
DAGViz: A DAG Visualization Tool for Analyzing
Task-Parallel Program Traces

An Huynh
University of Tokyo

Tokyo, Japan
huynh@eidos.ic.i.u-

tokyo.ac.jp

Douglas Thain
University of Notre Dame

Notre Dame, IN, United States
dthain@nd.edu

Miquel Pericàs
Chalmers University of

Technology
Göteborg, Sweden

miquelp@chalmers.se

Kenjiro Taura
University of Tokyo

Tokyo, Japan
tau@eidos.ic.i.u-

tokyo.ac.jp

ABSTRACT
In task-based parallel programming, programmers can ex-
pose logical parallelism of their programs by creating fine-
grained tasks at arbitrary places in their code. All other bur-
dens in the parallel execution of these tasks such as thread
management, task scheduling, and load balancing are han-
dled automatically by runtime systems. This kind of paral-
lel programming model has been conceived as a promising
paradigm that brings intricate parallel programming tech-
niques to a larger audience of programmers because of its
high programmability. There have been many languages
(e.g., OpenMP, Cilk Plus) and libraries (e.g, Intel TBB,
Qthreads, MassiveThreads) supporting task parallelism. How-
ever, the nondeterministic nature of task parallel execution
which hides runtime scheduling mechanisms from program-
mers has made it difficult for programmers to understand
the cause of suboptimal performance of their programs. As
an effort to tackle this problem, and also to clarify differ-
ences between task parallel runtime systems, we have de-
veloped a toolset that captures and visualizes the trace of
an execution of a task parallel program in the form of a
directed acyclic graph (DAG). A computation DAG of a
task parallel program’s run is extracted automatically by our
lightweight portable wrapper around all five systems which
incurs no intervention into the target systems’ code. The
DAG is stored in a file and then visualized to analyze per-
formance. We leverage the hierarchical structure of the DAG
to enhance the DAG file format and DAG visualization, and
make them manageable even with a huge DAG of arbitrar-
ily large numbers of nodes. This DAG visualization provides
a task-centric view of the program, which is different from
other popular visualizations such as thread-centric timeline

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

visualization and code-centric hotspots analysis. Besides,
DAGViz also provides an additional timeline visualization
which is constructed by individual nodes of the DAG, and is
useful in coordinating user attention to low-parallelism areas
on the DAG. We demonstrate usefulness of our DAG visual-
izations in some case studies. We expect to build other kinds
of effective visualizations based on this computation DAG
in future work, and make DAGViz an effective tool support-
ing the process of analyzing task parallel performance and
developing scheduling algorithms for task parallel runtime
schedulers.

Keywords
task parallel; performance analysis; profiler; tracer; DAG
visualization

1. INTRODUCTION
Due to fundamental physical constraints such as power

consumption and heat dissipation, the development of com-
puter hardware has changed from increasing clock speed of
a single-core CPU to integrating increasingly more cores
in a multi-core CPU [2]. Recently emerging architectures,
such as Intel’s Many Integrated Core (MIC) which com-
bines many smaller lower-performance cores on the same
chip area, may potentially lead to a highly parallel era of
shared-memory computer hardware. This highly parallel
hardware will make it harder for programmers to program
parallel software using common parallel programming mod-
els such as SPMD (e.g., MPI) and native threading libraries
(e.g., POSIX Threads) which involve programmers in deal-
ing with low-level details of thread management, task schedul-
ing, load balancing, etc.

Task parallel programming models release programmers
from such low-level concerns by shifting these burdens to
the runtime systems. In task parallel programming, pro-
grammers just need to expose logical parallelism in their
programs by creating fine-grained tasks, each of which is a
work unit that can be executed in parallel with the rest, at
arbitrary places in their code (including recursion). These
tasks are scheduled to execute in parallel dynamically by the
runtime system. As a result, programmers can concentrate

better on the algorithmic aspect of the programming. How-
ever, this automation and nondeterminism of task parallel
models also removes a great deal of performance out of the
programmers’ control. The same task parallel program ex-
ecuted by different runtime systems could possibly present
significantly different performance. And programmers often
lack clues to understand why their programs perform badly.
Common analysis methods such as hotspots analysis and

