
Design of an Active Storage Cluster File System
for DAG Workflows

Patrick Donnelly
Department of Computer Science

and Engineering
University of Notre Dame

384 Fitzpatrick Hall
Notre Dame, IN 46556
pdonnel3@nd.edu

Douglas Thain
Department of Computer Science

and Engineering
University of Notre Dame

384 Fitzpatrick Hall
Notre Dame, IN 46556

dthain@nd.edu

ABSTRACT

We present the conceptual design of Confuga, a cluster file system
designed to meet the needs of DAG-structured workflows. Today’s
premier cluster file system Hadoop is commonly used to support
large peta-scale data sets on commodity hardware and to exploit ac-
tive storage through Map-Reduce, a specific workflow pattern. Un-
fortunately, DAG-structured workflows have very different require-
ments from Map-Reduce workflows: whole-file access is standard
and multiple dependencies are common. Confuga will meet these
new requirements by replicating rather than striping files as in Ha-
doop, by exploiting DAG-structured workflow consistency seman-
tics, and by permitting multiple dependencies in job descriptions.
To the end user, Confuga will appear as a drop-in replacement for
a batch system and a file system, combined into a single entity that
can be invoked by existing workflow managers. In this paper, we
describe the design philosophy of Confuga, sketch the major com-
ponents of the system, and explain how the system will behave un-
der expected workloads.

Keywords

Workflow, Data-Intensive, Active Storage, Data-Locality, Hadoop,
Confuga, Chirp

1. INTRODUCTION
The last decade has seen rise of new scalable cluster file sys-

tems used for storing scientific data and for enabling executing
tasks on this data. In fact, creating large storage clusters using
commodity hardware has never been easier. Hadoop [33] is per-
haps the most popular open source implementation of a scalable
cluster file system and is used across industry and academia for
scaling to peta-byte datasets. Hadoop is designed to enable the
Map-Reduce [7] workflow abstraction to allow processing on these
immobile datasets and has led an entire paradigm of research on
exploiting data-local execution.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DISCS-2013, November 18 2013, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2506-6/13/11 . . . $15.00.
http://dx.doi.org/10.1145/2534645.2534656

Concurrently, distributed and parallel scientific computing appli-
cations have given rise to systems designed to execute thousands to
millions of tasks, including Condor [15] and Sun Grid Engine [10].
These distributed compute engines are designed with a centralized
job submission site which deploys tasks and input data to exe-
cute nodes, providing a simple interface for distributed computa-
tion. There has been extensive work to express scientific work-
flows in formats suitable for faster and automated deployment on
these systems. Usually, this involves distilling the workflow into a
set of tasks and input/output file dependencies to form a directed
acyclic graph (DAG). Distributed systems including Dryad [13],
DAGMan [9], and Makeflow [3] express workflows in this way.
Following generation, the DAG is executed by submitting tasks to
a distributed computing engine with output files gathered at each
step for the next task in the DAG.

Unfortunately, DAG-structured workflows exhibit poor perfor-
mance on Hadoop. Primarily, this is because Hadoop optimizes
for the Map-Reduce workflow abstraction which is incompatible
with generic DAG-structured workflows. DAG-structured work-
flows are generally written where tasks consume entire input files.
On Hadoop, blocks are replicated and striped across the cluster, so
any running task will need to perform remote I/O to fetch blocks
not resident on the storage node. The design of the job submis-
sion platform is also tailored for Map-Reduce jobs composed of
hundreds to thousands of tasks, each performing a Map operation
on a file block; partially as a result of this design around large
jobs, Hadoop’s job bandwidth suffers for single-task jobs used by
DAG-structured workflows [3]. Finally, data locality in Hadoop is
achieved only in the context of Map-Reduce: a job has a single in-
put file with a Map task executed for each of the input blocks striped
across the cluster. A job’s tasks cannot have multiple dependencies
while achieving complete data-locality.

