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Abstract—Today’s big-data analysis systems achieve perfor-
mance and scalability by requiring end users to embrace a
novel programming model. This approach is highly effective
whose the objective is to compute relatively simple functions
on colossal amounts of data, but it is not a good match for
a scientific computing environment which depends on complex
applications written for the conventional POSIX environment. To
address this gap, we introduce Confuga, a scalable data-intensive
computing system that is largely compatible with the POSIX
environment. Confuga brings together the workflow model of
scientific computing with the storage architecture of other big
data systems. Confuga accepts large workflows of standard
POSIX applications arranged into graphs, and then executes
them in a cluster, exploiting both parallelism and data-locality.
By making use of the workload structure, Confuga is able to
avoid the long-standing problems of metadata scalability and
load instability found in many large scale computing and storage
systems. We show that Confuga’s approach to load control offers
improvements of up to 228% in cluster network utilization and
23% reductions in workflow execution time.

I. INTRODUCTION

Today’s big-data analysis systems achieve performance
and scalability by requiring end users to embrace a novel
programming model. For example, Map-Reduce [1], Spark [2],
and Pregel [3], all require restructuring the application work-
flow to match a restricted framework to achieve scale. This
approach is highly effective whose the objective is to compute
relatively simple functions on colossal amounts of data. The
small expense of writing or porting a small, widely known
algorithm (such as k-means clustering) to these new platforms
is well worth the payoff of running at colossal scale.

However, in other realms of computing, porting to a new
system is not so celebrated. For example, in scientific comput-
ing, high value programs with very sophisticated algorithms
are typically developed in a workstation environment over
the course of many years and validated through painstaking
experiment and evaluation. Rewriting these codes for new
environments is neither attractive nor feasible. As a result,
the scientific computing community has embraced a workflow
model of computing whereby standard sequential applications
are chained together into large program graphs with a high
degree of parallelism. These workflows are typically run
on conventional clusters and grids rather than data-intensive
computing systems.

To address this gap, we introduce Confuga, a scalable
data intensive computing system that is largely compatible
with the standard POSIX computing environment. Confuga

brings together the workflow model of scientific computing
with the storage architecture of other big data systems. End
users see Confuga simply as a large file system tree that can be
mounted in the ordinary way. Confuga accepts standard POSIX
applications and runs them within the cluster, taking data
locality into account. Large parallel workloads are expressed
in the scientific workflow style, and can be as simple as writing
a conventional Makefile.

Previous large scale storage systems have suffered from
two problems as both systems and workloads scale up.
(1) Metadata scalability. Any file system that provides a global
namespace must have a global service to provide metadata
regarding the location and status of each file. This service can
be implemented as either a centralized server or as a distributed
agreement algorithm, but either way, the service does not
scale. Confuga avoids this problem by exploiting the structural
information available in the workload. (2) Load instability. As
workloads scale up, and the number of simultaneous users
increase, it is all too easy for concurrent transfers and tasks to
degrade each other’s performance to the point where the entire
system suffers non-linear slowdowns, or even outright task
failures. For example, it is frequently observed that too many
users running on Hadoop simultaneously will cause mutual
failures [4]. Confuga avoids this problem by tracking the load
placed on the system by each task or transfer, and performing
appropriate load management, resulting in a stable system.

In this paper, we present the design objectives and overall
architecture of Confuga. As a running example, we use three
large bioinformatics workloads based on existing applications,
BLAST and BWA, all running on a 24-node storage cluster.
Through these examples, we demonstrate that Confuga mini-
mizes global metadata access, provides data locality, enables
efficient re-execution of similar tasks, and provides stability
under high load conditions. We show that Confuga’s approach
to load control offers improvements of up to 228% in cluster
network utilization and 23% reductions in workflow execution
time.

II. CONFUGA – AN ACTIVE STORAGE CLUSTER FS

Confuga1 is an active storage [5] cluster file system
designed for executing DAG-structured workflows. Confuga is
composed of a single head node and multiple storage nodes.

1Confuga is a portmanteau of the Latin word con and Italian’s fuga (also
Latin). A fugue (fuga) is a contrapuntal musical composition composed of
multiple voices. Here the intended meaning is ”with many voices” although it
literally translates as “with chase”. [Later it was determined confuga is itself
a Latin word meaning “refugee”.]



Fig. 1. Confuga Architecture

The head node manages the global namespace, indexes file
locations and metadata, and schedules jobs on storage nodes.
The individual storage nodes run as dumb independent active
storage servers. The architecture is visualized in Figure 1.