timeline visualization are not sufficient for task parallel pro-
grams. Hotspots analysis which shows functions that con-
sume the most CPU time is useful in analyzing sequential ex-
ecution but fails to pinpoint concurrency bottlenecks in par-
allel execution. Timeline visualization (a.k.a. Gantt chart)
which displays thread activities in the course of the execu-
tion is thread-centric and not sufficient for task parallel pro-
grams which have dynamic scheduling characteristics and
nondeterminism in where tasks are executed. Comparing
runs of the same task parallel program is more consistent
when we compare them based on their common logical task
structure. For that reason, our approach is to measure and
extract the computation directed acyclic graph (computa-
tion DAG) from a task parallel execution, which records rel-
evant runtime behaviors based on the program’s logical task
structure (DAG), and visualize it for the performance anal-
ysis purpose. In our toolset, the measurement part (DAG
Recorder) extracts the DAG during the execution and stores
it in a file, while the visualization part (DAGViz) visualizes
the DAG and provides visual supports for analyzing perfor-
mance.
We define a generic task parallel computation model that

DAG Recorder can extract a DAG from. This model basi-
cally includes only two task parallel primitives of task cre-
ation and task synchronization. We build a simple macro
wrapper that translates these generic primitives to their
equivalents in five separate systems that are currently sup-
ported: OpenMP [12], Cilk Plus [7], Intel TBB [13], Qthreads
[20], and MassiveThreads [10] [9]. The details of this generic
model will be discussed in Section 2. Programmers write
task parallelism using our generic model and their code can
get translated automatically to these five systems. We ex-
tract the DAG by instrumenting this wrapper to invoke
DAGRecorder’s measure code at appropriate positions. These
instrumentations are done automatically in the wrapper, re-
quiring neither more work from users nor any intervention
into supported parallel runtimes. Hence, although our pro-
filing method requires users to rewrite their code using our
generic primitives and re-compile it with our wrapper and
DAG-recording libraries, the rewriting work is kept to a min-
imum that is just replacing primitives and what the users
gain is that their code can run with five (and more) different
systems that our wrapper library supports, and their code
can also be profiled/traced seamlessly by our tools.
In the DAG, nodes represent sequential computations and

edges represent dependencies between nodes. Nodes are
grouped hierarchically such that a collective node contains in
it a subgraph of other collective nodes and leaf nodes which
contain no subgraph. Thus, the initially only collective node
representing the whole application can get expanded step
by step into subgraphs of increasing depths and finally be-
come the full graph of only leaf nodes. Higher-level collec-
tive nodes hold aggregate performance information of their
inner subgraphs while leaf nodes hold the performance infor-
mation of their corresponding sequential code segments. We

leverage this hierarchical structure of DAG in its storage file
format and visualization techniques to make our tools man-
ageable even with a huge DAG of arbitrarily large numbers
of nodes (Section 3). By loading and displaying DAG with
on-demand levels of details, we can avoid loading the whole
big DAG file into memory at once, but need to load only a
fraction of DAG file corresponding to the visible part of the
DAG on screen.

With DAG visualization we are able to make all nodes of
a DAG visual and interactive on the screen. While impor-
tant, this by itself is not enough since a DAG with up to
thousands of nodes is already too large for users to compre-
hend. Therefore, supportive statistical analyses and other
kinds of general visualizations are needed to direct users to
trouble areas in a huge DAG. Our tool currently provides
an additional timeline visualization which is constructed by
individual nodes of the DAG, and is useful in coordinating
user attention to low-parallelism areas on the DAG (Section
4). We demonstrate usefulness of these visualizations in two
case studies of Sort and SparseLU programs (Section 5). We
are working on other kinds of useful visualizations based on
computation DAG, among other things, with the prospect of
making our toolset an effective platform supporting the pro-
cess of analyzing task parallel performance and developing
scheduling algorithms for task parallel runtime schedulers.

2. COMPUTATION MODEL
In this section, we describe the generic task parallel model

that our toolset can extract a computation DAG from, and
how other models get translated into our generic one. In our
generic model, a program starts as a single task performing
its main function. A task can execute ordinary user com-
putation, which does not change the program’s parallelism,
and additionally other task parallel primitives, which can
change the program’s parallelism. These primitives are fol-
lowing three semantics:
CreateTask : The current task creates a new child task.
WaitTasks : The current task waits for all tasks in cur-
rent section, explained below, to finish. This primitive also
terminates the current section.
MakeSection : This primitive is used to mark the cre-
ation of a section inside a task or another section. A section
is defined as a synchronization scope which is ended by a
WaitTasks primitive and all tasks created inside it get syn-
chronized all together by that WaitTasks. The purpose of
section notion is to support a task that waits for a subset of
its children. Our generic model supports sections that are
either nested or disjoint, but must not intersect.

