
Attaching Cloud Storage to a Campus Grid

Using Parrot, Chirp, and Hadoop

Patrick Donnelly, Peter Bui, Douglas Thain

Computer Science and Engineering

University of Notre Dame

pdonnel3, pbui, dthain@nd.edu

Abstract

The Hadoop filesystem is a large scale distributed filesys-

tem used to manage and quickly process extremely large

data sets. We want to utilize Hadoop to assist with data-

intensive workloads in a distributed campus grid environ-

ment. Unfortunately, the Hadoop filesystem is not designed

to work in such an environment easily or securely. We

present a solution that bridges the Chirp distributed filesys-

tem to Hadoop for simple access to large data sets. Chirp

layers on top of Hadoopmany grid computing desirables in-

cluding simple deployment without special privileges, easy

access via Parrot, and strong and flexible security Access

Control Lists (ACL). We discuss the challenges involved in

using Hadoop on a campus grid and evaluate the perfor-

mance of the combined systems.

1 Introduction

A campus grid is a large distributed system encompass-

ing all of the computing power found in a large institution,

from low-end desktop computers to high end server clus-

ters. In the last decade, a wide variety of institutions around

the world have constructed campus grids by deploying soft-

ware such as the Condor [16] distributed computing system.

One of the largest known public campus grids is BoilerGrid,

consisting of over 20,000 cores harnessed at Purdue Uni-

versity [2]; and systems consisting of merely a few thou-

sand cores are found all around the country [13]. Campus

grids have traditionally been most effective at running high-

throughput computationally-intensive applications. How-

ever, as the data needs of applications in the campus grid

increases, it becomes necessary to provide a system that can

provide high capacity and scalable I/O performance.

To address this, we consider the possibility of using

Hadoop [8] as a scalable filesystem to serve the I/O needs

of a campus grid. Hadoop was originally designed to serve

the needs of web search engines and other scalable applica-

tions that require highly scalable streaming access to large

datasets. Hadoop excels at dealing with large files on the

order of terabytes and petabytes while ensuring data in-

tegrity and resiliency through checksums and data replica-

tion. Hadoop is typically used to enable the massive pro-

cessing of large data files through the use of distributed

computing abstractions such as Map Reduce [5].

In principle, we would like to deploy Hadoop as a scal-

able storage service in a central location, and allow jobs

running on the campus grid to access the filesystem. Unfor-

tunately, there are a number of practical barriers to accom-

plishing this. Most applications are not designed to operate

with the native Hadoop Java interface. When executing on a

campus grid, it is not possible to install any dependent soft-

ware on the local machine. The Hadoop protocol was not

designed to be secure over wide area networks, and varies

in significant ways across versions of the software, making

if difficult to upgrade the system incrementally.

To address each of these problems, we have coupled

Hadoop to the Chirp filesystem, and employed the latter to

make the storage interface accessible, usable, secure, and

portable. Chirp [15] is a distributed filesystem for grid com-

puting created at Notre Dame and used around the world. It

has been shown to give favorable performance [15] [14] for

distributed workflows. It is primarily used to easily export

a portion of the local filesystem for use by remote work-

ers. Chirp is built to be easily deployed temporarily for

a job and then torn down later. It supports unprivileged

deployment, strong authentication options, sensible secu-

rity of data, and grid-friendly consistency semantics. Using

Parrot [12], we can transparently connect the application to

Chirp and thereby to Hadoop.

The remainder of this paper presents our solution for at-

taching Hadoop to a campus grid via the Chirp filesystem.

We begin with a detailed overview of Hadoop, Parrot, and

Chirp, explaining the limitations of each. We explored two

distinct solutions to this problem. By connecting Parrot

directly to Hadoop, we achieve the most scalable perfor-

1

mance, but a less robust system. By connecting Parrot to

Chirp and then to Hadoop, we achieve a much more stable

system, but with a modest performance penalty. The final

section of the paper evaluates the scalability of our solution

on both local area and campus area networks.

