Challenges in Executing Data Intensive Biometric Workloads on a Desktop Grid

Christopher Moretti!, Timothy C. Faltemier', Douglas Thain', and Patrick J. Flynn®

1University of Notre Dame
Computer Science and Engineering Dept.
Notre Dame, IN 46556
{cmoretti, tfaltemi, dthain, flynn} @cse.nd.edu

Abstract

Desktop grids have traditionally focused on executing
computation intensive workloads. Can they also be used to
execute data-intensive workloads? To answer this question,
we present a case study of a data intensive biometric appli-
cation which is infeasible to process on a single machine.
We evaluate the capacity of a desktop grid to store and de-
liver the data need to execute the workload, and compare
several general techniques for data deployment. Selecting
the most scalable technique, we execute and evaluate five
large production workloads on a 350-CPU desktop grid. We
observe that this technique is sensitive to many parameters,
and propose that an ideal system should be responsible for
choosing the proper decomposition of a workload.

1 Introduction

Can a desktop grid support data intensive workloads?
Traditionally, desktop grids have focused on computation
intensive workloads because of the requirement to evacuate
a machine when its owner wishes to use it. However, mod-
ern machines have large amount of unused storage that can
be used to serve data when the owner is away. It may not be
necessary to delete the stored data when the owner returns.

In this paper, we present a significant biometric applica-
tion that may be able to take advantage of a desktop grid.
Based on measurements of a particular desktop grid, we
observe that the raw capacity is sufficient to serve such an
application. We explore several data distribution methods,
and measure their relative scalability. Choosing one data
distribution method, we execute five production biometric
workloads. We observe that the nature of the desktop grid

Biometrics research at the University of Notre Dame is supported by the
National Science Foundation under grant CNS01-30839, by the Central
Intelligence Agency, by the US Department of Justice/ National Institute
for Justice under grants 2005-DD-CX-K078 and 2006-1J-CX-K041, by the
National Geo-spatial Intelligence Agency, and by UNISYS Corp.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

results in extreme I/O bursts varying by several orders of
magnitude and a wide range of failure modes. Through this
exercise, we demonstrate that a desktop grid can in fact sup-
port data-intensive workloads. However, we do not address
all open issues in this problem. Significant open problems
remaining include local storage evacuation, distributed data
management, and automatic system tuning. We propose
these problems for future research.

The Biometric Problem. Biometrics is the science of
identifying people by their physical traits such as finger-
prints, iris scans, and facial images. In this paper, we con-
sider the problem of identifying a person from a 3D im-
age generated by a stereoscopic camera. In the field, such
images would be collected from people passing through a
checkpoint. Each image would then be compared to a po-
tentially very large watch list. (Currently the US has a ter-
rorism watch list of nearly 325,000 individuals [26].) To do
this, each new image must be compared to each image in the
watch list by executing a matching function that compares
each to the other and returns a value between zero and one,
indicating the quality of each pairwise match.

The scientific problem is: How do we design and evalu-
ate an accurate matching function? A good matching func-
tion must identify like images, reject unlike images, avoid
false positives and false negatives, and handle all of the
range of human moods and appearances. The design of
a matching function is currently an open problem [28, 9].
Whatever the design, it must be evaluated on a large num-
ber of images before it can be trusted for real use.

To evaluate the quality of a matching function, we must
obtain a large array of images and compare all of them to
each other. Figure 1 shows this procedure: the matching
function is executed for all pairs of images, and the result
is a similarity matrix where each cell represents the quality
of match between each image. For each proposed match-
ing function and image data set, a similarity matrix must
be generated. Now, the quality of several functions may be
compared and evaluated by examining their matrices.

A typical workload of this kind consists of 4000 im-

image array image array
alolelel alofa] A
O
z
£l o 98
S @) matching
g F) funcfion
15

similarity matrix similarity matrix

! f

compare matrices computed by two functions

Figure 1. Biometric Similarity Matrices

ages of about 256 KB each taken from the Face Recogni-
tion Grand Challenge (FRGC) [21] data set, all compared
to each other with the ICP [8] algorithm. Each match com-
pares 14 regions of the face, each region requiring about
1 second of computation. Although 1 GB of total data
may seem small, the polynomial complexity of the problem
makes this a challenging workload. If an efficient method of
executing this workload can be found, biometric researchers
would like to scale up to workloads of arbitrary size.