A. Use as a File System

Confuga can be used as a regular distributed file system,
with the global namespace and metadata centrally managed
and with file replicas distributed across the cluster on storage
nodes. Files in Confuga are organized in a usual hierarchical
directory structure. The file system may be operated on using
using a POSIX-style RPC protocol served by the Confuga head
node daemon.

Users may interact with Confuga using FUSE [6] mounts
or using its API, allowing trivial integration with their existing
tools or regular UNIX utilities. Confuga has only a few caveats
for external file system use: file writes are globally visible
only after closing the open file handle and files may only be
written once. Confuga also includes several useful functions
that facilitate a collaborative file system environment for users.
Confuga supports several authentication mechanisms including
Kerberos and Globus and provides per-directory access control
lists allowing fine-grained sharing of data with other users.

B. Use as Active Storage

While Confuga can be used a normal file system, its
primary purpose is executing jobs close to their data. During
normal use, a client will upload a dataset which will be acted
on by the client’s workflow. Alternatively, the client might
reuse previously uploaded data or data shared by a collaborator
on the same cluster. Once the dataset is resident on Confuga,
the user may execute jobs through a submit and wait interface
with explicit job dependencies and outputs. Typically, the
user will do this using a high-level workflow manager which
handles execution details like workflow-level fault tolerance,
job ordering and dependency management.

Each job in Confuga specifies an opaque POSIX executable
to run as a regular process without privileges. Confuga does not
require changing the application code or hooking or modifying
libraries for execution. Jobs execute within a private sandbox in
a local POSIX file system, constructed from the job’s explicitly
defined namespace and local system resources. Figure 2 shows
an example JSON [7] job specification.

{

"executable":"./script",

"arguments":["./script","-a"],

"files":[

{

"confuga_path":"/u/joe/bin/script",

"sandbox_path":"./script",

"type":"INPUT"

},{

"confuga_path":"/u/joe/data/db",

"sandbox_path":"data/db",

"type":"INPUT"

},{

"confuga_path":"/u/joe/workflow/out1",

"sandbox_path":"out",

"type":"OUTPUT"

}

]

}

Fig. 2. A simple job’s description for Confuga. This program executes
./script with the arguments "./script" "-a". The first argument
is the UNIX argv[0] for the program name. Confuga pushes the files
/u/joe/bin/script and /u/joe/data/db from the global namespace
into the job sandbox as script and data/db, respectively. When the
job completes, the out file is pulled into the global namespace. These job
descriptions are typically generated programatically by the workflow manager.

Fig. 3. Confuga Job Execution Protocol

The job’s namespace maps all input file dependencies
(including the executable) from the global Confuga file sys-
tem namespace into the job’s namespace. File names and
directory structures may map to paths completely different
from the global namespace. The sandbox_path provides
a relative path for the mapping into the job’s sandbox. The
confuga_path refers to the file in the global namespace.
Files are read from the global namespace prior to job execu-
tion. Output files are written into the global namespace after
job completion.

The Confuga head node offers a job RPC protocol for
clients to create jobs. Figure 3 shows how a job is dispatched
and reaped by a client. Each operation uses two-phase commit,
to prevent loss of acquired remote resources due to faults (e.g.
a job is created and run but the client never receives the job
identifier).

C. DAG-structured Active Storage Data Model

The fundamental idea in Confuga is the structure and
semantics of a job, which impacts the system design and all
opportunities for optimization. A job is executed as an atomic



Fig. 4. A typical DAG-structured Workflow. This comes from a bioinformat-
ics workflow using SHRiMP [8]. Here files are boxes, circles are tasks, and
lines indicate dependencies.

code that does not interact with other concurrent jobs in any
way. Its interaction with the cluster file system is defined in
terms compatible with a DAG-structured workflow: inputs are
pushed from the workflow namespace into the job sandbox
prior to execution; each output file in the job sandbox is pulled
into the workflow namespace on completion.

What this amounts to is a layering of consistency seman-
tics. At the level of a job, it executes within a namespace with
normal POSIX consistency semantics. All operations within
its namespace are native accesses; the cluster file system does
not introduce any remote file operations or new mount points.
At the level of the workflow, consistency is maintained at
job boundaries, start and end. We refer to these semantics as
read-on-exec and write-on-exit. Restricting consis-
tency semantics in this way has a number of advantages:

(1) Because each job includes its full list of data depen-
dencies, Confuga is able to make smarter decisions about
where, and most importantly when, to schedule a job to achieve
complete data-locality and to control load on the network.