To answer the need for data-intensive DAG-structured workflows,
we have designed Confuga1, an active storage cluster file system.
Confuga replicates data with file-granularity striped across the clus-
ter, executes unmodified task applications within a POSIX file sys-
tem context, and offers multi-dependency data-local execution. Con-
fuga is optimized for DAG-structured workflows where coarser con-
sistency semantics allow for fewer metadata operations. This means
all I/O operations are scoped at the whole-task level: input file
access is performed before a task begins and global visibility of

1Confuga is a portmanteau of the Latin word con and Italian’s fuga
(also Latin). A fugue (fuga) is a contrapuntal musical composi-
tion composed of multiple voices. Here the intended meaning is
"with many voices" although it literally translates as "with chase".
[Later it was determined confuga is itself a Latin word meaning
"refugee".]

Figure 1: A typical DAG-structured Workflow. This comes
from a bioinformatics workflow using SHRiMP [23]. Here files
are boxes, circles are tasks, and lines indicate dependencies.

output file manipulations are committed after the task completes.
These semantics enable a number of optimizations that Confuga
will exploit to achieve performance.

Confuga is currently a work-in-progress. It will be used as a
drop-in replacement for a batch system and a file system, com-
bined into a single entity that can be invoked by existing workflow
managers.

2. OBSERVATIONS ON DAG-STRUCTURED

WORKFLOWS
Scientific workflows often re-use large datasets in multiple

workflows. It is expensive to dispatch a large set of data to multiple
execution nodes for each workflow execution. It is beneficial to
persistently store data in a cluster where the work of replicating the
data to multiple execution nodes is done once.

Metadata interactions occur at task start/end. DAG-structured
workflows are designed to have known data dependencies and data
outputs for each task. This allows the scheduler to order task execu-
tion and, for some systems, schedule subsequent tasks near recently
produced dependencies.

DAG-structured workflows are written for whole-file access.

Workflows are written so that tasks consume entire files. Usually
this requires splitting larger files before hand and adjusting the ap-
plication but in practice this is not a significant burden on users.
However, it is also common for some scientific workflows to have
tasks which require large input files that cannot be split. This cre-
ates difficulties in distribution and storage for the workflow man-
ager.

3. CONFUGA
Confuga is an active storage cluster file system designed for ex-

ecuting DAG-structured workflows. At a high-level, Confuga is
composed of a head-node and multiple storage nodes. The head-
node presents to users a regular global namespace for storing files
as a regular directory hierarchy. Files are striped across the clus-
ter, with multiple replicas. The head-node also allows for workflow
managers to submit jobs to the cluster. These jobs are single-task
regular applications with explicit file access descriptions. Applica-
tions access/write data as regular files on the local file system but
visibility of changes are only committed to the global namespace
at task completion.

Figures 2-4 show operations of interest on the file system. Si is
a storage node holding files (Fi). HN is the head node composed
of a replica manager (RM), namespace manager (NM), and job

Figure 2: Put

Figure 3: Copy

Figure 4: Execute

scheduler which dispatches tasks (Ti) to storage nodes for execu-
tion.

Figures 2 and 3 show a user doing manipulations of the file
system using command-line tools. Figure 2 illustrates a scenario
where a user might upload a file which may be replicated numer-
ous times in anticipation of heavy use. Figure 3 displays the user
issuing an intent to the file system for a file to be replicated. For
this case, Confuga records the intent and repairs the file system over
time by replicating the file as needed. Figure 4 shows the steps the
cluster takes to execute a job submitted by a workflow manager.
We will examine the details of these components and operations in
the following sections.

3.1 Properties
Replicated data at file-granularity: Replicated storage has obvi-
ous benefits for data redundancy in case of failure and has become a
requirement for modern cluster file systems. Replicas also serve as
a caching mechanism where the cluster adjusts replication of files
based on demand. Maintaining the cache state for each storage
node enables the scheduler to make smarter data-locality decisions
for tasks and balance load across the cluster.