Task parallel primitives of OpenMP and Cilk Plus models
can be translated to our model straightforwardly. The task
and taskwait pragmas in OpenMP are replaced byCreateTask
and WaitTasks respectively. The cilk spawn and cilk sync
in Cilk Plus are also replaced byCreateTask andWaitTasks
respectively. In addition, however, a task pragma and a
spawn operation perform an additional MakeSection op-
eration if the current task has no open section.

Intel TBB model is more flexible than our generic one.
The section notion is represented by task group class in Intel
TBB. A task is created by calling run method of a task group
object, and a call to a task group object’s wait method would
synchronize all tasks created by that object’s run method.
One can choose an arbitrary subset of children of a task to
synchronize in Intel TBB by creating these children with

the same task group object, whereas our generic model does
not allow intersected task subsets, and a new section is
opened only when the previous section has been closed. Ex-
cept this restriction, Intel TBB code can be translated into
our model by replacing task group.run with CreateTask,
task group.wait with WaitTasks, and task group object’s
declaration with MakeSection.
Qthreads and MassiveThreads are both lightweight thread

libraries that expose a POSIX Threads-like interface: one
function call to create a task and one function call to syn-
chronize a task of choice. They are as flexible as Intel TBB
and translating them to our generic model is imposed with
the same restriction.
We have built a lightweight macro wrapper that translates

code written with our generic model to these five systems
automatically. Hence, by writing code once users can get
five separate executables for five systems. Beside these five
systems, our toolset can be extended easily to support any
other task parallel system that can conform to our generic
model.

3. DAG STRUCTURE
We instrument measure code in the macro wrapper implic-

itly (requiring no work from users) so that DAG Recorder
can get invoked at appropriate positions to record the DAG.
Specifically, we instrument at following six positions: the
beginning and the end of CreateTask, the beginning and
the end of WaitTasks, right before and right after invok-
ing the child task in CreateTask. These instrumentations
are put as near the program code as possible with the pur-
pose of capturing the transitions out of the program code
and back into the program code. As a consequence, work of
the program (i.e., total execution time on all workers of the
program code) is broken down into sequential intervals each
of which corresponds to a seamless code segment containing
no task parallel primitive in the program code and executes
uninterruptedly on one worker (core). Although such a se-
quential interval always happens entirely on a single worker,
two consecutive ones separated by a task parallel primitive
may take place on two different workers. This is because
the execution control is always given back to the runtime
system at task parallel primitives where a task migration,
among other runtime mechanisms, may happen and change
the worker that executes the next interval.
An execution interval is modeled as a node in the exe-

cution’s computation DAG. A node (interval) starts either
by the first instruction of a task or the instruction imme-
diately following CreateTask or WaitTasks, and it ends
either by the last instruction of a task or an instruction im-
mediately before CreateTask or WaitTasks. We classify
nodes into three kinds by the ways how they end. A node
ends by calling CreateTask primitive is of create kind,
ends by calling WaitTasks primitive is of wait kind, and
ends by the last instruction of a task is of end kind.
An edge in the DAG represents the dependency be-

tween two nodes that it connects. In other words, an edge is
one reflection of a task parallel primitive in the program’s ex-
ecution. There are three kinds of dependencies that an edge
can represent: creation, continuation, and synchronization.
A node ended by a CreateTask primitive has a creation
dependency with the first node of the new task. Two nodes
of two contiguous code segments in the program separated
by a task parallel primitive have continuation dependency.

E
C

create

wait

end

B

E
C

B

create cont.

create

wait cont.

sync

task

section

D()

D()

A() {

 for(i=0;i<2;i++) {

 CreateTask(B);

 CreateTask(C);

 D();

 WaitTasks();

 }

}

D() {

 CreateTask(E);

 WaitTasks();

}

Figure 1: An example task parallel program and its DAG.
The whole execution is originally the only task node which is
expanded into two sections and one end. The two sections
are further expanded into two similar inner topologies as
they are two iterations of the same for loop.