(2) Since all input files can only be pulled from the
workflow namespace before the job begins execution, Confuga
can eliminate dynamic/remote file operations by a job. This is
an essential aspect of Confuga’s execution model as it allows
for controlling load on the network: a job cannot dynamically
open files on the cluster which would introduce network
overhead out of the head node’s control.

(3) We are able to reduce metadata load on the head node
by isolating storage nodes from the global cluster namespace.
Any metadata required for a job and its files can be sent as
part of job dispatch and retrieved when reaping the job. In fact,
storage nodes in Confuga are treated as dumb active storage
file systems, completely unaware of the global context.

Restricting a system to a certain execution model usually
has drawbacks; Confuga is no different in this regard. While
the model is flexible enough to run any type of workflow
expressed as a DAG of jobs, it will not perform optimally
when the input files are largely unused. Either because there
are input files which are never opened by the job or because
a large input file is not fully utilized. Confuga also requires
that all dependencies are fully replicated on the storage node
chosen for a job’s execution. This means that all of a job’s
files must fit on disk. This requirement encourages structuring
a large data set as multiple files, which is already a de facto

requirement for DAG workflows. Our experience suggests this
is not a significant burden on users.

D. Plugging a Workflow Manager into Confuga

Confuga only considers one job at a time for scheduling,
without knowledge of the complete workflow. A workflow
manager is responsible for the details of handling workflow
fault-tolerance, execution statistics, task ordering and depen-
dencies. For this purpose, we use Makeflow [9], which is a
DAG-structured workflow manager using the venerable Make
syntax for expressing the dependencies between tasks. The
order of execution is determined by constructing a directed
acyclic graph of the entire workflow, derived from the Make-
flow specification file.

Supporting Confuga required adapting Makeflow to inter-
face with the Confuga file system. This involved configuring
the workflow manager to set a root, or current directory,
for the workflow namespace within the Confuga namespace
(e.g. /u/joe/workflow/) and using remote file system
operations for checking dependency existence and successful
output creation. Finally, a new job execution module was
introduced for creating jobs using Confuga’s protocol. These
changes to Makeflow were straightforward, requiring a patch
of less than 1000 lines of code.

III. IMPLEMENTATION

A. Confuga Head Node

The Confuga head node has several responsibilities includ-
ing maintaining the global namespace, indexing file replicas,
performing necessary replication, and scheduling jobs on stor-
age nodes. The head node embodies most of the complexity
and distinguishing aspects of Confuga. It is composed of three
major components: a namespace (and metadata) manager, a
replica manager, and a job scheduler.

The namespace manager stores the global namespace on a
locally mounted regular POSIX file system. Confuga offers an
API for most POSIX I/O namespace and metadata operations.
These operations, such as stat, link or symlink, are
executed literally within the local representation of the global
namespace. Regular files receive the only special treatment
in the namespace. A unique replica identifier is stored within
each regular file. This identifier is used to index replicas of a
file’s content. Confuga includes an API for atomic lookup

and update of a file’s replica identifier.

The replica manager maintains a flat namespace of replicas
indexed using a GUID (globally unique identifier) or using
the hash of the replica (content address storage). For strong
hash algorithms (like the one Confuga uses), the hash is
also a GUID. Using a hash of the replica allows for easy
deduplication, saving future replication work and decreasing
storage use. The choice of using a hash or a GUID depends
on the cost of generating the hash. New replicas created by jobs
are assigned a random GUID when the replica is very large,
this is discussed further in Section IV. Replicas are striped
across the cluster as whole files. This allows storage nodes to
cheaply map a replica into the job namespace using regular
UNIX operations (link or symlink).



B. Confuga Scheduler

The Confuga scheduler drives all job execution on the
cluster. It uses database transactions for all job operations
reflected within a job state machine. The first task for a new job
is to recursively lookup all input files and directories from
the Confuga namespace, creating an equivalent mapping for
directories and files to the replica namespace. Once a job has
all of its inputs bound, the scheduler may proceed to schedule
a job on an available storage node for execution. Currently,
Confuga only allows one job to execute on a storage node at
a time. Scheduled jobs are not immediately dispatched, first
missing dependencies are replicated on the storage node by
the scheduler.