The Computing Problem. Decomposing the computa-
tion and the data is critical to attacking this problem. A
single machine would complete the 4000 image workload
in about 90 days. Adding a second machine would cut the
computation time in half, while adding some time to trans-
fer the images; let’s assume 10 seconds to transfer 1GB
on a 1Gbps network. Adding more grid nodes to the job
continues to improve performance until the point where the
additional deployment takes longer than the time saved by
adding another grid node. Figure 2 shows the ideal perfor-
mance curves for this application on several networks.

However, there are many obstacles to achieving the ideal
performance. Assuming data is deployed from a central
server on a 1 Gb/s network, 100 nodes would require 15
minutes to deploy to the last node, if done sequentially. If
done in parallel, each of the nodes must wait the full 15
minutes. These are wasted minutes in which no CPUs can
be harnessed, as well as wasted effort if a job or transfer
should fail. Things get worse on a slower network.

In order to distribute the data, we must find storage from
which the data can be served. Each node in the desktop
grid may have limited storage space or policies that make
it infeasible to permanently keep the entire data set on each
node (or even smaller subsets of the data to be worked on
by that node). This increases the importance of the data
servers, and forces us to break up data sets into smaller
chunks to utilize the largest possible portion of our grid.

A benefit of the problem’s structure is that it allows both
partitioning and reuse of data. Not all of the grid nodes need

100 days

10 days r

1day

Workload Turnaround Time

6 hours [

0 100 200 300 400 500 600 700 800 900 1000
Number of Grid Nodes

Figure 2. Ideal Model for Completion Time

all of the data in order to complete their portion of the com-
putation. In fact, because this workload can be partitioned
into very small portions, not even all of the servers need all
of the data to serve, if the serving algorithm is clever. This
can allow us to make use of cached data at the servers, by
keeping portions of a data set hot on various servers.

Such an I/O intensive workload would normally require a
supercomputing center. In this paper, we ask: Can a desktop
grid execute this demanding biometric workload?

2 Observations of a Desktop Grid

To answer this question, we begin by measuring the un-
used storage and I/O capacity of a desktop grid based at
the University of Notre Dame. This particular grid consists
of approximately 250 machines containing 350 CPUs, all
running Condor [25] to manage the CPUs and the Tactical
Storage System [24] to manage the storage. The machines
involved serve a mix of purposes: there are office worksta-
tions, classroom workstations, and research clusters. Ma-
chines vary in age from brand-new to five years old. This
variety means that the grid nodes span several different po-
sitions in the interpretation of what exactly is a desktop grid.
This grid fits within a continuum between an unreliable, di-
verse, worldwide (or at least campus-wide) scavenging pool
and a well-monitored, homogenous, geographically local,
tightly coupled cluster. We cannot prove that all of the prop-
erties here are universal, but we believe the preceding de-
scription applies to many computing environments.

Figure 3 shows both static and dynamic properties of this
system. The graphs on the left show the distribution of sys-
tem resources on October 16, 2006. The upper-left graph
shows the CPU performance and memory capacity of each
CPU. The lower-left graph shows the total disk size and the
free space available on each host in the system. Note that
the number of CPUs does not correspond to the number of
hosts, because each host may have multiple CPUs.