This continuation dependency can be divided further into
create cont. and wait cont. based on the task parallel prim-
itive intermediating the two code segments. The last node
of a task has synchronization dependency with the node of
the code segment following the WaitTasks primitive that
synchronizes that task.

The recursive task creation and nested synchronization
scope in the program code are reflected on the DAG by col-
lective nodes of two kinds: task and section which contain
in them subgraphs of leaf nodes (create, wait, end) and
other nested collective nodes. A node of kind task corre-
sponds to a task in the program code, it can contain zero, one
or more section nodes before ending by an end node. The
section node kind corresponds to the section notion in our
generic model. A section node contains one or more create
nodes along with task nodes that these create nodes spawn,
and zero or more nested section nodes, before ending by a
wait node. All those child task nodes of the section are
synchronized by its end wait node and are connected to the
successor node of the section on the DAG by synchroniza-
tion edges. The section’s end wait node is also connected
to the successor node but by a wait cont. edge. Figure 1
shows an example task parallel program and an illustration
of its corresponding DAG.

At measurement points, beside code position (file name,
line number) DAG Recorder also records time and current
worker (core) so that we can know when and where a node
starts and ends. Each node v in the DAG is augmented with
information such as start time (v.start), end time (v.end),
the worker (v.worker) on which the node was executed, the
start and end locations of the corresponding code segment.
In case of collective nodes, DAG Recorder additionally stores
aggregate information about their inner subgraphs. Two

important items of aggregate information are the total work,

total work(u) =
∑
v∈u

(v.end− v.start)

and the critical path length of the subgraph. For any sub-
graph that was executed wholly on a single worker (i.e.,
there is no work stealing or task migration inside it), DAG
Recorder can abolish the subgraph, retain only the collective
node (without its inner topology) and its aggregate infor-
mation. This automatic collapsing technique is optionally
conducted on-the-fly during the measurement, and signifi-
cantly useful in making DAG Recorder scalable because the
size of the computation DAG now does not scale with the
number of task creations anymore but with the number of
task migrations (i.e., work stealing).

4. DAG VISUALIZATION
Different from code-centric hotspots analysis and thread-

centric timeline visualization, DAG visualization provides a
task-centric view of the execution which is the logical task
structure of the program. This logical task structure is more
familiar from the programmer’s perspective, and consistent
regardless of runtime schedulers, hence it is fit for the need
to compare executions based on different runtimes to clarify
the subtle differences between them and between scheduling
policies for the purpose of developing scheduling algorithms.
DAG Recorder flattens the computation DAG to a file as a

sequence of nodes when the execution ends. In the sequence,
a create node holds an offset pointing to the child task

node that it spawns. A task or a section node will hold
an offset pointing to the subsequence of nodes of its inner
subgraph. DAGViz memory-maps the file, which lazily loads
only the accessed parts of the file into memory rather than
the whole file at once. The visualization is also organized
hierarchically with on-demand expansion/contraction. This
hierarchical approach helps reducing stress on the memory
even with huge DAG(s). DAGViz is built with GUI based
on GTK+ widget library [16], and canvas rendering based
on Cairo vector graphics library [15].

4.1 Hierarchical Layout Algorithm
DAGViz traverses the DAG recursively from its root task

node to a user-adjusted on-demand depth limit. At each
traversal step, DAGViz proceeds next to these three direc-
tions in turn: the inner subgraph of current node (inward),
the leftward subgraph following the creation edge (if the
current node is a create), and the rightward subgraph fol-
lowing the continuation edge. In order to assign absolute
(x, y) coordinates to every node, DAGViz needs to make
two passes over the graph. At the first pass, it calculates
in a bottom-up fashion the bounding boxes of three sub-
graphs (inner, leftward, and rightward) around every node.
At the second pass, DAGViz assigns absolute coordinates to
all nodes in a top-down fashion. At each traversal step from
the root node down to leaf nodes, it assigns coordinates to
the current node first before aligning three subgraphs (and
all nodes inside) around it to their absolute coordiates based
on their calculated bounding boxes. The root task node is
first assigned with (0, 0) coordinates.
Figure 2 shows visualizations of the DAG extracted from

an execution of Sort program. Node color represents the
worker that has executed the node. The mixed color (of
orange, yellow, and cyan) indicates that the node’s subgraph

Figure 2: Sort’s DAG(s) at depth 0 (first), 1 (second) and
2 (later 3). The DAG initially has only one node (the
left most), from left to right it shows the DAG’s hierarchi-
cal expansion. The original node gets expanded into three
sections and one end, then the first section gets expanded,
and the second and the third ones.

was executed collectively by multiple workers rather than a
single one. Figure 3 shows the same DAG that has been
expanded to depth 6 while the full DAG has max depth of
66 and contains dozens of thousands of nodes.