Once a storage node has all of a job’s dependencies, the
scheduler may dispatch the job. The scheduler uses the com-
posable job protocol discussed in Section II-B for dispatching
jobs and reliably tracking their state within a database. The
job protocol allows for the trivial remapping of the Confuga
namespace (specified by the workflow manager) to the replica
namespace, which is the only visible namespace at storage
nodes. When a job completes at a storage node, the job result
includes the replica identifier for each output file. The final
task for a completing job is to perform an update for all
output files, setting the replica identifier for files in the Confuga
namespace.

C. Technologies Used

Confuga is implemented on top of an existing distributed
file system, Chirp [10]. Starting a Confuga cluster is as simple
as executing a Chirp server configured to be the Confuga
head node and normal Chirp servers on each individual stor-
age node. All of these services may be started without any
privileges, allowing regular users to quickly erect a cluster
file system for temporary or extended use. The Chirp server
acting as the Confuga head node performs several functions
including securely and reliably serving file operations on
the Confuga file system over the network, overlaying access
control for all file operations, and leveraging existing tools for
seamless application access. Users may interact with Confuga
using the Chirp library or command-line toolset, FUSE [6], or
Parrot [11].

The head node also uses a SQLite database for managing
the state of the cluster: location of file replicas, storage node
heartbeats and the state of jobs. Jobs and replication are
evaluated as state machines (a) to allow recovery in the event
of faults by the head node or by the storage nodes and (b) to
make scheduling and replication decisions using the complete
picture of the cluster’s current activities.

D. Cluster Hardware

For this work, we use a rack of 26 Dell PowerEdge R510
servers running RedHat Enterprise Linux 6.6, Linux kernel
2.6.32. Each server has dual Intel(R) Xeon(R) CPU E5620 @
2.40GHz, for 8 cores total, 32GB DDR3 1333MHz memory,
a 1 gigabit link, and 12 2TB hard disk drives in a JBOD
configuration. Confuga’s storage nodes each use a single disk
formatted with the Linux ext4 file system.

E. Benchmark Workflows

We have used two unmodified bioinformatics workflows,
BLAST and BWA, for benchmarking Confuga. The BLAST
workflow is composed of 24 jobs with a shared 8.5GB
database. It is used for comparing a genomic sequence query
against a reference database, yielding similar sequences meet-
ing some threshold. The BWA workflow performs a genomic
alignment between a reference genome and a set of query
genomes. The BWA workflow is composed of 1432 jobs,
starting with a 274 way split of the 32GB query genome. The
purpose of this alignment is to later compare how well the
genomes align and where in the reference genome they align.

IV. METADATA LOAD

Distributed file systems providing a global namespace
for file metadata and location have always struggled with
designing for extreme scale. POSIX consistency semantics
in a distributed setting have significantly contributed to this
problem. AFS [12] is well known for relaxing certain require-
ments to meet scale and performance needs. In particular, AFS
introduced write-on-close so other clients will not see changes
to a file until the writer closes the file. Doing otherwise would
require propagating the update to the file’s blocks and size to
the file server before any write may complete.

Confuga minimizes load on the head node by exploiting the
structural information available in the workflow. Specifically,
Confuga relies on the complete description of the input and
output files available from the DAG workflow manager. Using
this information, Confuga is able to perform all metadata
operations, including access control checks and determining
replica locations, prior to job dispatch to a storage node. The
job description sent to the storage node contains a complete
task namespace mapping to immutable replicas local to the
storage node. The storage node requires no further information
to execute the job. Figure 5 visualizes the different models
for handling metadata operations for Confuga and traditional
POSIX distributed file systems.

It is worth noting that using workflow information in this
way to optimize metadata operations is not uncommon in
cluster file systems. For example, because Hadoop’s Map-
Reduce implementation knows which blocks a Map task will
work on, it can minimize future work by isolating the Map
task from the file system by looking up file metadata and
replicas for the Mapper and forwarding data blocks directly
to the Map function. Naturally, not following the Map-Reduce
model results in performance penalties, e.g. by opening nu-
merous other data files in HDFS. Additionally, Hadoop also
relies on HDFS’s immutable file blocks to reduce (eliminate)
consistency concerns.