The granularity of replicas will be individual files. Replication
of smaller blocks has some attractive benefits such as deduplica-
tion of similar files and large file support (because blocks of a large
file can be stored across storage nodes); however, block granular-
ity increases work for whole-file access typical in DAG-structured
workflows.
(Restricted) POSIX I/O Interface: Most existing workflows are
composed of applications that utilize POSIX I/O. This necessi-
tates that execution of an unmodified task executable occur within
a POSIX-compliant file system. In practice this means that tasks
must execute on a system with a kernel driver that mounts the dis-
tributed file system, with FUSE [26] access to mount the file sys-
tem in userspace, or with a system call interposition agent which
redirects local I/O to remote services, such as Parrot [27]. This,
however, has impractical system access constraints (root/fuse ac-
cess) or performance problems (interposing system calls: reduced
performance).

Instead, Confuga will create a binding in the local file system
(either through links or file copies) to the replicas which exist on
the storage node2. This requires that Confuga know what exact
files a task will access: the major constraint of job submission in
Confuga. Each job must come with binding information for the
task’s namespace to the global namespace. This allows for tasks
to have a regular POSIX interface to its files but prevents manip-
ulation of the global namespace or dynamic access to files in the
global namespace. This also means tasks (processes) cannot in-
tercommunicate except through the file system where changes are
made visible globally at task completion, and, only tasks which
start after those changes are made visible may see those changes.
Consistency maintained at task-boundaries: Most file systems
respect POSIX consistency semantics by making changes visible to
readers immediately, write for example. In practice, this restricts
performance of a distributed file system. AFS [12] is well-known
for dispensing with commit-on-write consistency semantics
in favor of commit-on-close. This means changes to a file are
only visible to readers once the file is closed by the writer. Con-

2File copies are expensive even on the local disk but ensure tasks
cannot modify original replicas with direct access via links. More
advanced local file systems such as ZFS [4] that support snapshots
or light-weight file system clones (copy-on-write) would provide
better mechanisms for cheap and safe binding of replicas to a task
namespace.

fuga takes this a step farther by exploiting the properties of DAG-
structured workflows by restricting visibility of changes to task
completion. We refer to this as commit-on-exit. These se-
mantics ultimately reduce load on the metadata server (head node).

Likewise for read, partially because we know which files a task
will use prior to execution, we can limit its visibility of changes to
a file to the beginning of its execution. This restriction is attrac-
tive since it prevents metadata checks for file changes and the sub-
sequent file delta retrieval and enforces DAG-structured workflow
semantics.
Global and Task Namespace Management: As with most dis-
tributed file systems, there will be a shared global namespace ac-
cessible to all users of the system. This global namespace will fa-
cilitate sharing data with other users for their workflows.

Each file in the global namespace references an identifier or in-
ode. The inode is derived from the file’s contents as a cryptographic
hash value. This allows storage nodes to map stored replicas to a
flat namespace and to generate a universally unique identifier3 for
a replica without consulting the metadata server. This is a common
technique in file systems known as content addressable storage.

Confuga’s management of task namespaces will be a distinguish-
ing feature of the system. Specifying a job will require knowing all
input files and output files for the task. Additionally, task execution
is considered atomic and its side-effects on the global namespace
are only committed after execution completes. A task’s description
sent to a storage node will include a mapping of the task namespace
to file identifiers, which index replicas. Output files generated by a
task are put into the global namespace by the head-node before the
job is considered finished.

3.2 Architecture
The system will be composed of four main components: a job

scheduler, a replica manager, a namespace manager, and multiple
storage nodes. A head node will be responsible for maintaining the
job scheduler, replica manager, and namespace manager4. All file
system metadata operations are performed through communication
with the head node.

Replica Manager The replica manager is responsible for main-
taining a list of storage nodes which have a copy of a file. A file is
looked up by using a file identifier (inode). File identifiers can be
derived universally as the cryptographic hash of the file contents.

In addition to storing replica locations, the replica manager stores
miscellaneous metadata for files including the size and creation
date and maintains certain cluster upkeep. This would include peri-
odically checking that storage nodes have correct replicas and that
sufficient replicas exist to ensure redundancy.