On DAGViz’s GUI, users can interact freely with the DAG
by panning it around to any part and zooming in or out at
any part to enlarge or reduce that part of the graph infinitely
(this is achieved largely by vector graphics feature of Cairo).
Moreover, the DAG is not a static picture on screen but it
can be expanded at once to any depth level of choice, or users
can choose to expand it partly into any direction by click-
ing on any node to make it expanded. The expansion and
contraction are enhanced with animation by gradual tran-
sitions between a collective node and its inner subgraph’s
topology so that these graph transformations look beautiful
and importantly natural to the user perception.

4.2 Timeline with Parallelism Profile
The layout algorithm of the DAG can be modified a lit-

tle to produce a timeline view of the execution. In timeline
view the x-axis is the time flow and y-axis consists of a num-
ber of rows each of which corresponds to one worker thread.
The rows contain boxes representing work that workers were
doing at specific points in time during the program’s execu-
tion. Each node of the DAG becomes a box in the timeline,
so its y coordinate is fixed based on its worker number. The
node’s x coordinate is calculated based on its start time,
and its length is based on its work (= v.end− v.start). Be-
sides, DAGViz also draws a parallelism profile along with
and placed right above the timeline. In Figure 4, the lower
part consisting of 32 rows is the timeline, the upper part
(from red area upward) is the parallelism profile of the exe-
cution which is the time series of actual and available par-
allelisms of the execution:
Time series of actual parallelism (red part): is the num-
ber of tasks actually running at every point in time. Actual
parallelism at time t, denoted by Pactual(t), can be obtained
by:

Pactual(t) =
∑
v∈V

running(v, t)

where V is the set of all nodes in DAG, running(v, t) is 1 if

Figure 3: Sort’s DAG expanded to depth 6 with less than 500 nodes but overwhelming already. While at max depth of 66 it
contains up to dozens of thousands of nodes.

running
end

create
create cont

wait cont

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Figure 4: Sort’s timeline is the lower part consisting of 32
rows. Sort’s parallelism profile is the upper part consisting
of a red area (actual parallelism) and stacked-up areas of
other colors (different kinds of available parallelisms).

v is running at time t and 0 otherwise. Formally,

running(v, t) =

{
1 if v.start ≤ t ≤ v.end
0 otherwise

Time series of available parallelism (upper parts of
other colors): is the number of tasks ready to run but not ac-
tually running at every point in time. Available parallelism
at time t, Pavail(t), can be obtained by:

Pavail(t) =
∑
v∈V

ready(v, t)

where ready(v, t) is 1 if all of v’s predecessors have been fin-
ished at time t but v has not been started; and 0 otherwise.

 0

 0.5

 1

 1.5

 2

 2.5

alignment

fft fib floorplan

health
nqueens

sort
sparselu

strassen

uts

tim
e

(s
ec

)

w/o DAG Recorder w/ DAG Recorder

Figure 5: DAG Recorder’s overhead in running programs in
BOTS with MassiveThreads on 32 cores

Formally,

ready(v, t) =

 1 if u.end < t < v.start for all
u → v

0 otherwise

5. CASE STUDIES
We have measured DAG(s) of all ten programs in the

Barcelona OpenMP Task Suite (BOTS) [4] with five task
parallel runtime systems DAG Recorder currently supports:
OpenMP, Cilk Plus, Intel TBB, Qthreads and MassiveThreads.
The overhead of DAG Recorder with MassiveThreads li-
brary is shown in Figure 5. Except for particular cases
of Health and UTS programs which create too many fine-
grained tasks, DAG Recorder is feasible for all other pro-
grams with overhead within 10% of the original program’s
runtimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

alignment
fft fib floorplan

health
nqueens

sort sparselu
strassen

uts

ut
ili

za
tio

n

utilization with 32 cores

cilkplus
mth

omp
qth

tbb

Figure 6: Utilizations of BOTS run by 5 systems on 32 cores

We show a summary of the utilizations (= speedup/cores)
on 32 cores of the benchmarks with five systems in Figure 6.
Each dot represents the utilization of an execution of a pro-
gram by a system; the higher it is, the better. Among many
cases of our interest, we look into two of them here. First,
Sort’s speedup is poor in all systems, which suggests that
the program’s code is the cause of performance bottleneck.
The other case is SparseLU, as it is a peculiar case in which
Cilk Plus’s scalability is poorer than other systems, while
Cilk Plus performs well in most other benchmarks.

