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ABSTRACT
Containers offer a powerful way to create portability for scientific
applications. However yet incorporating them into workflows re-
quires careful consideration, as straightforward approaches can
increase network usage and runtime. We identified three issues
in this process: container composition, containerizing workers or
jobs, and container image translation. To tackle composition, we
define data into three types: OS data, Read-Only, and Working data,
and define dynamic and static composition. Using the static com-
position (creating a single container for each job) leads to massive
waste in sending duplicate data over the network. Dynamic compo-
sition (sending the data types separately) enables caching onworker
nodes. To answer running workers or jobs inside a container, we
looked at the costs of running inside of a container. Finally, when
using different types of container technologies simultaneously, we
found it’s better to convert to the target image types before sending
the container images, instead of repeating the same conversion at
the job nodes, leading to more wasted time.1
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1 INTRODUCTION
Containers, such as Docker [9], Singularity [7], and Charliecloud [10],
offer an efficient alternative to virtual machines in High Perfor-
mance Computing (HPC) centers as a method of bringing one’s
own software dependencies instead of relying on the HPC centers’
software. At first, integration of containers into a workflow might
seem straight forward. The obvious solution would be to treat a
container as a bucket: simply deposit all data, libraries, executables,
etc, into a single image for the whole workflow. While easy, this
method is inefficient as a lot of irrelevant data for a given job would
be transferred to a node for executing the job. Another method
would be to simply create a new image for each job which perfectly
encapsulates all of the data necessary for that given job, but this too
creates inefficiencies if there is data overlap between jobs, leading
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to sending the same data everywhere many times. To solve this,
we need to look at several key aspects of how one can properly
integrate containers into a workflow.

We examined three key questions:
• How do we compose data and images into a container?
• Do we run workers or jobs inside of the container?
• When using more than one container technology, when do
we transform our images?

To execute a job, a workflow composes, or brings together, the
necessary inputs for execution. Thus, the first question is how to
compose different kinds of data together when starting a container,
and when to compose. We identify three kinds of image types: 1)
the container’s OS data holding the actual OS for the image, the
executables, and libraries and other software necessary for the job,
2) Read-only data which is the job specific scientific data operated
on by the job, and 3) the Read-Write data which is generated by
the job. If we compose too early, then we send too much replicated
data across the network.

Next, we consider the question of running a job inside of a
container, or running the worker node accepting jobs inside of
a container. If a container image is sent to the worker node for
the node itself to run inside of, and if jobs need different images,
this limits the ability of the scheduler to assign jobs in the most
efficient manner. Similarly, what are the costs of running inside of
a container, and can these be amortized over many different jobs?

Finally, a user might desire to run their workflows using re-
sources from different centers, e.g EC2 instances, their local HPC,
and a guest allocation at a National HPC center. Each of these re-
sources might have different container technologies on them, and
the straightforward approach of creating a custom image for each
one creates more hassle for the user. Thus, how do we decide when
to convert images from one virtualization type to another? What
are the benefits of converting first and then sending jobs, versus
converting before running the jobs themselves?

We ran several tests to examine these questions. To test con-
tainer composition, we ran two workflows: an artificial randomized
workflow and a bioinformatics workflow. The artificial workflow
took randomized data and passed it around to workers, printing
out the data to a file. Both workflows demonstrated that a dynamic
approach enables workers to cache the input files across different
jobs, leading to less data sent around the network and a faster
runtime. To test worker vs job containerization, we examined the
startup and teardown costs of a Singularity container, finding that
while small, the startup cost can be significant if the runtime of the
job is similarly small, thus possibly a benefit to having the worker
in a container. We also measured the read overhead of containers
by nesting containers, finding that for larger files, the overhead
becomes significant, pointing towards having each job in a con-
tainer if the workflow doesn’t need every job to be in a container.
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Finally, we measured transforming different types of containers
into a common image format, i.e a tar’d file system tree, and how
long it took to start containers based off of transformed images.
After looking at the top 75 images from Docker and Singularity,
we found that conversion of images took on average between 22s
to 199s to convert images, and between 5.6s to 67s to then start a
container. We then ran a bioinformatics workflow and found that
pre-converting the image led to shorter per-job runtime than de-
laying conversion of images to just before executing a job. Given
these results, it was better to apply a dynamic-approach and run
each job in a container by itself, and pre-convert their images if
using resources with different container technologies.