2 Background

The following is an overview of the systems we are try-

ing to connect to allow campus grid users access to scalable

distributed storage. First, we examine the Hadoop filesys-

tem and provide a summary of its characteristics and limita-

tions. Throughout the paper we refer to the Hadoop filesys-

tem as HDFS or simply Hadoop. Next, we introduce the

Chirp filesystem, which is used at the University of Notre

Dame and other research sites for grid storage. Finally, we

describe Parrot, a virtual filesystem adapter that provides

applications transparent access to remote storage systems.

2.1 Hadoop

Hadoop [8] is an open source large scale distributed

filesystem modeled after the Google File System [7]. It pro-

vides extreme scalability on commodity hardware, stream-

ing data access, built-in replication, and active storage.

Hadoop is well known for its extensive use in web search

by companies such as Yahoo! as well as by researchers for

data intensive tasks like genome assembly [10].

A key feature of Hadoop is its resiliency to hardware

failure. The designers of Hadoop expect hardware failure

to be normal during operation rather than exceptional [3].

Hadoop is a ”rack-aware” filesystem that by default repli-

cates all data blocks three times across storage components

to minimize the possiblty of data loss.

Large data sets are a hallmark of the Hadoop filesystem.

File sizes are anticipated to exceed hundreds of gigabytes

to terabytes in size. Users may create millions of files in a

single data set and still expect excellent performance. The

file coherency model is ”write once, read many”. A file that

is written and then closed cannot be written to again. In

the future, Hadoop is expected to provide support for file

appends. Generally, users do not ever need support for ran-

dom writes to a file in everyday application.

Despite many attractive properties, Hadoop has several

essential problems that make it difficult to use from a cam-

pus grid environment:

• Interface. Hadoop provides a native Java API for ac-

cessing the filesystem, as well as a POSIX-like C API,

which is a thin wrapper around the Java API. In princi-

ple, applications could be re-written to access these in-

terfaces directly, but this is a time consuming and intru-

sive change that is unattractive to most users and devel-

opers. A FUSE [1] module allows unmodified applica-

tions to access Hadoop through a user-level filesystem

driver, but this method still suffers from the remaining

three problems:

• Deployment. To access Hadoop by any method, it

is necessary to install a large amount of software, in-

cluding the Java virtual machine and resolve a number

of dependencies between components. Using FUSE

module requires administrator access to install the

FUSE kernel modules, install a privileged executable,

and update the local administrative group definitions

to permit access. On a campus grid consisting of thou-

sands of borrowed machines, this level of access is

simply not practical.

• Authentication. Hadoop was originally designed with

the assumption that all of its components were oper-

ating on the same local area, trusted network. As a

result, there is no true authentication between compo-

nents – when a client connects to Hadoop, it simply

claims to represent principal X, and the server compo-

nent accepts that assertion at face value. On a campus-

area network, this level of trust is inappropriate, and a

stronger authentication method is required.

• Interoperability. The communication protocols used

between the various components of Hadoop are also

tightly coupled, and change with each release of the

software as additional information is added to each in-

teraction. This presents a problem on a campus grid

with many simultaneous users, because applications

may run for weeks or months at a time, requiring up-

grades of both clients and servers to be done indepen-

dently and incrementally. A good solution requires

both forwards and backwards compatibility.

2.2 Chirp

Chirp [15] is a distributed filesystem used in grid com-

puting for easy userlevel export and access to file data. It is a

regular user level process that requires no privileged access

during deployment. The user simply specifies a directory on

the local filesystem to export for outside access. Chirp of-

fers flexible and robust security through per-directory ACLs

and various strong authentication modes. Figure 1a pro-

vides a general overview of the Chirp distributed filesystem

and how it is used.

A Chirp server is set up using a simple command as a

regular user. The server is given the root directory as an op-

tion to export to outside access. Users can authenticate to

the server using various schemes including the Grid Secu-

rity Infrastructure (GSI) [6], Kerberos [11], or hostnames.

Access to data is controlled by a per-directory ACL system

using these authentication credentials.

2

cache
file

tcsh emacs perl appl

unix
filesys

fuse

libchirplibchirplibchirp

custom
tools

chirp
server

chirp network protocol

parrot

ordinary unix system calls

(a) The Chirp Filesystem

cache
file

Hadoop
datanode

Hadoop
datanode

Hadoop
datanode

Hadoop
Headnode

tcsh emacs perl appl

fuse

libchirplibchirplibchirp

custom
tools

chirp
server

chirp network protocol

parrot

ordinary unix system calls

...