The two graphs on the right show the system availability

CPU Distribution Across Grid

10000 T T T T T T
Speed (MIPS)
1000 | ; : :
Memory (MB) H
LT
i
100 1 1 1 1 1 1

0 50 100 150 200 250 300 350
Individual CPUs

Storage Distribution Across Grid

10 TB T T T T

1TB 1
100 GB 1
10 GB 1

Free Space s,

%

1GB L 1 1 L H

0 50 100 150 200 250

Individual Hosts

CPU Availability Over Time
400
350 | 1
300 | Total CPUs
250 |
200 [
150

100
50 r |““ '“i“ ““h l“i“ "h“ Busy CPUs
0

09 16 23 30 07 14
Sep Sep Sep Sep Oct Oct

Storage Availability Over Time

30 TB
20TB r Free
10TB r

Occupied

09 16 23 30 07 14
Sep Sep Sep Sep Oct Oct

Figure 3. Performance Heterogeneity and Time Variance in a Desktop Grid

over five weeks in the fall of 2006. The upper-right graph
shows CPU availability. A CPU is “busy” if the CPU load
average is above 0.5 or the keyboard has been touched in
the last fifteen minutes. As might be expected, CPU usage
is cyclic with respect to days and weeks. Overall CPU uti-
lization varies between five and thirty percent. The lower-
right graph shows storage availability. We assume that disks
should have the same constraints as CPUs: if the machine is
in use by the owner, the disk should not be harnessed. Ac-
cordingly, we define three storage states: “Occupied” space
actually contains data; “Unavailable” space is empty, but
the corresponding CPU is busy; and “Free” space contains
no data, and the corresponding CPU is idle.

Several important claims may be made from this data:

Large amounts of unused storage space. Across the
entire system, there is consistently over 15 TB of total space
available for use by a desktop grid. This is because most
users (quite rationally) place their most critical data in ex-
ternal distributed file systems or network attached storage,
where they can exercise greater control over performance,
access control, and archive status. However, this desktop
space exceeds the size of many users’ archives, so it ap-
pears quite feasible to use the distributed storage as a scratch
space for staging very large data sets in and out of the grid.

Large amounts of unused I/O bandwidth. Bandwidth
is equally as important as capacity. A 15TB archive is not
very useful if it cannot deliver data at the speed required
by an application. The large number of individual disks in
the system presents the possibility of very high I/O rates.
If a data set can be delivered and partitioned appropriately
across many (possibly slow) disks, an enormous amount of
throughput can be delivered to an application. If we assume
a modest disk bandwidth of 10 MB/s across 250 devices,
this system has the potential to deliver 2.5 GB/s of data.

High degree of performance heterogeneity. Nodes
vary considerably in CPU performance and memory capac-
ity, and even more in storage capacity. Several orders of
magnitude separate the best and worst machines in each
metric. A computing system must take this into account.
A highly synchronous parallel algorithm would always be
waiting for the slowest machine, so asynchrony must be
pursued wherever possible. When partitioning data across
nodes, the size of the data chunk constrains the set of nodes
that can store the data. To maximize I/O bandwidth and
storage utilization, data partitioning must be non-uniform.

Major periodic disruptions. Even in a one-month time-
line, we may see several major changes to the system. Be-
tween September 9th and 16th, a new cluster was turned on

and added 50 CPUs to the system. Between September 30th
and October 7th, a major power outage and then a hardware
failure at the data center brought about half of the system
offline. Across the entire month, we may see a slow “de-
cay” in the number of CPUs as hardware fails and software
crashes. (Typically, such failed systems are fixed in batches
at the end of a semester.) To harness a desktop system, we
cannot wait for a perfect moment when the system is com-
pletely operational. Instead, we must organize workloads
and system structures to accommodate these problems.

3 Data Distribution

We have shown that a desktop grid has the raw capacity
to execute a data intensive workload, but that doesn’t mean
the data management required to do so is trivial. How can
we lay out the data within the grid so that it can be accessed
efficiently? We consider four methods to attack this prob-
lem, which vary in terms of data partitioning and access.

Single Package Single Server (SPSS) In a desktop grid,
not all workstations have the storage resources needed for
all workloads. Even smaller data sets often consume too
many resources to allocate on every grid host long-term.
The simplest solution is to ship data directly to each host as
it is chosen in the queue for computation. This naive ap-
proach sends each available machine the packaged experi-
ment (a single file archive of all the gallery images, a probe
image, the executable, and the required library files) with
instructions as to which image to process. On completion,
the machine sends the results back to the source.

This approach has limitations. A single server may not
be able to support the continuous bandwidth needed by a
workload. Even if it can support the aggregate, a batch sys-
tem may start many jobs at once, resulting in simultaneous
requests for terabytes of data over thousands of connections.
This burstiness slows the response to all of the requests, due
to finite memory and bandwidth on the data server.