Confuga also relies on the jobs operating atomically,
without consistency updates from the head node. This is
a common constraint in DAG-structured workflow managers
that synchronize and order tasks through output files. When
jobs would run on a master/worker framework or on a cycle
scavenging campus grid, it was not useful to allow network
communication between jobs because (a) jobs would need
to be able to ”find” other jobs, (b) communication must get
through firewalls between subnets, and (c) communication
would introduce dependencies between jobs unexpressed in



Fig. 5. Distributed File System Metadata Access Patterns. [Large cardinality as bold arrows.]

TABLE I. METADATA AND HEAD NODE OPERATIONS FOR BLAST WORKFLOW (24 JOBS)

Scheduler → MDS Scheduler → Storage Node Storage Node → File System

Metadata Count Job Count Transfers Count All Count Sandbox Count

lookup 881 job wait 440679 thirdput 618 stat 14085 stat 4687

readdir 779 job create 30 rename 597 open 3648 open 1407

update 104 job commit 26 access 597 access 436 readlink 361

opendir 19 job reap 24 - - readlink 400 getcwd 247

- - job kill 0 - - getcwd 247 getdents 14

- - - - - - getdents 14 - -

- - - - - - statfs 7 - -

TABLE II. METADATA AND HEAD NODE OPERATIONS FOR BWA WORKFLOW (1432 JOBS)

Scheduler → MDS Scheduler → Storage Node Storage Node → File System

Metadata Count Job Count Transfers Count All Count Sandbox Count

lookup 13170 job wait 90672 access 2350 open 17928 open 10731

update 3578 job create 1433 thirdput 1452 access 1432 stat 1

readdir 0 job reap 1432 rename 1448 stat 21 - -

opendir 0 job commit 1432 - - readlink 2 - -

- - job kill 0 - - - - - -

Head and Storage Node Operations on the cluster during for the BLAST and BWA workflows. The Confuga scheduler performs file replica lookups and recursive directory reads

with the metadata server for each job. This is a one-time operation for each job to bind files. Likewise, when a job finishes, the scheduler updates the global namespace with each

job output file. For job and transfer operations in both workflows, there were several instances where the scheduler needed to repeat an operation due to lost connections.

We recorded the system calls for jobs run on the storage nodes using the strace utility. The tables show the file system operations done within the entire storage node namespace

including local system files, libraries, and executables (“All”) and operations executed within the job’s namespace (“Sandbox”).

the workflow description. Confuga takes advantage of the
DAG workflow model by eliminating consistency checks and
dynamic file access for jobs.

Finally, Confuga utilizes Content Addressable Storage
(CAS) and Globally Unique Identifiers (GUID) for allocating
a replica (filename) for a job’s output file. Which technique
is used depends on the size of the file. The goal of CAS is
to deduplicate small files (by default defined as 16MB) on
the cluster. When an output file is so large that generating the
checksum becomes prohibitively expensive, a random GUID is
used instead. While using a GUID is an optimization to allow
a job to complete quickly, Confuga can generate the checksum
for deduplication in the future. The use of CAS/GUID allows
storage nodes to generate the file name (location) of the replica
without the head node’s assistance.

We evaluated metadata operations performed by Confuga
and its jobs for two bioinformatics workflows, BLAST and
BWA, shown in Tables I and II. Note that because the metadata
server (MDS) and scheduler are both part of the head node,
all of these metadata operations are locally handled.

There was an average of 74 BLAST (24 jobs) and 12
BWA (1432 jobs) metadata operations (lookup, readdir,
update, and opendir) performed by the scheduler. Within
each job’s sandbox, there were an average of 293 (BLAST)
and 7 (BWA) operations (stat, open, readlink, and
getdents) that would have required interaction with the
metadata server. For BWA, the ratio of lookup+update to
open+stat is not as favorable as BLAST because each job
would dynamically open up only some of its input files. These
tests demonstrate that Confuga is able to significantly reduce
traffic on the head node by batching metadata operations before



Fig. 6. Confuga Transfer Modes Synchronous transfers are blocking replication operations performed by the scheduler. The thirdput RPC is used to have
a storage node transfer its replica to another storage node. Asynchronous transfers are a series of short blocking operations that create a transfer job on the
storage node. The transfer job executes asynchronously with the head node. Operations are numbered in order.

and after a job.

V. RETURNING TO THE DATA

Researchers typically work on the same data repeatedly,
making minor tweaks to the workflow. As expected in an active
storage system, Confuga allows running a workflow multiple
times without repeatedly moving data to the execution site. So,
the first workflow pays the price of distributing the data and
subsequent workflows may execute more quickly.