(b) The Chirp Filesystem Bridging Hadoop

Figure 1: Applications can use Parrot, FUSE, or libchirp directly to communicate with a Chirp server on the client side. The

modifications presented in this paper, Chirp can now multiplex between a local unix filesystem and a remote storage service

such as Hadoop.

A Chirp server requires neither special privileges nor

kernel modification to operate. Chirp can both be deployed

to a grid by a regular user to operate on personal data se-

curely. We use Chirp at the University of Notre Dame to

support workflows that require a personal file bridge to ex-

pose filesystems such as AFS [9] to grid jobs. Chirp is also

used for scratch space that harnesses the extra disk space of

various clusters of machines. One can also use Chirp as a

cluster filesystem for greater I/O bandwidth and capacity.

2.3 Parrot

To enable existing applications to access distributed

filesystems such as Chirp, the Parrot [12] virtual filesys-

tem adapter is used to redirect I/O operations for unmod-

ified applications. Normally, applications would need to be

changed to allow them to access remote storage services

such Chirp or Hadoop. With Parrot attached, unmodified

applications can access remote distributed storage systems

transparently. Because Parrot works by trapping program

system calls through the ptrace debugging interface, it can

be deployed and installed without any special system privi-

leges or kernel changes.

One service Parrot supports is the Chirp filesystem pre-

viously described. Users may connect to Chirp using a va-

riety of methods. For instance, the libchirp library provides

an API that manages connections to a Chirp server and al-

lows user to construct custom applications. However, a user

will generally use Parrot to transparently connect existing

code to a Chirp filesystem without having to interface di-

rectly with libchirp. While applications may also use FUSE

to remotely mount a Chirp fileserver, Parrot is more practi-

cal in a campus grid system where users may not have the

necessary administrative access to install and run the FUSE

kernel module. Because Parrot runs in userland and has

minimal dependencies, it is easy to distribute and deploy in

restricted campus grid environments.

3 Design and Implementation

This section describes the changes we have made to im-

plement a usable and robust system that allows for appli-

cations to transparently access the Hadoop filesystem. The

first approach is to connect Parrot directly to HDFS, which

provides for scalable performance, but has some limita-

tions. The second approach is to connect Parrot to Chirp

and thereby Hadoop, which allows us to overcome these

limitations with a modest performance penalty.

3.1 Parrot + HDFS

Our initial attempt at integrating Hadoop into our cam-

pus grid environment was to utilize the Parrot middleware

filesystem adapter to communicate with our test Hadoop

cluster. To do this we used libhdfs, a C/C++ binding for

HDFS provided by the Hadoop project, to implement a

HDFS service for Parrot. As with other Parrot services, the

3

Hadoop
Datanode

Hadoop
Datanode

Hadoop
Datanode

tcsh emacs perl appl

libhdfs

parrot

ordinary unix system calls

...Headnode

Hadoop

Hadoop RPC

Figure 2: In the parrot hdfs tool, we connect Parrot directly

to Hadoop using libhdfs, which allows client applications to

communicate with a HDFS service.

HDFS Parrot module (parrot hdfs) allows unmodified end

user applications to access remote filesystems, in this case

HDFS, transparently and without any special priviledges.

This is different from tools such as FUSE which require

kernel modules and thus adminstrative access. Since Par-

rot is a static binary and requires no special priviledges, it

can easily be deployed around our campus grid and used to

access remote filesystems.

Figure 2 shows the architecture of the parrot hdfs mod-

ule. Applications run normally until an I/O operation is

requested. When this occurs, Parrot traps the system call

using the ptrace system interface and reroutes to the appro-

priate filesystem handler. In the case of Hadoop, any I/O

operation to the Hadoop filesytem is implemented using the

libhdfs library. Of course, the trapping and redirection of

system calls incurs some overhead, but as shown in a pre-

vious paper [4], the parrot hdfs module is quite serviceable

and provides adequate performance.