Single Package Multiple Server (SPMS) To solve the
problem of efficiently responding to a large batch of simul-
taneous matches, we can rely on prestaging data at vari-
ous points across the network. Having sufficiently large
numbers of prestaged data servers ensures that data trans-
fer can occur upon fetching/matching a job from the queue
to the grid node without overburdening the submitting ma-
chine with the large overhead requirements. Once the data
is transferred to our prestaged data servers, the same after-
match process is completed: transferring the packaged ex-
periment to its local machine, unpacking it, and then com-
pleting the matching for each of the images in the gallery.
On completion, the result is sent back to the original submit-
ting machine. If a single machine is both client and server,
the server should always choose its local copy, rather than
going to a random server on the network.

Though this method solves the problem of overloading
the central server, it does not address the fundamental is-
sues of the storage requirement. We must account for the
case that many grid nodes will have less disk space than is
consumed by the data set. Requiring the entire data set to
fit on a grid node results in poor utilization of the grid pool.
We suggest storage sufficiency is another of the factors for
consideration in the binary classification of host availability
summarized by Kondo et al. [16].

Single File Multiple Server (SFMS) Instead of sending
the entire data set in advance, which requires it to fit on the
grid node, we can send each image individually as needed.

This method of approach is similar to a conventional dis-
tributed file-system in that it activates accesses at a file level
(as opposed to a data set level), but differs in that it creates a
copy of the remote data on the local grid node (like our pre-
vious methods), rather than conducting exclusively remote
operations. This is a palatable solution for read-only data.

The prestaging still solves the initial throughput issue
presented against the naive approach. The image-by-image
on-demand access allows us to restrict our grid node space
usage to that necessary for the current computation.

This model over-corrects from the last observation, how-
ever. Whereas all-at-once access is too restrictive from the
standpoint of grid node space requirements (resulting in low
resource utilization), the problem with this approach is one
of performance. The entirety of the gallery will eventually
(by the end of the job) be compared to the image, but this
model does not make use of that. It requires a new con-
nection to download each gallery image to the grid node in-
dividually. The number of network connections scales lin-
early with the number of comparison images in the gallery,
increasing overhead from previous models.

A variant of this method that makes use of prefetching is
feasible. Future images are buffered while current computa-
tion is occurring, storing only a fraction of the total gallery
space at any one time (but more than the 2 image require-
ment of the non-prefetching case described above). Adding
prefetching, however, still does not alleviate the basic prob-
lem of connections scaling with comparisons (for either the
computing node, or the data server). It also doesn’t account
for the detriment to the computation from sharing CPU re-
sources with the prefetching process.

Multiple Package Multiple Server (MPMS) Instead of
creating a single file containing the the entire data set, it
may be broken down into pieces that can fit onto the large
majority of the grid nodes. If we use the same technique as
in SPMS, but on chunks of the data set instead of the entire
package, we can balance the low overhead from SPMS with
the ability to harness many more nodes.

An additional advantage of MPMS is a minimum of re-
peated work. With SPMS, a single failure requires resub-
mitting the entire set of comparisons; here, only the specific

comparison that failed must be resubmitted. On the other
hand MPMS is more complicated and requires networking
connections between many hosts in the system.

Network Feasibility and Scale. We hypothesize that
the various methods will result in different levels of 1/O
throughput, as measured by completed tasks over a given
time period, and we want to find whether any single method
will deliver the highest throughput under increasing loads.
The metric of how many tasks can be completed within a
time limit is used for two reasons. The first is that grid oper-
ations have timeouts to protect against hosts that go offline,
or otherwise become dysfunctional. The second is to give a
sense of how a method performs in bursty traffic. If a server
cannot deliver files in parallel in a timely manner, it leaves
CPUs unutilized, and is at risk of falling progressively far-
ther behind within a burst.

To determine this, we measured the sustainable through-
put of each method by completing that method’s I/O pattern
over a variable number of clients. Each of the multiple-
server methods served data from five servers. For SPSS and
SPMS, each host read a series of 500MB files; for MPMS
each host read a series of SOMB files; and for SFMS each
host read a series of 250KB files. The number of completed
tasks can be multiplied by the file size and divided over
the time period to achieve throughput. Figure 4 shows the
I/O capacity provided by our four methods running on the
production grid. The fifth plot is the MPMS method with
the replica selection algorithm adjusted from random server
(the default choice for MPMS) to one that recognizes cluster
locality and will pick the appropriate intra-cluster replica.