2 WORKFLOWS AND CONTAINERS
A workflow [12] [8] is a method for breaking up a large scientific
problem into smaller chunks which often have dependencies on
other jobs, and if their dependencies are fulfilled, can be ran in par-
allel, thus speeding up scientific work. Containers can be especially
useful for workflows as encapsulating the software stack can help
with reproducibility as well as portability, two desirable qualities
for any scientific work. Ideally, the container should have a minimal
impact on the execution time of the workflow, and not alter the
actual function of the workflow itself.

The most straightforward approach would be to run the entire
workflow in a container: that is, place all data, binaries, libraries,
configuration files etc in a single container image and then distrib-
ute that image to each worker node that is executing a job inside of
the workflow. However, this would lead to lesser performance than
native speed, as each worker node would receive not only the data
it needed for a single job, but also all of the data for every other
single job in the workflow. This is a massive amount of data being
passed around, thus increasing the runtime for the job. Additionally,
if this image has to be converted from one form to another, since
each worker has a different container technology it is supporting,
then the entire image, including all of the unnecessary data, has to
be copied into some other form, further increasing the runtime of
the job and thus entire workflow. We approach this problem step by
step in the following sections to fully examine it and offer possible
solutions for it.

3 CONTAINER COMPOSITION
When building containers, we first have to consider what kinds
of data are composed together when creating our container. We
classify container data types into three categories: OS data, Read
Only data, andWork data. Similar to how aHarvard cpu architecture
separates out instruction memory and working memory since they
have different access patterns, the three categories of container
data have different kinds of access patterns themselves.

OS data is composed of all the data needed for executing the job.
This includes binaries, libraries, and configuration files. Because this
data pertains to the execution of programs, it’s best to be thought
of as read-only data. Additionally, the individual files are typically
going to be small, on the order of kilobytes and megabytes, not
gigabytes, and stored in very deep file system structures.

Read Only data is the scientific data which the jobs use. This
data could be job specific, or universal for all jobs in our workflow,

but the key characteristic of it is that it is large and only read. This
data is on the orders of gigabytes and larger. Additionally, this data
is more likely to be stored in a flat file system structure, not buried
deep in directories upon directories.

Work data are the files generated and modified by the jobs
themselves. This data is read-write data, and ranges in size from
kilobytes to gigabytes on up, depending on the job. It is generally
stored flat in the file system tree as well, not buried in directories.

When wanting to work on a job, the first two must be sent to
the job before the job can be executed, and a location for the third
linked in. Given a workflow, we can imagine the individual jobs,
in the workflow as needing to be done inside of a container. The
question of composition then becomes tied to the question of image
distribution. Here, we describe two different approaches to looking
at composing containers: the static and dynamic approaches. To
fully understand both methods, it’s helpful to imagine the workflow
as a directed graph. In the graph there are layers through which
jobs and data are passed, and as the workflow proceeds, we move
through the different layers.

In the static approach, we first compose our images together as
early in the workflow graph as possible, sending out copies of this
composed image to every stage that’s needed, thus when finally
at the necessary stages, there is minimal composition needed to
start the container. This approach has the benefit of being simple:
if we have a job, simply wrap up everything needed for that job
into the same image and then simply send that image to the node
which will work on the job, and execute. Additionally, this provides
security, as we will not share any data between different jobs: every
job has it’s own unique container. In the dynamic approach, we
delay composing the container until as late as possible, preferably
only when the job is at the node and all data needed for a job is
at the worker to run. The benefit to this approach is cache-ability.
If multiple jobs need the same input data, the worker which runs
both jobs only needs to be sent the data once, thus minimizing
the amount of data that is spread throughout the network, and
increasing the throughput and speed of working the workflow.

To test these approaches, we conducted two tests: an artifical
workflow and a BLAST workflow [1]. We wanted to measure how
long the different approaches would take, and how much data over
the network both transfer. In the artificial workflow, we ran it in
four configurations: static and dynamic, both with enabled caching
and not. In the dynamic methods, a single image was passed to each
worker, and the data transferred separately. In the stacked methods,
the images were large enough to store all the random data, assuming
a naive approach, and sent out. All cases had an independent run
script. As can be seen in 3, caching greatly reduces the amount
of data sent, especially seen in the dynamic approach, and thus
leading to a shorter runtime. The BLAST workflow did a similar
approach, this time images only big enough for each job’s data, and
with caching enabled. Again, the dynamic approach transferred
less data and ran in a shorter runtime, as seen in figure 4.