Unfortunately, the parrot hdfs module was not quite a

perfect solution for integrating Hadoop into our campus in-

frastructure. First, while Parrot is lightweight and has mini-

mal dependencies, libhdfs, the library required for commu-

nicating to Hadoop, does not. In fact, to use libhdfs we

must have access to a whole Java virtual machine installa-

tion, which is not always possible in a heterogeneous cam-

pus grid with multiple administrative domains.

Second, only sequential writing was supported by the

module. This is because Hadoop, by design, is a write-once-

read-many filesystem and thus is optimized for streaming

reads rather than frequent writes. Moreover, due to the in-

stability of the append feature in the version of Hadoop de-

ployed in our cluster, it was also not possible to support ap-

pends to existing files. Random and sequential reads, how-

ever, were fully supported. The parrot hdfs module did not

provide a means of overcoming this limitation.

Finally, the biggest impediment to using both Hadoop

and the parrot hdfs module was the lack of proper access

controls. Hadoop’s permissions can be entirely ignored as

there is no authentication mechanism. The filesystem ac-

cepts whatever identity the user presents to Hadoop. So

while a user may partition the Hadoop filesystem for dif-

ferent groups and users, any user may report themselves as

any identity thus nullifying the permission model. Since

parrot hdfs simply provides the underlying access control

system, this problem is not mitigated in anyway by the ser-

vice. For a small isolated cluster filesystem this is not a

problem, but for a large campus grid, such a lack of permis-

sions is worrisome and a deterent for wide adoption, espe-

cially if sensitive research data is being stored.

So although parrot hdfs is a useful tool for integrating

Hadoop into a campus grid environment, it has some limita-

tions that prevent it from being a complete solution. More-

over, Hadoop itself has limitations that need to be addressed

before it can be widely deployed and used in a campus grid.

3.2 Parrot + Chirp + HDFS

To overcome these limitations in both parrot hdfs and

Hadoop, we decided to connect Parrot to Chirp and then

Hadoop. In order to accomplish this, we had to implement

a new virtual multiplexing interface in Chirp to allow it to

to use any backend filesystem. With this new capability, a

Chirp server could act as a frontend to potentially any other

filesystem, such as Hadoop, which is not usually accessible

with normal Unix I/O system calls.

In our modified version of Chirp, the new virtual mul-

tiplexing interface routes each I/O Remote Procedure Call

(RPC) to the appropriate backend filesystem. For Hadoop,

all data access and storage on the Chirp server is done

through Hadoop’s libhdfs C library. Figure 1b illustrates

how Chirp operates with Hadoop as a backend filesystem.

With our new system, a simple command line switch

changes the backend filesystem during initialization of the

server. The command to start the Chirp server remains sim-

ple to start and deploy:

$ chirp_server -f hdfs

-x headnode.hadoop:9100

Clients that connect to the Chirp server such as the one

above will work over HDFS instead of on the the server’s

local filesystem. The head node of Hadoop and port it

listens on are specified using the -x <host>:<port>

switch. The root of the Hadoop filesystem is the exported

directory by Chirp changed via the -r switch. Because

Hadoop and Java require multiple inconvenient environ-

ment variables to be setup prior to execution, we have also

4

provided the chirp_server_hdfs wrapper which sets

these variables to configuration defined values before run-

ning chirp_server.

Recall that Hadoop has no internal authentication sys-

tem; it relies on external mechanisms. A user may de-

clare any identity and group membership when establishing

a connection with the Hadoop cluster. The model naturally

relies on a trustworthy environment; it is not expected to be

resilient to malicious use. In a campus environment, this

may not be the case. So, besides being an excellent tool for

grid storage in its own right, Chirp brings the ability to wall

off Hadoop from the campus grid while still exposing it in

a secure way. To achieve this, we would expect the admin-

istrator to firewall off regular Hadoop access while still ex-

posing Chirp servers running on top of Hadoop. This setup

is a key difference to parrot hdfs, discussed in the previous

section. Chirp brings its strong authentication mechanisms

and flexible access control lists to protect Hadoop from un-

intended or accidental access whereas parrot hdfs connects

to an exposed, unprotected Hadoop cluster.