The inherent limitation of a single-server setup (SPSS)
is evident. Its peak throughput is lower than the multi-
ple server version (SPMS), at just under 100MB/s, and it
can maintain this only up to approximately a load factor
of 25, after which it drops off to less than SMB/s. SPMS
reaches a peak throughput of over 120MB/s around a load
factor of 35, and can sustain throughput of 80MB/s beyond
a load factor of 80. MPMS reaches a peak throughput above
190MB/s, which doesn’t occur until a load factor between
75 and 80. Utilizing cluster locality, we can push the peak
throughput of MPMS beyond 230MB/s. We reach the point
at which both of these MPMS curves have levelled off, but
we have not reached the point at which they begin to drop
off significantly. The SPSS method peaks at only 13MB/s,
around a load factor of 55. It maintains up to half of that
peak through a load factor of 75.

The data demonstrate that MPMS scales to both the high-
est peak throughput, and the highest load factor before lev-
elling off. If greater throughput is needed, more servers
can be added. In terms of peak throughput, SPMS fails to
get even double the single server’s value, and reaches the
peak throughput within a factor of two of the corresponding
load factor. The early precipitous decline in SPSS and the

early levelling of SPMS are likely due to the larger file size.
The large file cannot be transferred completely to each node
within the time limit when under heavy load.

The SFMS method cannot serve sufficiently many files
to supply an entire data set to a large number of servers on
demand. This is due to an implementation detail: the job ex-
ecution script creates a new TCP connection to fetch each
file. If a single TCP connection could be re-used, a single
server can support a large number of operations: The right
graph in Figure 4 shows that a single serve can serve 25,000
RPC/s under heavy load. However, re-using the same con-
nection multiple times within a script is not trivial with con-
ventional software technologies.

Three conclusions about I/O access in desktop grids:

Single servers do not scale. A single server cannot serve
sufficient throughput over its network link to sustain a large
desktop grid. Even though a single high performance server
can accommodate a large load with its storage and memory,
it is limited by the bandwidth of the network connection.
Further, multiple small servers are more cost effective.

Single file per connection causes significant overhead.
While accessing files one by one allows for minimal space
requirements on grid nodes, it comes at the cost of large
overhead to create separate connections for each file. To
manage data efficiently, even for relatively large files, the
system must maintain connection state wherever possible.

Cluster locality improves scalability. A node within a
fast cluster suffers moderately when it must fetch data from
a slow cluster. Choosing a replica that is many network hops
away, even over a fast connection, introduces unnecessary
latency. Thus, we should utilize intra-cluster replicas when
possible to maximize performance of the fast networks.

4 Experience with Real Workloads

Using this understanding of data distribution, we con-
structed a a prototype system for executing data intensive
biometric workloads on our desktop grid described above.
Here, we describe experience with five large workloads
used to produce results that are described in reference [11].

The table in Figure 5 summarizes the five runs. The first
two runs correspond to the scenario described at the be-
ginning of the paper: 4007 images must be compared to
each other. Each comparison involves 14 sub-comparisons
of regions of the face, each taking about one second on a
1-GHz CPU. A total of 1300 CPU-days (on a 1-GHz CPU)
is needed to execute the computation. Each image is about
256KB, and the entire image data set is 1.2GB. The third
run uses a different collection of 3851 images, but only
compares one region per image, and so runs much faster
with a higher I/O-CPU ratio. Run 4 is again like Run 1 with
a larger collection of smaller images. Run 5 uses the same
data set as run 4, but processes 5 columns in each batch job.

250

Z 200
S
= 150
=
iy
% 100
=
e
E 50
0 @ E @A """"""':"m""""'"'D“"f"""“"m:SFMS

0 10 20 30 40 50 60 70 80 90 100
Load Factor

35000 ; ; ; ; ; ;

2 30000 | 1

E 25000 1

€ 20000 | :
=]

& 15000 1
e

£ 10000 1

E 5000 1

O 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Load Factor

Figure 4. 1/0 Scalability of Data Partitioning and Access

To support these workloads, we chose the following
fixed (conservative) MPMS data configuration: For each
run, the input data set was broken in SOMB chunks and
replicated to 32 disks across the grid, each large enough
to hold all chunks at once. These 32 nodes served as run-
time I/O servers for the remaining grid nodes. A global di-
rectory of I/O servers was established. Each workload was
partitioned into jobs, each processing one column of the re-
sult matrix. Each job obtained the necessary chunks one at
a time to process its portion of the workload. To choose
an I/O server, each job consulted the global directory and
picked the host with the most similar name, assuming that
it would be the “closest” server.