4 CONTAINERIZE TASKS ORWORKERS?
Another question when discussing how to integrate containers into
a workflow is whether or not to place the worker nodes themselves
inside a container, or put each job inside of a container. Containers
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Here we show both the static and dynamic compositions. A static composition involves packaging everything that a job needs to execute into one
package, and delivering that package to the job. Included is the executable, the libraries, and all data input necessary. A dynamic composition

keeps only one copy of all necessary input files, and passes them as references.
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Figure 4: BLAST Workflow

In these two workflows, we are testing dynamic vs static configurations. The vertical shows how many bytes are sent while the bottom represents
time ticks created by standardized timestamps from Makeflow [3], our workflow system, for each configuration ran. As we can see, for both tests

the dynamic configuration with caching not only sends less data, but also results in shorter runtime than the static configuration.

have some inherent costs associated with them, such as start up
and tear down times and read-write overheads.

As discussed by Zheng and Thain [13], two major configurations
that one can run a container in are either every job runs in a con-
tainer, or the worker running the jobs is inside of a container. In the
first approach, seen in figure 5, every job runs in its own container,
which ensures job isolation between the different jobs being man-
aged by the worker. Thus, jobs have more security, knowing that
they can’t interfere in the operation of the other jobs. This approach
is also helpful when one looks at the read-write overhead associated
with containers. Although containers are extremely light-weight
in resource usage, as compared to virtual machines, they still suffer
some overhead. For example, when testing Singularity, we nested it
several times over and attempted to read and write different sizes of

files. As can be see in figure 8, for small files, the read performance
of Singularity is very close to that of native performance, but as
files increase in size, the performance gap between native reading
vs even a single layer for Singularity is significant. When the work-
ers themselves are not wrapped inside of a container, this gives
more freedom to decide if having a container is truly necessary,
especially in cases where the job is simply to split the data up into
many smaller files and not do hard computation on them, since
those jobs can often be done by a command line tool, such as awk
or grep, etc. However, when looking at a per-job level, the startup
and teardown costs have to be paid for every job which runs inside
of a container, which can build up. As seen in figure 7, looking at
Singularity’s startup and tear down costs, there is a real cost in
starting up containers. The cost might be small at first, but if the
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The factory calls different workers, each with their own cache
and different jobs. The jobs are wrapped in a container made
from the pulled in OS image, and the working directory is
mapped into the container.
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Figure 6: Worker in Container
The factory calls many different workers, each with their own
cache, and different jobs. The image is pulled in to create the
container, and a working directory is mounted into the image
for cache space and creating per-job working directories. This
design has the worker itself wrapped in a container, amortizing
the cost of running a container across all jobs.
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jobs themselves are small, and there are a large number of these
small jobs, then the small cost of starting up and tearing down a
container can add up.

In the other setup, the workers themselves are wrapped in a
container, as seen in figure 6. In this configuration, the OS is auto-
matically shared between the different jobs, eliminating the need
for transferring it for every job, and the startup+teardown costs of
the container are amortized across all jobs ran by that worker.

At first it might seem obvious that the benefits of simply running
every job in a container by itself might outweigh any benefits of
running a worker inside of a container (caching the images has
the same effect as running the same image for all jobs, being able
to customize a container for each job, etc), things become more
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Figure 8: Read Performance Overhead
Here we plot the size of the files on a logarithmic X-axis and the read

speed on the Y measured in MB/s.

complicated when looking at transforming containers between
different container technologies.