Figure 7 shows two variations of “returning to the data”.
Each graph indicates the activity on all storage nodes, both
for transfers in/out and for jobs executing. For these tests, we
have configured Confuga to use a simpler synchronous transfer
mechanism when moving replicas between storage nodes. This
means that the scheduler does a blocking transfer for each
replica, preventing any other work during the transfer. We talk
about synchronous transfers more in Section VI-A.

In the first graph, we execute the same BLAST workflow
twice consecutively. An 8GB dataset is uploaded immediately
prior to running the first workflow, with replicas striped
randomly across the cluster. The BLAST workflow executes
with 24 long running jobs that each share an 8GB dataset
split into multiple input files. The goal is to have the second
run of BLAST benefit from the prior replication work during
the first run. From the graph, one can see that Confuga is
initially busy pulling the files from multiple storage nodes
prior to executing the first job on SN12. In order to increase
concurrency, Confuga tries to replicate common input files
to other storage nodes, arbitrarily choosing storage nodes 1
and 12 as sources. The final stage of the BLAST workflow is
3 fan-in jobs which gather previous outputs, causing several
transfers at t=01:45. Because the two BLAST workflows
are identical and the outputs are small, these results were
deduplicated so the second execution of BLAST runs the 3
analysis jobs without any fan-in transfers.

In the second graph, we run the same BLAST workflow
twice consecutively, as before, but also run the BWA workflow
concurrently with the first run of BLAST. The 1432 job BWA
workflow begins with an initial fan-out job that splits a 32GB

dataset into 274 pieces. For the duration of the BWA workflow,
these splits are transferred from SN11 to 6 other storage nodes.
These transfers appear continuous and concurrent only because
of the graph’s minimum width of a transfer is 30 seconds
(to ease visibility). The final fan-in job is also run on SN11

which gather outputs from the other nodes. The intent of this
experiment is to determine how Confuga responds to two
workflows with disjoint datasets. We can see that the BWA
workflow taxed the scheduler with the large number of jobs and
synchronous transfers, preventing complete use of the cluster.
Eventually, SN8, SN9, and SN3 (briefly) were picked up by
BWA late in the run. Because SN8 was claimed by BWA, SN6

was chosen for the next BLAST job (with some dependencies
already there).

These results tell us that Confuga is able to help existing
unmodified workflows benefit from active storage. We see that
the second run of BLAST runs about 19% faster. Additionally,
running a another workflow concurrently with a disjoint dataset
does not significantly impact the data-locality for jobs.

VI. SCHEDULING AND LOAD CONTROL

This section examines the consequences of allowing asyn-
chronous and concurrent replication within the cluster. The
goal of concurrent replication is to fully utilize the available
network resources. As usual, concurrency is not a completely
positive change. The cluster may not be able to fully use the
resources it allocates or the accounting overhead of concur-
rency may slow down the head node.

For this work, Confuga uses a simple First-In-First-Out
(FIFO) scheduler for all configurations. There has been sig-
nificant effort in the community for constructing schedulers
emphasizing fairness [4] (for users), smarter placement, and
rescheduling [13]. For this section, we are focusing on how
to control load on the cluster, particularly the network after
scheduling (placing) jobs.

A. Synchronous and Asynchronous Replication

The Confuga scheduler uses two replication strategies for
transferring job dependencies through the cluster: synchronous
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Fig. 7. These graphs visualize the activity at each storage node during a run of workflows. Each storage node row has two bars for activity: the top bar (small
tics) shows transfers in or out and the bottom bar (long tics) shows job execution. The width of the bar indicates the duration of the activity. Each transfer
or job also has a minimum width of 30 seconds, to ease visibility. Additionally, dots below the job execution bar show when a job has finished to distinguish
consecutive jobs.
The top graph has two sequential runs of the same BLAST workflow, each run colored differently. Transfers are also colored according to the workflow that
initiated them. The BLAST workflow has a shared input dataset composed of multiple files, totalling 8GB. This graph demonstrates that Confuga benefits from
previous work replicating files by starting the second workflow’s jobs immediately on all storage nodes.
The bottom graph also has two sequential runs of the same BLAST workflow but additionally has a BWA workflow (light gray) running concurrently with the
first BLAST workflow. The BWA workflow has an input data set of 32GB which is split 274 times. You can see the split done by SN11 at 00:15. This graph
demonstrates that Confuga is able to run two workflows with disjoint data sets concurrently with data locality and without significantly displacing each other.