Figure 5 also shows timelines of resources consumed by
each of the five workloads over the course of a month. The
upper graph shows the number of jobs running at any given
time. Three shades of gray indicate jobs that have been
matched to a CPU, but are not yet running, jobs that are
running on a CPU, and jobs that are suspended because the
owner of the machine is using the keyboard or CPU.

The lower graph shows the total cluster I/O rate on the
same time scale as the upper graph. This is obtained by
summing the total amount of data read from each of the 32
1/0 servers over one minute intervals. (Note that we do not
include the I/O implicitly performed by the batch system to
stage executables, write outputs, etc, which is far less.)

A few anomalies about the graph should be noted. Run
1 was limited to 60 reliable cluster nodes, in order to test
the system before expanding to the full desktop grid. These
machines all had fast 3GHz processors, and thus completed
one workload in 9 days. Run 2 was run in competition with
several other workloads on the desktop grid. As other work-
loads finished, groups of CPUs became available at once. In
addition, a off-by-one bug in the I/O server selection code
would cause a fraction of the jobs started in each burst to fail
immediately, resulting in the fast fall-off of each job start-
ing burst. (This was fixed in later runs.) Run 3 completed
quickly with a very high I/O rate due to the single compari-
son per image employed. In addition, it was interrupted by

the system failures observed in Figure 3 above.

Several more general observations may be made:

Very Bursty I/O Rates. Because jobs are submitted
(and other workloads complete) in large batches, cluster-
wide I/O vary by several orders of magnitude. Several reg-
ular bursts exceed the steady state by a factor of ten or even
one hundred times. The two highest I/O bursts seen are 1.42
GB/s and 1.02 GB/s, both during start-up bursts in the more
I/0O intensive workloads. To support such bursts, it is nec-
essary to significantly over-provision the I/O system; given
the large amount of available disk space, this is cheap to do.

High Failure Rate. Although we have observed that
desktop grids offer a large number of unused cycles, there
are still many events that can interfere with the execution
of a job. For each workload, a significant number of jobs
are evicted from the executing machine. In the absence
of checkpointing, this results in the (potentially large) data
transfer at the beginning of the job going to waste. Thus, it
is important to minimize start-up I/O overhead (as MPMS
does), because it must be repeated for each restart.

Silent Failures. Each workload suffered a number of
failures that were not detected (and thus not retried) by the
batch system. Such jobs appeared to exit with a normal exit
status, while others did not print out correct results. Not all
of these failures could be diagnosed, but some were due to
system-level issues such as missing or incompatible shared
libraries. To address these problems, each workload ended
with a “catch up” run of jobs that were manually determined
to have failed. Evidence of this can been seen in I/O bursts
at the end of several runs.

Despite these challenges, we have demonstrated that
real, production biometric workloads with very high data
rates can be successfully executed on a desktop grid. How-
ever, several open problems remain.

5 Related Work

Many large scale cycle scavenging systems are designed
on the assumption that codes are very computation inten-

Workload Properties Runtime Totals
Run | Images Jobs Rgns CPUHours DataSize | Max CPUs Susp. Evicts Total I/O
1 4007 4007 14 1300 12GB 60 555 113 0.68 TB
2 4007 4007 14 1300 1.2GB 226 3653 494 229TB
3 3851 3851 1 85 850 MB 293 483 71 2.00 TB
4 7263 7263 1 305 1.8 GB 210 8607 658 531TB
5 7263 1453 1 305 1.8 GB 255 4383 331 1.11 TB
300 (Run 3) (Run 5)
250 (Run 2) (Run 4) il 4 Jobs
é 200 . , [™ Matched
- i PR A)
e T M | I
5 150 1 | 1 Jobs
g . Y Running
E 100 (Run 1) 8
Z
50 1
0 L e Ml | " Jobs
” T T T Suspended
»\’27;3 1000 F 1.03 GB/s == 1.42 GB/s == E
=
ZE
;:; &»é 100 ¢ E
e
g : N m N |
=3
o5 L. | ‘ ‘ ‘ | ‘
02 09 16 23 30 07 14 21
Sep Sep Sep Sep Sep Oct Oct Oct