3.3 Limitations when Bridging Hadoop
with Chirp

The new modified Chirp provides users with an approxi-

mate POSIX interface to the Hadoop filesystem. Certain re-

strictions are unavoidable due to limitations stemming from

design decisions in HDFS. The API provides most POSIX

operations and semantics that are needed for our bridge with

Chirp, but not all. We list certain notable problems we have

encountered here.

• Errno Translation The Hadoop libhdfsC API binding

interprets exceptions or errors within the Java runtime

and sets errno to an appropriate value. These trans-

lations are not always accurate and some are missing.

A defined errno value within libhdfs is EINTERNAL

which is the generic error used when another is not

found to be more appropriate. Chirp tries to sensi-

bly handle these errors by returning a useful status to

the user. Some errors must be caught early because

Hadoop does not properly handle all error conditions.

For example, attempting to open a file that is a direc-

tory results errno being set to EINTERNAL (an HDFS

generic EIO error) rather than the correct EISDIR.

• Appends to a File Appends are largely unsupported

in Hadoop within production environments. Hadoop

went without appends for a long time in its history be-

cause the Map Reduce abstraction did not benefit from

it. Still, use cases for appends surfaced and work to

add support – and determine the appropriate semantics

– has been in progress since 2007. The main barri-

ers to its developement are coherency semantics with

replication and correctly dealing with the (now) muta-

ble last block of a file. As of now, turning appends on

requires setting experimental parameters in Hadoop.

Chirp provides some support for appends by imple-

menting the operation through other primitives within

Hadoop. That is, Chirp copies the file into memory,

deletes the file, writes the contents of memory back to

the file, and returns the file for further writes – effec-

tively allowing appends. Support for appends to small

files fit most use cases, logs in particular. Appending

to a large file is not advised. The solution is naturally

less than optimal but is necessary until Hadoop pro-

vides non-experimental support.

• Random Writes Random writes to a file are not al-

lowed by Hadoop. This type of restriction generally

affects programs, like linkers, that do not write to a file

sequentially. In Chirp, writes to areas other than the

end of the file are silently changed to appends instead.

• Other POSIX Incompatibilities Hadoop has other

peculiar incompatibilities with POSIX. The execute bit

for regular files is nonexistent in Hadoop. Chirp gets

around this by reporting the execute bit set for all users.

Additionally, it does not allow renaming a file to one

that already exists. This would be equivalent to the

Unixmv operation from one existing file to another ex-

isting file. Further, opening, unlinking, and closing a

file will result in Hadoop failing with an EINTERNAL

error. For these types of semantic errors, the Chirp

server and client have no way of reasonably respond-

ing or anticipating such an error. We expect that as the

HDFS binding matures many of these errors will be

responded to in a more reasonable way.

4 Evaluation

To evaluate the performance characteristics of our Par-

rot + Chirp + HDFS system, we ran a series of benchmark

tests. The first is a set of micro-benchmarks designed to

test the overhead for individual I/O system calls when us-

ing Parrot with various filesystems. The second is a data

transfer performance test of our new system versus the na-

tive Hadoop tools. Our tests ran on a 32 node cluster of

machines (located off Notre Dame’s main campus) with the

Hadoop setup using 15 TB of aggregate capacity. The clus-

ter is using approximately 50% of available space. The

Hadoop cluster shares a 1 gigabit link to communicate with

the main campus network. We have setup a Chirp server as

a frontend to the Hadoop cluster on one of the data nodes.

5

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(a) Campus Network Reads to Chirp+HDFS.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(b) Campus Network Reads to HDFS.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a

n
d

w
id

th
 (

M
B

/s
)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(c) Campus Network Writes to Chirp+HDFS.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a

n
d

w
id

th
 (

M
B

/s
)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(d) Campus Network Writes to HDFS.