5.1 Sort
Sort program sorts a random permutation of n 32-bit

numbers with a parallel variation of mergesort [4]. The input
array is divided into smaller parts which are sorted recur-
sively before being merged, also recursively, to become the
sorted result array. In the algorithm, the recursive parallel
merge is turned to simple sequential memory copy when-
ever the smaller array in the two arrays of the merge is
empty. This condition (the smaller array is empty) does not
always guarantee that the larger array is sufficiently small;
but contrarily, the larger array might be very large, making
the sequential memory copy operation costly. This trivial
condition itself causes the lack of available parallelism ac-
companied with many long-running tasks at the stage near
the end of the execution in Figure 4. By replacing this se-
quential memory copy with a version of parallel memory
copy, the lack of parallelism in merging phase was fixed.
Similar to Sort, Strassen is another example where per-

formance suffers from the lack of parallelism. The timeline
of Strassen program in Figure 7 shows that the program’s
parallelism is very low near the start. By zooming in and
relating the long running box with DAG structure, we iden-
tified the code segment which enforced this low parallelism
situation.

5.2 SparseLU
SparseLU program computes an LU matrix factorization

over sparse matrices [4]. DAG visualization of SparseLU
(Figure 8) and its source code both show that it has a se-
rial loop creating very many tasks, none of which recursively
creates further tasks. Therefore, the program’s parallelism
increments one only after each iteration of the loop. The
comparison of DAG(s) from Cilk Plus and Intel TBB in Fig-
ure 9 expresses a noticeable difference between two systems.
All nodes along the spine in Intel TBB’s DAG (left one)
are executed together by the same worker (of orange color),

running
end

create
create cont

wait cont

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Figure 7: Strassen DAG’s top node was actually a too-long-
running interval demonstrated by the timeline view.

Figure 8: (Head part of) SparseLU’s DAG by Cilk Plus

whereas in Cilk Plus’s DAG (right one) these spinal nodes
are executed separately by different workers (of different col-
ors). This is because in Intel TBB when a worker creates
a new task it pushes the new task into its work queue and
continues executing the current one (help-first), whereas in
Cilk Plus the worker would pause the current task to switch
to executing the new task (work-first). Therefore, every par-
allelism increment requires a work stealing operation in Cilk
Plus’s execution, hence it is understandable that systems
with help-first policy (OpenMP, Intel TBB, Qthreads) would
execute SparseLU better than systems with work-first policy
(Cilk Plus, MassiveThreads).

However, MassiveThreads still has significantly better uti-
lization than Cilk Plus. We can observe it from Figure 10
which shows parallelism profiles of MassiveThreads and Cilk
Plus on 32 cores. It is noticeable that Cilk Plus exposes a
low parallelism (around 25, as opposed to nearly 32 of Mas-
siveThreads). The reason why MassiveThreads performs
better than Cilk Plus can be explained by Cilk Plus’s ex-
pensive work stealing operation. Figure 11 compares the
distribution of time gaps between two consecutive nodes on

Figure 9: (Head parts of) SparseLU’s DAG(s) by Intel TBB
(left) and Cilk Plus (right)

 0

 50

 100

 150

 200

 250

 300

 350

 0 10000 20000 30000 40000 50000 60000 70000

co
un

t

clocks

MassiveThreads
Cilk Plus

TBB

Figure 11: Distribution of work stealing time in SparseLU

the spine. Cilk Plus takes much longer to advance a compu-
tation along it, implying that it takes longer to steal a task.
Additionally, in our previous microbenchmark we have con-
firmed that work stealing operation in MassiveThreads is
more than an order of magnitude faster than in Cilk Plus
[19].