Fig. 8. Confuga Job Scheduler This diagram shows the two scheduler
parameters we are manipulating in this section: fifo-m and async-n. This
figure shows m = 2 and n = 1. fifo-m limits the number of jobs, m, which
may be in the “scheduled” state, where the job has been assigned a storage
node for execution and may begin replicating missing dependencies. So, J7
may not be scheduled until either J5 or J6 leaves the scheduled state and is
dispatched. async-n limits the number of transfers to and from a storage
node. Two missing dependencies of J5 need to be replicated to SN1: F3

and F6. F3 is currently being replicated to SN1, via “Transfer Job” TJ2

(a Transfer Job is simply a job which transfers a file). F6 will wait to be
replicated until both SN1 and SN3 have a free transfer slot (n = 1).

and asynchronous. The scheduler performs synchronous trans-
fers by serially replicating the dependencies for a job until fin-
ished. This is considered a stop-the-world scheduling operation
as no other scheduling tasks are performed until the transfers
are complete. Asynchronous transfers free the scheduler to
work on other tasks but require more bookkeeping. Figure 6
visualizes the two strategies.

Synchronous transfers use the blocking thirdput

RPC [14] for directing a source storage node hosting a replica
of the desired file to perform a streaming put of the replica
to the target storage node. In our evaluation, we refer to this
replication strategy as sync.

Confuga implements asynchronous transfers using transfer
jobs which are regular jobs that execute operations within
the storage node file system. This allows for the scheduler
to reliably start and track the progress of the asynchronous
transfer in a distributed context. Transfer jobs may execute
concurrently with other types of jobs. When replicating a file
to another storage node, the transfer job performs a putfile
RPC [14] on the target storage node. While the transfer job is
executing, the Confuga scheduler regularly performs a stat

RPC on the target storage node’s developing copy of the
replica. This replication strategy is referred to as async.

At this time, transfers in Confuga are directed; the sched-
uler controls the movement of all files. This allows Confuga
to completely control load on the network. Storage nodes

do not independently initiate any transfers. Analyzing the
potential benefits of undirected transfers via storage nodes
independently pulling job dependencies is subject of future
work.

B. Constraining Concurrent Job Dispatch

Before a job can be dispatched to a storage node for
execution, Confuga must replicate any missing dependencies
on the storage node. This results from our chosen semantics
read-on-exec: each dependency is loaded and mapped
into the job’s namespace prior to execution. We use the
term scheduled to refer to the state of jobs which have been
assigned to a storage node but the dependencies are not yet all
replicated. The scheduler forms decisions about file transfers
considering only jobs in the scheduled state.

In early designs of Confuga, we optimistically scheduled
jobs on all available storage nodes in one phase of the
scheduler. The scheduler would then move on to replicating
necessary dependencies for all of these scheduled jobs. For
some workflows, this has not been the best default approach
as workflows rarely fully utilize the cluster (due to replication
and job execution time). Instead, it is useful to conservatively
limit the number of scheduled jobs that the Confuga scheduler
considers at a time. This allows some jobs to execute sooner
and enables future jobs to possibly reuse the same nodes that
become available. Additionally, each scheduled job uses more
of the cluster network for replicating its dependencies.

We refer to this scheduling strategy as fifo-m, where
m is the maximum number of jobs in the scheduled state
at any time. The early optimistic scheduler corresponded to
fifo-inf, which practically limits the scheduler to having
up to one scheduled job for each storage node (so fifo-inf
is equal to fifo-j where j is the number of storage
nodes). For sync transfers, fifo-1 is always used because
transfers are blocking operations, serially performed by the
scheduler. There is no benefit to increasing m as the scheduler
cannot concurrently replicate dependencies for more than one
scheduled job.

C. Constraining Concurrent Transfer Jobs

Once a job is in the scheduled state, the scheduler at-
tempts to replicate any missing dependencies to the storage
node it is assigned to. When using asynchronous transfers,
a greedy approach would immediately dispatch transfer jobs
for all missing dependencies. When there are several large
dependencies, this would result in the target storage becoming
overloaded or in the cluster network becoming saturated.

Confuga allows for controlling the number of concurrent
transfer jobs by assigning n transfer slots to each storage node.
This prevents a node from becoming the target or source of
more than n concurrent transfer jobs. So the scheduler must
wait to replicate any missing dependencies for a scheduled
job until the storage node has free transfer slots available.
Likewise, a source for a popular replica cannot be overloaded
by more than n transfers. We refer to this scheduling policy
as async-n. Figure 8 shows the Confuga scheduler with the
fifo-m and async-n configurations.