Figure 5. Summary of Five Production Biometric Workloads

sive and have low data rates. For example, the Fold-
ing@Home [18] protein modeling system requires about
100KB of data to seed a simulation that will run for sev-
eral days. SETI@Home requires only 35KB of data per
CPU hour [3], The Great Internet Mersenne Prime Search
transfers a few hundred bytes per week [27]. The Master-
Worker [19] and XtremWeb [12] systems have attacked sev-
eral important optimization problems, which typically re-
quire a few bytes of input and then many CPU hours to ex-
plore many possible solutions.

Anderson and Fedak [4] have shown that large scale
desktop scavengers have the capacity to run codes with
moderate data rates. They define a ratio R as MB of I/O
per hour of computation time on a 1 GFLOPS machine, and
observe that current systems have the potential to handle
applications with R as high as 1 or even 10 while using a
central server. Our biometric application has a much higher
data rate, consuming MB of data in seconds, not hours.

The need for data intensive desktop computing comes
from scientific applications. Typically, these data inten-
sive applications are developed and tested in environments
with a high I/O capacity. Once tested, users wish to scale
these applications up by degrees: first on tens of CPUs in a
tightly coupled cluster, then hundreds of CPUs in a campus
grid, and then thousands of CPUs in a national-scale grid
or desktop computing environment. Foster and Iamnitchi

describe several such applications, including an analysis of
astrophysics data that averages 660MB per CPU hour [13].
Thain et al. [23] describe five data intensive grid applica-
tions with complex data sharing behavior.

Many systems aim to support a wide area “data grid” [1]
that facilitates data sharing between institutions. For ex-
ample, GridFTP [2], SRB [6], Nest [7], Stork [17], and
IBP [22] all provide facilities for storing, transferring, man-
aging over the wide area, but do not particularly address the
issue of getting data close to CPUs.

Many filesystems harness the storage capacity and
throughput of an entire cluster. xFS [5] and Zebra [15]
stripe small blocks across cluster nodes, Google-FS [14]
and Freeloader replicate large chunks, while object-based
filesystems [20, 10] distribute individual files. All these
systems allow the aggregate performance of a cluster to be
harnessed, but do not address the problem of tailoring data
layout to the intended computational workload.

6 Conclusion and Future Work

In this paper, we have discussed options for selecting the
optimal distribution and processing method for biometrics
on a desktop grid. Neither single-file-on-demand, nor a
full-data-on-placement is ideal; the former suffers in per-

formance, and the latter suffers in scalability. The MPMS
method is a scalable compromise between these extremes.

Several open problems remain:

Local Data Management. We have assumed that local
storage is so plentiful that the user will never notice if space
is consumed indefinitely. This is certainly not the case over
the long term. A desktop grid harnessing storage must have
some ability to evict local data when necessary. This is non-
trivial, because file deletion is a relatively slow activity that
must be done well before the space is needed.

Distributed Data Management. We have proposed that
a desktop grid can handle I/O intensive workloads by repli-
cating data out to the various nodes of the grid. For a single
user, there is plenty of space. But, if many users recog-
nize these untapped resources, there is a natural incentive
to replicate data widely and quickly consume the space. To
address this problem, a desktop grid must have a process
that is responsible for managing space across the entire sys-
tem. For example, a user might request space for 10 copies
of a 10 GB file; the data manager would choose ten disks,
allocate the space, and inform the user. A quota of time and
space would be needed to limit consumption.

Automatic Configuration. This system has many dif-
ferent parameters to tune: the number of CPUs to harness,
the number of data copies, the ratio of comparisons to jobs,
and so forth. As Figure 2 shows, choosing the wrong pa-
rameter can lead to poor performance. A more user-friendly
system would accept a work specification, and then choose
the appropriate system parameters for execution.

References

[1] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salis-
bury, and S. Tuecke. The data grid: Towards an architecture
for the distributed management and analysis of large scien-

tific datasets. J Network and Computer Applications, 2001.
[2] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and

S. Tuecke. Protocols and services for distributed data-
intensive science. In Proc Advanced Computing and Analysis

Techniques in Physics Research, pages 161-163, 2000.