6. RELATED WORK
Tallent et al. [18] categorized parallel execution time of

a multithreaded program into three categories: work, par-
allel idleness, and parallel overhead. They claim that two
metrics of parallel idleness and parallel overhead can help
to pinpoints areas in a program’s code where concurrency
should be increased (to reduce idleness), or decreased (to
reduce overhead). Olivier et al. [11] have taken a step fur-
ther by identifying that the inflation of work is in some cases
more critical than parallel idleness or parallel overhead in
task parallelism. They systemize the contributions of three
factors of work inflation, idleness and overhead in the per-
formance loss of applications in BOTS, and demonstrated
that work inflation accounted for a dominant part. Our
toolset can help pinpointing the idleness factor and addition-
ally attribute it back to the program’s logical task structure.
It is potentially promising to analyze work inflation factor
by comparing DAG(s) of multiple executions, because these
DAG(s) are consistent in structure.
HPCToolkit [18] and Intel VTune Amplifier [6] both use

sampling method and does not need to instrument the exe-
cutable. These tools focus on hotspots analysis and timeline-
based analysis.
Vampir [8] visualizes traces of an MPI program. Its main

visualization is a timeline view with edges pointing from
boxes to boxes to represent communication among processes.

It simultaneously shows a statistical view that displays ag-
gregate information of a chosen time interval in the timeline.
Jumpshot [22] is a more general timeline visualizer. It vi-
sualizes data from text files of its own format. Jumpshot
is not very flexible. It can only display up to 10 different
categories which have 10 different colors. Jedule [5] is a
tool to visualize schedules of parallel applications in time-
line style. Olivier et al. [11] has used Jedule to visualize a
timeline view for analyzing the locality of a scheduling pol-
icy. Aftermath [3] is a graphical tool that visualizes traces
of an OpenStream [14] parallel program in timeline style.
OpenStream is a dataflow, stream programming extension
of OpenMP. Although Aftermath is applied in a narrow con-
text of OpenStream (a subset of OpenMP), it provides ex-
tensive functionalities for filtering displayed data, zooming
into details and various interaction features with users.

Wheeler and Thain [21] in their work of ThreadScope have
demonstrated that visualizing a graph of dependent execu-
tion blocks and memory objects can enable identification
of synchronization and structural problems. They convert
traces of multithreaded programs to dot-attributed graphs
which are rendered by GraphViz [1]. GraphViz is scalable
(i.e., sufficiently fast for making animation possible) up to
only hundreds of nodes, and quite slow with larger graphs
because its algorithm [17] needs to care much about the
aesthetic aspects of the graph such as node layering, edge
crossing minimization. On the other hand, we leverage in-
trinsic characteristics of the computation DAG such as lay-
ered nodes (directed acyclic aspect), non-crossing edges to
simplify the layout algorithm. DAGViz visualizes the DAG
interactively with on-demand hierarchical expansion & con-
traction rather than a static whole-graph picture provided
by GraphViz.

7. CONCLUSIONS AND FUTURE WORK
We have built DAG Recorder and DAGViz which are a

toolset that extracts and visualizes the computation DAG
from an execution of a task parallel program and provides in-
teractive functionalities for users to explore the DAG. Through
case studies, DAG visualization has proved its usefulness in
helping users to understand the structure of task parallel
programs and explore the issue of lacking parallelism.

Capturing all relevant events then visualizing them is a
comprehensive strategy to analyze thoroughly the cause of
performance bottlenecks. In the particular case of task par-
allelism, all the nondeterministics and dynamics which are
the cause of performance problems happen inside task par-
allel primitives, so breaking down the entire execution into
sequential segments separated by the primitives is a promis-
ing approach.

In future work, we intend such directions as combining the
sampling-based measurement with current instrumentations
to get better observation of long running intervals, adding
other metrics beside time such as hardware performance
counters to get more measures to reason about the perfor-
mance, extending current tracing technique to distributed-
memory systems, etc.

8. REFERENCES
[1] A. Bilgin. Graphviz - graph visualization software,

1988.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09

running
end

create
create cont

wait cont
other cont

(a) MassiveThreads

 0

 5

 10

 15

 20

 25

 30

 35

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09 8e+09

running
end

create
create cont

wait cont
other cont

(b) Cilk Plus

Figure 10: SparseLU’s parallelism profiles by MassiveThreads and Cilk Plus. While MassiveThreads consistently reaches 32
parallelism, Cilk Plus mostly floats around 25.