Namespace Manager The namespace manager maintains the di-
rectory hierarchy of the file system. Directories and symbolic links
are maintained in a mirror file system layout on the head node’s
local file system. Regular files are references to a file identifier.

The namespace manager is also responsible for access control.
An access control list is maintained for each directory. The mecha-
nism will enforce read, write, list, insert, delete, and administration
rights for individual users or groups.

Job Scheduler The Confuga file system will support a number
of job creation and manipulation commands which will be passed
to the job scheduler. The scheduler is responsible for creating a
static task description which includes a task namespace. This task

3Ignoring infinitesimally small chances of collision.
4Failure of the head node is an important thing to avoid and de-
sign around. Redundant head nodes would solve this, and Confuga
could be made to support this, but we avoid adding the complexity
for now.

namespace binds input files to file identifiers and output files to the
global namespace (to be committed upon task completion). As part
of the result of a finished task, the storage node includes the file
identifiers of each output to be mapped into the global namespace.

The job scheduler queues jobs waiting to be run and determines
where and when jobs are executed on storage nodes. It is required
that all input data be resident on a storage node before the job can
be executed there. The scheduler is also capable of replicating data
to a new storage node to increase the number of concurrent jobs.
Alternatively, it can hold a job until a storage node with the job’s
dependencies becomes available.

Job execution is considered atomic. A job reads all input files
from the global namespace in one operation. A job’s task is ex-
ecuted on a storage node and its outputs committed as one oper-
ation to the global namespace. If any part of committing output
fails, then the entire commit is discarded and the job is considered
failed without side-effects. As an optional job failure semantic, a
job description could require that input files are unchanged before
committing output files to the global namespace.

3.3 Load Balancing
Confuga inherently balances load of the cluster in a number of

respects:
Metadata Server (Head Node) Load As part of adapting the

design of the cluster to handle DAG-structured workflows, Confuga
can perform all metadata operations for a task before dispatch. This
is both because the scheduler knows what files the task will require
as part of the job description and because the consistency semantics
depart from POSIX by preventing visibility of changes to the global
namespace during task execution.

This philosophy for reducing head-node load is not uncommon.
For example, Hadoop’s Map-Reduce implementation knows which
blocks a task will work on. It also knows these blocks cannot
change due to the write-once nature of Hadoop’s FS.

Another mechanism for reducing load on the metadata server is
the use of content addressable storage. This allows the allocation
of an inode number for each file without communication with the
metadata server. Also, consistency of file contents is simply main-
tained. Old replicas become unreferenced when the namespace
manager updates a path but not unusable. This allows tasks cur-
rently using those replicas to continue functioning normally. There
is no need to synchronize the storage cluster nodes when a filename
in the global namespace refereinces a new identifier.

Storage Nodes Load Because Confuga replicates files across
the cluster, each node with a replica increases the amount of paral-
lelism we can achieve. We use whole file replicas because this is
compatible with DAG-structured workflows.

In contrast, block striping of files across the cluster is used by
Hadoop to maximize parallelism of tasks. Hadoop is able to do
this because Map-Reduce splits an input file, assigning a task to
each split. For Confuga, a DAG is whole-file based. Splitting a file
is actually harmful since a (generic) task needs to fetch the entire
file during its execution. A user may instead split a large file into
smaller files. This can be done before executing any workflows
or as part of the DAG. Either strategy is common practice by our
collaborators.

3.4 Implementation
Confuga is currently a work-in-progress. Covering the imple-

mentation in detail is not possible due to space considerations but
a brief mention of pertinent details follows.

Confuga leverages an existing deployable file system service,
Chirp, to handle remote I/O access, authentication, and access con-

Figure 5: Example Workflow This is a simple DAG workflow
with trivial fan-out and fan-in behavior. As before, Fi is a file and
Ji is a job. We examine the details of evaluating this workflow in
Section 4.

trol. Developing Confuga requires clustering a set of Chirp servers
to form a coherent global namespace, file location layout, and job
submission platform.