Fig. 9. Transfer heavy workflow used to stress the Confuga scheduler.

D. Evaluation

We have evaluated Confuga’s scheduling parameters using
the workflow visualized in Figure 9. The goal of this workflow
is to stress the Confuga scheduler with short jobs and several
large data dependencies. The workflow has 25 instances of
a producer and consumer pipeline. Each consumer (nop)
receives 30GB of data from 11 producers. Figures 10, 12,
11 show the results for running this workflow with several
different configurations of the scheduler.

The workflow is limited by the ability to transfer files
between nodes, so an increase in the cluster bandwidth leads to
a decrease in execution time. Increasing fifo-m has the most
significant impact on the cluster bandwidth, across all con-
figurations of async-n, except async-inf. An unlimited
number of concurrent transfers on a storage node appears to hit
a cluster bandwidth limit around 150 MB/s, even for increasing
fifo-m. On the other hand, async-1 achieves the best
performance for all configurations of fifo-m, allowing a
single transfer to saturate the link for a storage node.

For the bandwidth of individual transfers, increasing the
concurrency of transfers on a storage node (async-n) or on
the cluster (fifo-m) has a negative impact. Despite this, the
utilization of the cluster network increases. This allows for the
system as a whole to accomplish more, even though individual
transfers are slower.

We conclude from these experiments that a directed and
controlled approach to managing transfers on the cluster is
essential for achieving performance. For example, enforc-
ing a limit on transfers to one per storage node offered
a 228% increase in average cluster bandwidth and a 23%
reduction in workflow execution time (fifo-inf/async-1
vs. fifo-inf/async-inf). This method of controlling
load on the cluster, allowing for efficient disk and network
utilization, is made possible by Confuga exploiting the explicit
job namespace descriptions from the workflow and by Confuga
limiting the consistency semantics for jobs.

VII. RELATED WORK

Distributed file systems like NFS [15] and AFS [16] are
often used in multi-user systems with reasonably strict POSIX
compliance. AFS is notable for introducing write–on-close, so
other clients will not see changes to a file until file close.
Other POSIX extensions for high-performance computing have
been proposed [17] allowing batch metadata operations and
explicitly relaxing certain consistency semantics.
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Fig. 10. Time to complete.
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Fig. 11. Cluster Transfer Bandwidth. Bars, whiskers, and stars are respec-
tively average, standard deviation, and maximum.
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Fig. 12. Individual Transfer Bandwidth. Bars, whiskers, and stars are
respectively average, standard deviation, and maximum.

Still, all parallel cluster file systems suffer from the
metadata bottleneck [18], [19], [20]. For Confuga, metadata
issues have been largely avoided by designing the system for
workflow semantics, where file access is known at dispatch and
visibility of changes are only committed on task completion.
This allows Confuga to batch many operations (open, close,
stat, and readdir) at task dispatch and completion and



opportunistically prohibit dynamic file system access.

Content-addressable storage is a common feature in file
systems, including Venti [21] and HydraFS [22]. Confuga
uses both CAS and GUIDs to empower storage nodes to self-
allocate a filename in the replica namespace without head node
intervention. File deduplication is a secondary benefit.

Active Storage [5] was originally proposed as a technology
where computation be moved to the hard disk drives. This
would free up the CPU for other tasks and eliminate the need
to move data into main memory through congested buses. For
many reasons, including lack of storage manufacturer interest,
this idea has not been implemented. Other work on Active
Storage has centered around the use of workflow abstractions
with workflow managers tightly coupled to the storage system.
Map-Reduce [1] is an abstraction used in Hadoop [23] for
executing tasks near data, preferring a storage node storing the
desired block, a storage node on the same rack, or anywhere
in the cluster. The abstraction is very specific and only allows
expressing data locality needs in terms of a single file.

Object based storage devices (OSD) [24] provides some
support for using the processing power of disks. An OSD pro-
vides an abstracted storage container which produces objects
tagged with metadata. A set of operations for manipulating
and searching/selecting the objects on the devices is part of
the standard [25]. OSD has become an integral component of
numerous file systems including Lustre [26] and Panasas [27].
Computation on Lustre storage servers has also been sup-
ported [28] to allow client programs to have direct access to
data, and in [29] as a user-space solution.
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