5 CONTAINER TRANSFORMATION
Three widely used container technologies are Docker, Singular-
ity, and Charliecloud. Each container technology has their own
advantages and disadvantages e.g Docker’s wide-spread usage but
requiring a root-daemon. When considering integrating containers
into a workflow, which container technologies are available be-
comes a pressing issue. If a workflow is being ran using resources
at three different sites, each of the different sites might use differ-
ent technologies, meaning transformation of the given containers
needs to happen, adding more steps to the workflow itself. There
are three configurations for when to convert images: convert im-
ages before running the workflow, convert just before running the
jobs, and converting and running workers inside of the containers.
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Table 1: Time to convert between container types

Type Mean stdev Num
Docker Tar to flat-tarball 36.22 s 35.80 s 73
Singularity to tarball 199.34 s 299.29 s 75
Charliecloud Docker to Tarball 22.26 s 15.75 s 74

Table 2: Time to import and run echo hello

Type Mean stdev Num
Docker -> Docker 16.10 s 9.42 s 69
Docker -> Singularity 5.56 s 5.01 s 71
Docker -> Charliecloud 5.77 s 4.74 s 70
Singularity -> Docker 56.12 s 61.99 s 50
Singularity -> Singularity 66.84 s 80.11 s 75
Singularity -> Charliecloud 58.32 s 74.66 s 75

In the first case, the user will have more files to keep track of, but
can amortize the transformation costs across the jobs which use it.
In the second case, it might be worth it if the transformation cost is
small compared to the job length and there are not that many jobs.
In the last case, the user still has to deal with many files, but now
the conversion and startup costs are amortized across jobs.

We tested converting between different container technologies,
importing, and running echo hello inside of the container. Each con-
tainer was converted into a tar-ball containing a filesystem tree. We
ran our tests on a 6-core virtual machine using sudo permissions, to
ensure a clean translation and avoid file permission issues. We took
75 of the most downloaded Docker containers from Dockerhub,
and the first 75 downloadable images from Singularity hub online.
The results for converting from native types to a usable tarball are
shown in table 1. Flattening from Docker involved simply copying
out the layers using tar, excluding caches, Docker metadata, and
/dev files, where as Singularity was simply to unsquash and tar up.
Each conversion requires a decent amount of time, on the order of
seconds to minutes. Importing and running times are shown in table
2. It takes different amounts of time for the different container tech-
nologies to import and run them, ranging from about 5.6 seconds
to 67 seconds on average. Additionally, some technologies such as
Singularity and Charliecloud, have their own ways of importing
Docker images which can be faster than converting to flat-tarball
and running from that. Not all conversions were fully successful,
with number of succeeded shown in the Num column.

6 EXAMPLE WORKFLOW
To tie all of this together, we ran an example workflow which
implements a parallel Burroughs-Wheeler Alignment and Genome
Analysis Toolkit (BWA-GATK), A bioinformatics toolkit for genetic
analysis, which is a complicated workflow with 530 jobs [2]. Our
setupwas to establish 10 workers each only using 1 core on our local
cluster and run the workflow in two different configurations: one
where the Docker image was converted into a Singularity image
before handing it off as an input to the individual jobs, and the
other where the Docker image was given to the jobs and have the
jobs themselves convert before running. Figure 9 shows that in
the pre-converted image case, our jobs had a bimodal distribution,
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Figure 9: Runtimes of Individual Jobs

with pre-converted image jobs running mostly between 20-70s and
230-280s, with our convert-at-jobs jobs running between 60-110s
and 260-320s, due to the 1min delay for converting the images. This
implies that it’s better to transform images once, before needing to
send them to the jobs.

7 CONCLUSION
Taking all of the previous sections combined, the best strategy for
introducing containers into a workflow would be to take a dynamic-
approach and enable the batch system to cache as many parts of the
workflow as possible, combining together at the very end, while
transforming images once, and not spending repeat operations to
tie them together.

8 RELATEDWORK
Other work also is concerned with integrating containers into work-
flows, such as Skyport [4]integrating Docker containers into their
AWE/Shock workflow system. Their example deployment also has
“workunits" running inside Docker containers, and mounting their
working directories into the container, and is called by the workers.
Similarly, Higgens et al [6] also discussed the pros and cons of
running Docker containers per node or per-job, but not integrated
in a workflow system. Another issue that comes up with container
integration is transferring images, and image data build-up using
certain systems, e.g Docker. For example, Slacker [5] uses virtual
machine image management technology to deal with this issue.
Ramon-Cortes et al [11] created a system for enabling users to
transparently deploy containers on Docker or HPC clusters, paral-
lelizing their code.
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