Chirp [28] is a file system service designed to be deployed on a
grid to make available data for remote execution sites. Functionally
and conceptually, Chirp is similar to NFS [24]. Chirp is attractive
for deployment on grids and clusters for a number of reasons in-
cluding trivial user deployment without administrator privileges,
strong and usable authentication and access control mechanisms,
and multiple mechanisms for applications access.

Part of Confuga’s design allows storage nodes to be completely
unaware of the larger context, the cluster file system. Storage nodes
can run regular Chirp servers. Replicas are maintained on storage
nodes as regular files managed by the head node. Jobs are sub-
mitted to storage nodes with task namespace binding information
devoid of the global namespace references. Each task namespace
binds a name in the task context, e.g. app.exe, to a file identifier
known to be on the storage node, e.g. /store/eabd1234....
[Recall that file identifiers are simply file names derived by the hash
of the file contents.]

The head node also operates a Chirp server as an interface to the
cluster. Normally each remote procedure call (RPC) to Chirp, e.g.
chmod, results in an equivalent system call to the underlying file
system. For Confuga, the head node instead operates with an over-
laid back-end file system which interprets each RPC in the context
of Confuga. Most metadata operations like chmod are interpreted
regularly and reflected in the global namespace which is simply
mirrored on the local file system. Other operations such as putting
or getting a file would result in the name node redirecting the op-
eration to a storage node. A job submission RPC would result in a
scheduler making a decision about which storage node to send the
job to, based on the location of replicas of dependencies.

4. EXAMPLE WORKFLOW
To illustrate how Confuga operates, we will walk through a sim-

ple workflow shown in Figure 5. It is composed of 4 jobs with typ-
ical fan-in and fan-out behavior. J1 produces an output file which
both J2 and J3 consume. J4 consumes the output of J2 and J3.

The first step in evaluating the workflow will require the work-
flow manager (WM) to upload any input file dependencies, in this
case FA. This would also include any executable files that will
be run, which we ignore for simplicity in this example. The Head
Node (HN) streams uploaded files to storage nodes:

WM− > HN : UPLOAD FA

HN− > S1 : PUT FA

At this point, the WM can begin submitting its first job to the
cluster. [Figure 4 illustrates submitting a job to the cluster.] The job
description includes the command to execute, the input and output
files, and other miscellaneous requirements. The HN dispatches the
job for execution to S1 with all input file dependencies resident.

WM− > HN : SUBMIT J1

HN− > S1 : EXEC J1

WM− > HN : WAIT J1

Once J1 is complete and its results committed to the global names-
pace, the WM may dispatch the next jobs in batch:

WM− > HN : SUBMIT J2

WM− > HN : SUBMIT J3

HN− > S1 : COPY FB S2

S1− > S2 : PUT FB

HN− > S1 : EXEC J2

HN− > S2 : EXEC J3

WM− > HN : WAIT J2, J3

Here J2 and J3 both require input file FB . In this example, the
HN determines that copying the file to another node prior to execu-
tion will have better performance (allowing two nodes to execute
simultaneously). Once FB is copied from S1 to S2, the HN dis-
patches J2 and J3 to the respective nodes.

The workflow ends with the WM sending J4 to the HN. Since the
two required input files are on two different nodes, the HN initiates
a copy of FD to S1 from S2. Finally, J4 is sent to S1 for execution.

WM− > HN : SUBMIT J4

HN− > S2 : COPY FD S1

HN− > S1 : EXEC J4

WM− > HN : WAIT J4

Note: This example does not delve into the details of heuristics
and algorithms the HN uses when making decisions on when and
where to replicate files for executing jobs. The HN may decide, for
fairness perhaps, to serialize execution of J2 and J3 on S1. Evalu-
ating these decisions will be subject of planned future research.

Expectations: We expect Confuga to perform well in situations
where file size increases and thus cost to move files grows. In par-
ticular, when large input files are used regularly in workflows and
are replicated across the cluster. As expected, transfers between
nodes will also operate between storage nodes without the HN me-
diating the connection.