[2] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and
M. Horowitz. Cpu db: Recording microprocessor
history. Commun. ACM, 55(4):55–63, Apr. 2012.

[3] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and
N. Drach-Temam. Aftermath: A graphical tool for
performance analysis and debugging of fine-grained
task-parallel programs and run-time systems. In
Proceedings of 7th Workshop on Programmability
Issues for Heterogeneous Multicores, MULTIPROG
’14, 2014.

[4] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and
E. Ayguade. Barcelona OpenMP Tasks Suite: A Set of
Benchmarks Targeting the Exploitation of Task
Parallelism in OpenMP. In 2009 International
Conference on Parallel Processing, pages 124–131.
IEEE, Sept. 2009.

[5] S. Hunold, R. Hoffmann, and F. Suter. Jedule: A tool
for visualizing schedules of parallel applications. In
Parallel Processing Workshops (ICPPW), 2010 39th
International Conference on, pages 169–178, Sept
2010.

[6] Intel. Intel vtune amplifier. http://software.intel.
com/en-us/intel-vtune-amplifier-xe, 2015.
[Online; last accessed July 5, 2015].

[7] C. E. Leiserson. The Cilk++ concurrency platform. In
Proceedings of the 46th Annual Design Automation
Conference DAC ’09, page 522, New York, New York,
USA, July 2009. ACM Press.

[8] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and
K. Solchenbach. Vampir: Visualization and analysis of
mpi resources. Supercomputer, 12:69–80, 1996.

[9] J. Nakashima, S. Nakatani, and K. Taura. Design and
implementation of a customizable work stealing
scheduler. In Proceedings of the 3rd International
Workshop on Runtime and Operating Systems for
Supercomputers - ROSS ’13, page 1, New York, New
York, USA, June 2013. ACM Press.

[10] J. Nakashima and K. Taura. MassiveThreads: A
Thread Library for High Productivity Languages. In
Festschrift of Symposium on Concurrent Objects and
Beyond: From Theory to High-Performance
Computing (to appear as a volume of Lecture Notes in
Computer Science), 2012.

[11] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. F.

Prins. Characterizing and mitigating work time
inflation in task parallel programs. SC ’12, pages
65:1–65:12, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[12] OpenMP Architecture Review Board. OpenMP
Application Program Interface. Technical Report July,
OpenMP Architecture Review Board, 2011.

[13] C. Pheatt. Intel(r) threading building blocks. J.
Comput. Sci. Coll., 23(4):298–298, Apr. 2008.

[14] A. Pop and A. Cohen. Openstream: Expressiveness
and data-flow compilation of openmp streaming
programs. ACM Trans. Archit. Code Optim.,
9(4):53:1–53:25, Jan. 2013.

[15] C. G. Project. Cairo. http://cairographics.org/,
2015. [Online; last accessed July 5, 2015].

[16] T. G. Project. Gtk+ 3. http://www.gtk.org/, 2015.
[Online; last accessed July 5, 2015].

[17] K. Sugiyama, S. Tagawa, and M. Toda. Methods for
visual understanding of hierarchical system structures.
Systems, Man and Cybernetics, IEEE Transactions
on, 11(2):109–125, 1981.

[18] N. R. Tallent and J. M. Mellor-Crummey. Effective
performance measurement and analysis of
multithreaded applications. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’09, pages
229–240, New York, NY, USA, 2009. ACM.

[19] K. Taura and J. Nakashima. A Comparative Study of
Six Task Parallel Programming Systems (in Japanese).
In IPSJ SIG Technical Report HPC, volume 140(16),
pages 1–10. IPSJ, 2013.

[20] K. B. Wheeler, R. C. Murphy, and D. Thain.
Qthreads: An API for programming with millions of
lightweight threads. In 2008 IEEE International
Symposium on Parallel and Distributed Processing,
pages 1–8. IEEE, Apr. 2008.

[21] K. B. Wheeler and D. Thain. Visualizing massively
multithreaded applications with ThreadScope.
Concurrency and Computation: Practice and
Experience, 22(1):45–67, Jan. 2010.

[22] O. Zaki, E. Lusk, and D. Swider. Toward scalable
performance visualization with jumpshot. High
Performance Computing Applications, 13:277–288,
1999.