Figure 3

 0

 5

 10

 15

 20

 25

 30

 35

stat open read close

L
a
te

n
c
y
 (

M
ill

is
e
c
o
n
d
s
)

Micro-Operations

Parrot+Chirp+Unix
Parrot+HDFS

Parrot+Chirp+HDFS

Figure 5: Latency of I/O Operations using Microbench

4.1 Micro-benchmarks

The first set of tests we ran were a set of micro-

benchmarks that measure the average latency of various I/O

system calls such as stat, open, read, close. For this test we

wanted to know the cost of putting Chirp in front of HDFS

and using Parrot to access HDFS through our Chirp server.

We compared these latencies to those for accessing a Chirp

server hosting a normal Unix filesystem through Parrot, and

accessing HDFS directly using Parrot.

The results of these micro-benchmarks are shown in Fig-

ure 5. As can be seen, our new Parrot + Chirp + HDFS

systems has some overhead when compared to accessing a

Chirp server or HDFS service using Parrot. In particular, the

metadata operations of stat and open are particularly heavy

in our new system while read and close are relatively close.

The reason for this high overhead on metadata-intensive op-

erations is because of the access control lists Chirp uses to

implement security and permissions. For each stat or open,

multiple files must be opened and checked in order to verify

valid access, which increases the latencies for these system

calls.

4.2 Performance benchmarks

For our second set of benchmarks, we stress test the

Chirp server by determining the throughput achieved when

putting and getting very large files. These types of com-

mands are built into Chirp as the RPC’s getfile and

putfile. Our tests compared the equivalent Hadoop

native client hadoop fs get and hadoop fs put

commands to the Chirp ones. The computer on the cam-

pus network initiating the tests used the Chirp command

6

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(a) LAN Network Reads to Chirp+HDFS.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a
n
d
w

id
th

 (
M

B
/s

)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(b) LAN Network Reads to HDFS.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a

n
d

w
id

th
 (

M
B

/s
)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(c) LAN Network Writes to Chirp+HDFS.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
a

n
d

w
id

th
 (

M
B

/s
)

File Size (MB)

2 Clients
4 Clients
8 Clients

16 Clients

(d) LAN Network Writes to HDFS.

Figure 4

line tool, which uses the libchirp library without any ex-

ternal dependencies, and the Hadoop native client, which

requires all the Hadoop and Java dependencies. We want to

test how the Chirp server performs under load compared to

the Hadoop cluster by itself. For these tests, we communi-

cated with the Hadoop cluster and the Chirp server frontend

from the main campus. All communication went through

the 1 gigabit link to the cluster.

The graphs in Figures 3a and 3b show the results of read-

ing (getting) a file from the Chirp server frontend and via

the the native Hadoop client, respectively. We see that the

Chirp server is able to maintain throughput comparable to

the Hadoop native client; the Chirp server does not present

a real bottleneck to reading a file from Hadoop. In Fig-

ures 3c and 3d, we have the results of writing (putting) a

file to the Chirp server frontend and native Hadoop client,

again respectively. These graphs similarly show that the

Chirp server obtains similar throughput to the Hadoop na-

tive client for writes. For these tests, the 1 gigabit link plays

a major role in limiting the exploitable parallelism obtain-

able via writing to Hadoop over a faster (local) network.

Despite hamstringing Hadoop’s potential parallelism, we

find these tests valuable because the campus network ma-

chines will follow access the Hadoop storage in this way.

For contrast, in the next tests, we remove this barrier.

Next, we place the clients on the same LAN as the

Hadoop cluster and the Chirp server frontend. We expect

that throughput will not be hindered by the link rate of the

network and parallelism will allow Hadoop to scale. Similar

to the tests from the main campus grid, the clients will put

and get files to the Chirp server and via the Hadoop native

client.

The graphs in Figures 4a and 4b show the results of read-

ing a file over the LAN setup. We see that we get simi-

lar throughput over the Chirp server as in the main campus

tests. While the link to the main campus grid is no longer

a limiting factor, the Chirp server’s machine still only has

a gigabit link to the LAN. Meanwhile, Hadoop achieves

respectably good performance, as expected, when reading

files with a large number of clients. The parallelism gives

Hadoop almost twice the throughput. For a larger number

of clients, Hadoop’s performance outstrips chirp by a large

factor of 10. The write performance in Figures 4c and 4d,

show similar results. The writes over the LAN bottleneck

on the gigabit link to the Chirp server while Hadoop main-

tains minor performance hits as the number of clients in-

7

crease. In both cases, the size of the file did not have a

significant effect on the average throughput. Because one

(Chirp) server cannot handle the throughput due to net-

work link restrictions in a LAN environment, we recom-

mend adding more Chirp servers on other machines in the

LAN to help distribute the load.