Confuga will perform less optimally for workflows which rely
on partial reads of files, such as Map-Reduce creating many "Map"
tasks each reading from a few blocks of a large file. This is because
Confuga will require that the entire file be resident on the execution
node before running the task. This follows from designing around
the observation that DAG-structured workflows do whole-file reads
for each task.

5. RELATED WORK
Distributed file systems like NFS [24] and AFS [12] are often

used in multi-user systems with reasonably strict POSIX compli-
ance. AFS is notable for introducing write-through-on-close, where
POSIX consistency semantics are relaxed so other clients will not

see changes to a file until the writer closes the file. Other POSIX ex-
tensions for high-performance computing have been proposed [32]
which allow batching metadata operations and explicitly relaxing
certain consistency semantics.

Still, all parallel cluster file systems suffer from a metadata bot-
tleneck [2, 6], even for highly performant cluster file systems such
as IBM’s GPFS [25] and PVFS [22]. For Confuga, metadata issues
have been largely avoided by designing the system for workflow
semantics, where file access is known at dispatch and visibility
of changes are only committed on task completion. This allows
Confuga to batch many operations (open, close, stat, and
readdir) at task dispatch and completion and opportunistically
prohibit dynamic file system access.

Content-addressable storage (CAS) is a common feature in file
systems allowing for simple universal inode generation (the in-
ode is the checksum), deduplication, and indexing files through a
flat namespace. Many distributed file systems use CAS including
Venti [19] and HydraFS [30]. Both Venti and HydraFS use block
granularity for storing objects to achieve better deduplication, espe-
cially important in an archival system. Git [29] and Mercurial [17]
are distributed version control systems which use CAS to uniquely
identify commits and objects where remote repositories are infre-
quently available.

Active Storage [1, 14, 21, 20] was originally proposed as a tech-
nology where computation be moved to the hard disk drives. This
would free up the CPU for other tasks and eliminate the need to
move data into main memory through congested buses. For many
reasons, including lack of storage manufactor interest, this idea has
not been implemented.

Object based storage devices (OSD) [11] provides some support
for using the processing power of disks. An OSD provides an
abstracted storage container which produces objects tagged with
metadata. A set of operations for manipulating and searching/se-
lecting the objects on the devices is part of the standard [31]. OSD
has become an integral component of numerous file systems in-
cluding Lustre [5] and Panasas [16]. Computation on Lustre stor-
age servers has also been supported [8] to allow client programs to
have direct access to data, and in [18] as a user-space solution.

Other work on Active Storage has centered around the use of
workflow abstractions with workflow managers tightly coupled to
the storage system. Map-Reduce [7] is an abstraction used in Ha-
doop [33] for executing tasks near data, preferring a storage node
storing the desired block, a storage node on the same rack, or any-
where in the cluster. The abstraction is very specific and only al-
lows expressing data locality needs in terms of a single file.

6. CONCLUSIONS
This paper discusses the design of Confuga, a cluster file system

for executing DAG-structured workflows. Confuga is currently a
work-in-progress. We are confident it will perform well for data-
intensive workflows our collaborators have. Future work will eval-
uate the behavior of the system with different scheduling algo-
rithms, replication strategies, and workflows.

7. REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:
Programming model, algorithms and evaluation. In ACM

SIGPLAN Notices, volume 33, pages 81–91. ACM, 1998.

[2] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow,
and F. Verzelloni. Parallel i/o and the metadata wall. In
Proceedings of the sixth workshop on Parallel Data Storage,
pages 13–18. ACM, 2011.

[3] M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A
portable abstraction for data intensive computing on clusters,
clouds, and grids. In Proceedings of the 1st ACM SIGMOD

Workshop on Scalable Workflow Execution Engines and

Technologies, page 1. ACM, 2012.

[4] J. Bonwick and B. Moore. ZFS: The last word in file
systems, 2007.

[5] P. J. Braam and R. Zahir. Lustre: A scalable, high
performance file system. Cluster File Systems, Inc, 2002.

