Parrot and
applied to HTTP-FS, with and without caching.

As can be seen, the addition of Parrot without even
adding remote 1/0 increases system call latency by an order
of magnitude. The cost of a getpid() rises from less than 1
us to over 10 us. HTTP-FS itself also adds several more
orders of magnitude: each stat and open results in many
round trips to establish a TCP connection and make several
HTTP transactions. However, once a file is opened, data
is streamed to the application, so reads have a low latency.
This cost can be amortized by adding the data and metadata
caching described above. With caching enabled, the cost of
HTTP-FS is minimal.

Figure 4 shows the overall effect of trapping system calls
via ptrace and forwarding them to local services for CPU
intensive jobs. Each line shows the runtime of a CPU-
intensive job accessing local storage at a target rate. This
test clearly shows that this in kind of application, the over-
head introduced by Parrot is minimal. This is important,
since one does not want to penalize local access just to gain
access to remote files.

Figure 5 shows the overall effect on CDF simulation
codes. Both of these applications were run unmodified on a
local disk, with Parrot on a local disk, and then with Parrot
accessing data via HTTP-FS over the wide area. As can be
seen, the increased expense of system calls and data trans-
fer only increases runtimes by about five percent. Thus, if
this technique allows us to harness many more CPUs than
would otherwise be available, the overall system through-
put will increase.

IMPLEMENTATION STATUS

For most of our tests, the system used was composed of
a few well controlled worker nodes and using direct HTTP
connections to the Web server. Using HTTP caching and
running over wide area network was tested, but we didn’t
go beyond a proof of principle.

The reason for such limited set of tests was due to lack of
time. Several of the features we needed were developped
for CDF just very recently and it took some time to polish
out the initial bugs. In the near future, we plan to test Par-
rot with many more real user jobs on a much wider scale,
using real Grid worker nodes and making full use of HTTP
caching. We will report on this in future publications.

RELATED WORK

Parrot is first introduced in [15] and placed in the larger
context of tactical storage in [14]. It has also been used to
implement remote access in the context of the BaBar ex-
periment [8]. The notion of trapping system calls to imple-
ment remote access was first demonstrated by the Remote
UNIX [10] system of Litzkow and Solomon, which later
became part of Condor [9]. Remote UNIX relies on re-
compiling target applications; whereas Parrot operates on
arbitrary, unmodified programs. The technique of trapping
system calls via the debugging interface was pioneered by
Alexandrov et al [1], who demonstrated access to remote
HTTP services, but did not address the problems of di-
rectories or fault tolerance. The private namespace fea-
ture is inspired by the user-level mount capability found
in the Plan-9 [12] operating system. Other storage systems
that provide some form of user-level interposition include
dCache [6] and SRB [4], both which provide approaches
based on dynamic linking.

CONCLUSION

As J. Schopf [13] has observed, the primary obstacle to
large scale grid computing is not performance, but the us-
ability of complex systems. Distributed systems by their
very nature are less usable, less reliable, and less pre-
dictable than centralized systems. In this work, our aim
is to make grid computing systems as easy to use as local
systems without a large performance sacrifice.

REFERENCES

[1] A. Alexandrov, M. lbel, K. Schauser, and C. Scheiman.
UFO: A personal global file system based on user-level ex-
tensions to the operating system. ACM Transactions on
Computer Systems, pages 207-233, August 1998.

[2] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and
S. Tuecke. Protocols and services for distributed data-
intensive science. In Proceedings of Advanced Computing
and Analysis Techniques in Physics Research, pages 161-
163, 2000.

[3] O. Barring, J. Baud, and J. Durand. CASTOR project sta-
tus. In Proceedings of Computing in High Energy Physics,
Padua, Italy, 2000.

[4] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC storage resource broker. In Proceedings of CASCON,
Toronto, Canada, 1998.

[5] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stan-
ley, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny.
Flexibility, manageability, and performance in a grid stor-
age appliance. In Eleventh |IEEE Symposium on High Per-
formance Distributed Computing, Edinburgh, Scotland, July
2002.

[6] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, and
C. Waldman. dCache, a distributed storage data caching sys-
tem. In Proceedings of Computing in High Energy Physics,
Beijing, China, 2001.

[7] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and per-
formance in a distributed file system. ACM Trans. on Comp.
Sys., 6(1):51-81, February 1988.

[8] S. Klous, J. Frey, S.-C. Son, D. Thain, A. Roy, M. Livny,
and J. van den Brand. Transparent access to grid resources
for user software. Concurrency and Computation: Practice
and Experience, to appear.

[9] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter
of idle workstations. In Eighth International Conference of
Distributed Computing Systems, June 1988.

[10] M.J. Litzkow. Remote Unix - Turning idle workstations into
cycle servers. In USENIX Summer Technical Conference,
pages 381-384, 1987.

[11] M. Neubauer, S. Sarkar, I. Sfiligoi, F. Wuerthwein, M. Nor-
man, S.-C. Hsu, and E. Lipeles. OSG-CAF - a single point
of submission for CDF to the Open Science Grid. In Com-
puting in High Energy Physics, February 2006.

[12] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thomp-
son, H. Trickey, and P. Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(3):221-254, Summer 1995.

[13] J. Schopf. State of grid users: 25 conversations with UK
eScience groups. Argonne National Laboratory Tech Report
ANL/MCS-TM/278, 2003.

[14] D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel, and
J. lzaguirre. Separating abstractions from resources in a tac-
tical storage system. In International Conference for High
Performance Computing, Networking, and Storage (Super-
computing), November 2005.

[15] D. Thain and M. Livny. Parrot: Transparent user-level

middleware for data-intensive computing. In Workshop on
Adaptive Grid Middleware, New Orleans, September 2003.