We conclude from these benchmark evaluations that

Chirp achieves adequate performance compared to Hadoop

with some overhead. In a campus grid setting we see that

Chirp gets approximately equivalent streaming throughput

compared to the native Hadoop client. We find this accept-

able for the type of environment we are targeting.

5 Conclusions

Hadoop is a highly scalable filesystem used in a wide ar-

ray of disciplines but lacks support for campus or grid com-

puting needs. Hadoop lacks strong authentication mecha-

nisms and access control. Hadoop also lacks ease of ac-

cess due to the number of dependencies and program re-

quirements. We have designed a solution that enchances the

functionality of Chirp, coupled with Parrot or FUSE, to pro-

vide a bridge between a user’s work and Hadoop. This new

system can be used to correct these problems in Hadoop so

it may be used safely and securely on the grid without sig-

nificant loss in performance.

The new version of the Chirp software is now capable

of multiplexing the I/O operations on the server so opera-

tions are handled by filesystems other than the local Unix

system. Chirp being capable of bridging Hadoop to the grid

for safe and secure use is a particularly significant conse-

quence of this work. Chirp can be freely downloaded at:

http://www.cse.nd.edu/ ccl/software.

References

[1] Filesystem in user space.

http://sourceforge.net/projects/fuse.

[2] Boilergrid web site.

http://www.rcac.purdue.edu/userinfo/resources/boilergrid,

2010.

[3] D. Borthakur. The hadoop distributed file system:

Architecture and design. http://hadoop.apache.org/,

2007.

[4] H. Bui, P. Bui, P. Flynn, and D. Thain. ROARS:

A Scalable Repository for Data Intensive Scientific

Computing. In The Third International Workshop on

Data Intensive Distributed Computing at ACM HPDC

2010, 2010.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified

data processing on large cluster. In Operating Systems

Design and Implementation, 2004.

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke.

A Security Architecture for Computational Grids. In

ACM Conference on Computer and Communications

Security, pages 83–92, San Francisco, CA, November

1998.

[7] S. Ghemawat, H. Gobioff, and S. Leung. The Google

filesystem. In ACM Symposium on Operating Systems

Principles, 2003.

[8] Hadoop. http://hadoop.apache.org/, 2007.

[9] J. Howard, M. Kazar, S. Menees, D. Nichols,

M. Satyanarayanan, R. Sidebotham, and M. West.

Scale and performance in a distributed file system.

ACM Trans. on Comp. Sys., 6(1):51–81, February

1988.

[10] M. C. Schatz. CloudBurst: highly sensitive read map-

ping with MapReduce. Bioinformatics, 25(11):1363–

1369, 2009.

[11] J. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An

authentication service for open network systems. In

Proceedings of the USENIX Winter Technical Confer-

ence, pages 191–200, 1988.

[12] D. Thain and M. Livny. Parrot: Transparent user-level

middleware for data-intensive computing. Technical

Report 1493, University of Wisconsin, Computer Sci-

ences Department, December 2003.

[13] D. Thain and M. Livny. How to Measure a Large Open

Source Distributed System. Concurrency and Compu-

tation: Practice and Experience, 18(15):1989–2019,

2006.

[14] D. Thain and C. Moretti. Efficient access to many

small files in a filesystem for grid computing. In IEEE

Conference on Grid Computing, Austin, TX, Septem-

ber 2007.

[15] D. Thain, C. Moretti, and J. Hemmes. Chirp: A prac-

tical global file system for cluster and grid computing.

Journal of Grid Computing, to appear in 2008.

[16] D. Thain, T. Tannenbaum, and M. Livny. Condor and

the grid. In F. Berman, G. Fox, and T. Hey, editors,

Grid Computing: Making the Global Infrastructure a

Reality. John Wiley, 2003.

8