[3] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home an experiment in public-resource
computing. CACM, 45(11):56-61, 2002.

[4] D.P. Anderson and G. Fedak. The computational and storage
potential of volunteer computing. In IEEE/ACM Symposium

on Cluster Computing and the Grid, May 2006.
T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,

and R. Wang. Serverless network file systems. In ACM Sym-

posium on Operating System Principles, Dec 1995.
C. Baru, R. Moore, A. Rajasekar, and M. Wan. The

SDSC storage resource broker. In Proceedings of CASCON,

Toronto, Canada, 1998.
[7] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley,

A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Flex-
ibility, manageability, and performance in a grid storage ap-
pliance. In IEEE High Perf Dist Comp, July 2002.

[5

—

[6

—

[8] P. Besl and N. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14, 1992.
[9] K. Bowyer, K. Chang, and P. Flynn. A survey of approaches

and challenges in 3d and multi-modal 3d + 2d face recogni-

tion. Computer Vision and Image Understanding, 2006.
[10] Cluster File Systems. Lustre: A scalable, high performance

file system. white paper, November 2002.
[11] T. Faltemier, K. Bowyer, and P. Flynn. 3D face recognition

with region committee voting. 3D Data Processing, Visual-

ization, and Transmission, 2006.
[12] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb:

A generic global computing system. In IEEE Workshop on

Cluster Computing and the Grid, May 2001.
[13] I Foster and A. Iamnitchi. On death, taxes, and the conver-

gence of peer-to-peer and grid computing. In 2nd Intl Work-

shop on Peer-to-Peer Systems, February 2003.
[14] S. Ghemawat, H. Gobioff, and S. Leung. The Google filesys-

tem. In ACM Symp on Operating Systems Principles, 2003.
[15] J. H. Hartman and J. K. Ousterhout. The Zebra striped net-

work file system. In High Performance Mass Storage and

Parallel I/0: Technologies and Applications, 2001.
[16] D.Kondo, M. Taufer, C. Brooks, H. Casanova, and A. Chien.

Characterizing and evaluating desktop grids: An empricial
study. In IEEE/ACM International Parallel and Distributed

Processing Symposium, Santa Fe, NM, 2004.
[17] T. Kosar and M. Livny. Stork: Making data placement a first

class citizen in the grid. In IEEE International Conference

on Distributed Computing, 2004.
[18] S. M. Larson, C. Snow, M. Shirts, and V. Pande. Fold-

ing@Home and Genome@Home: Using distributed com-
puting to tackle previously intractable problems in computa-
tional biology. In R. Grant, editor, Computational Genomics.

Horizon Press, 2002.
[19] J. Linderoth, S. Kulkarni, J.-P. Goux, and M. Yoder. An en-

abling framework for master-worker applications on the com-

putational grid. In IEEE High Perf Dist Comp, August 2000.
[20] M. Mesnier, G. Ganger, and E. Riedel. Object based storage.

IEEE Communications, 41(8), August 2003.
[21] P.J. Phillips, P.J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,

K. Hoffman, J. Marques, J. Min, and W. Worek. Overview of
the face recognition grand challenge. Proceedings of IEEE

Computer Vision and Pattern Recognition, 2005.
[22] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and

R. Wolski. The Internet Backplane Protocol: Storage in the

network. In Network Storage Symposium, 1999.
[23] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau,

and M. Livny. Pipeline and batch sharing in grid workloads.

In IEEE High Perf Dist Comp, June 2003.
[24] D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel, and

J. Izaguirre. Separating abstractions from resources in a tac-

tical storage system. In Supercomputing, Nov 2005.
[25] D. Thain, T. Tannenbaum, and M. Livny. Condor and the

grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-

puting: Making the Global Infra. a Reality. Wiley, 2003.
[26] The Washington Post. 325,000 Names on Terrorism List.

http://www.washingtonpost.com/wp-dyn/content/article/

2006/02/14/AR2006021402125.html, 2006.
[27] G. Woltman. The great internet mersenne prime search.

Available from http://www.mersenne.org.
[28] W.Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face

recognition: A literature survey. ACM Comp. Surv., 2003.