[6] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and
T. Ludwig. Small-file access in parallel file systems. In
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, pages 1–11. IEEE, 2009.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[8] E. J. Felix, K. Fox, K. Regimbal, and J. Nieplocha. Active
storage processing in a parallel file system. In Proc. of the

6th LCI International Conference on Linux Clusters: The

HPC Revolution, 2006.

[9] J. Frey. Condor DAGMan: Handling inter-job dependencies.
University of Wisconsin, Dept. of Computer Science, Tech.

Rep, 2002.

[10] W. Gentzsch. Sun grid engine: Towards creating a compute
power grid. In Cluster Computing and the Grid, 2001.

Proceedings. First IEEE/ACM International Symposium on,
pages 35–36. IEEE, 2001.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M.
Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
D. Rochberg, et al. File server scaling with network-attached
secure disks. ACM SIGMETRICS Performance Evaluation

Review, 25(1):272–284, 1997.

[12] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM

Transactions on Computer Systems (TOCS), 6(1):51–81,
1988.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. ACM SIGOPS Operating Systems Review,
41(3):59–72, 2007.

[14] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for
intelligent disks (idisks). ACM SIGMOD Record, 27:42–52,
1998.

[15] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor-a hunter
of idle workstations. In Distributed Computing Systems,

1988., 8th International Conference on, pages 104–111.
IEEE, 1988.

[16] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
ActiveScale storage cluster: Delivering scalable high
bandwidth storage. In Proceedings of the 2004 ACM/IEEE

conference on Supercomputing, page 53. IEEE Computer
Society, 2004.

[17] B. O’Sullivan. Distributed revision control with Mercurial.
Mercurial project, 2007.

[18] J. Piernas, J. Nieplocha, and E. J. Felix. Evaluation of active
storage strategies for the lustre parallel file system. In
Proceedings of the 2007 ACM/IEEE conference on

Supercomputing, page 28. ACM, 2007.

[19] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In FAST, volume 2, pages 89–101, 2002.

[20] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active
disks for large-scale data processing. Computer,
34(6):68–74, 2001.

[21] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia applications. In
Proceedings of 24th Conference on Very Large Databases,
pages 62–73. Citeseer, 1998.

[22] R. B. Ross, R. Thakur, et al. Pvfs: A parallel file system for
linux clusters. In in Proceedings of the 4th Annual Linux

Showcase and Conference, pages 391–430, 2000.

[23] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume,
A. Sidow, and M. Brudno. SHRiMP: accurate mapping of
short color-space reads. PLoS computational biology,
5(5):e1000386, 2009.

[24] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the sun network
filesystem. In Proceedings of the Summer USENIX

conference, pages 119–130, 1985.

[25] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file
system for large computing clusters. In FAST, volume 2,
page 19, 2002.

[26] M. Szeredi. Fuse: Filesystem in userspace. 2005. URL

http://fuse.sourceforge.net.

[27] D. Thain and M. Livny. Parrot: An application environment
for data-intensive computing. Scalable Computing: Practice

and Experience, 6(3):9–18, 2005.

[28] D. Thain, C. Moretti, and J. Hemmes. Chirp: a practical
global filesystem for cluster and grid computing. Journal of

Grid Computing, 7(1):51–72, 2009.

[29] L. Torvalds and J. Hamano. Git: Fast version control system.
URL http://git-scm. com, 2010.

[30] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,
G. Calkowski, C. Dubnicki, and A. Bohra. HydraFS: A
High-Throughput File System for the HYDRAstor
Content-Addressable Storage System. In FAST, pages
225–238, 2010.

[31] R. O. Weber. Information technology-SCSI object-based
storage device commands (OSD). Technical Council

Proposal Document T, 10:92, 2004.

[32] B. Welch. POSIX IO extensions for HPC. In Proceedings of

the 4th USENIX Conference on File and Storage

Technologies (FAST), 2005.

[33] T. White. Hadoop: The definitive guide. O’Reilly Media,
Inc., 2012.

