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ABSTRACT
Active storage clouds are an attractive platform for execut-
ing large data intensive workloads found in many fields of
science. However, active storage presents new system man-
agement challenges. A large system of fault-prone machines
with local persistent state can easily degenerate into a mess
of unreferenced data and runaway computations. Our solu-
tion to this problem is DataLab, a software framework for
running data parallel workloads on active storage clusters.
DataLab provides a simple language for expressing work-
loads, works with legacy application codes, and achieves ro-
bustness through the use of distributed transactions. Our
prototype implementation scales to 250 nodes on a large
biometric image processing workload.

Categories and Subject Descriptors
C.4 [Performance]: Fault Tolerance; H.2.4 [Systems]: Par-
allel Databases

General Terms
Reliability, Performance
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Active Storage, Transactions, Cloud Computing

1. OVERVIEW OF DATALAB
DataLab is a system for executing I/O intensive workloads

on an active storage cloud of hundreds to thousands of nodes.
Large datasets are partitioned across the nodes, while small
computations are dispatched to each node using a high level
language. Distributed transactions are employed to make
the system robust to a wide variety of failures.

Figure 1 shows the components of a DataLab system. An
array of active storage units (ASUs) provides scalable stor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-997-5/08/06 ...$5.00.

age capacity and processing capability. Each is a commod-
ity machine running a user level server that provides remote
data access and remote execution within a common security
model. A central database server keeps track of the ASUs,
data sets, distributed file locations, function definitions, and
current and and past jobs. A client application drives the
system, letting the user define and import sets and functions,
start and monitor jobs, and view results.

A user of DataLab operates on sets, which are named
collections of files. Each element of a set can be processed
by a function, which is an encapsulated program with one or
more inputs and outputs and no hidden side effects. Users
may define new functions within DataLab, and then invoke
them in several ways. apply creates a new set by processing
each element with a given function. select chooses a subset
of an existing set. compare matches all elements of two sets
against each other.

As a motivating example, we consider a workload used
by biometrics researchers at the University of Notre Dame,
who regularly work with a standard dataset of 60,000 iris im-
ages. The same data is processed many times in a common
workflow pattern, employing a number of slightly different
algorithms for preprocessing and matching images. These
workflows are I/O bound and naturally parallel, so they are
well suited for processing on an active storage cloud.

First, the user imports data into DataLab:

create set IrisTIFF;

import "/tmp/images/*" into IrisTIFF;

Suppose this user prefers to work with images in the BMP
format. To do this, the user simply applies ConvertBMP to
all the images in parallel:

apply ConvertToBMP on IrisTIFF into IrisBMP;

Next, the images must be segmented, a process that iso-
lates the the area of the image containing the actual iris,
producing three outputs for every input:

apply Segment3B on IrisBMP

into Geometry,Template,Mask;

Now, suppose that some of the images contain a certain ar-
tifact that can be identified by the program ContainsArtifact.
To create a new set with only those images:

select ContainsArtifact

from IrisBMP,Mask

into ArtifactIrises,ArtifactMask;
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Figure 1: Architecture of DataLab

Finally, the user compares all those images to each other,
to observe accuracy in the presence of artifacts:

compare Compare2D

on ArtifactIrises

into CompareResults;

The result of the comparison is simply the concatenated
output of each instance of the function Compare2D:

iris001.bmp x iris002.bmp = 0.561

iris001.bmp x iris003.bmp = 0.230

...

DataLab makes extensive use of distributed transactions

to permit recovery from failure and avoid runaway compu-
tations and unreferenced garbage data. Each ASU exports
a job transaction interface that provides remote execution
using two-phase commit and the ability to query, restart,
or abort a single job. Layered on top of this is a set trans-

action interface that coordinates all of the job transactions
by recording the necessary details in the shared database
server. The set transaction also has two-phase commit,
query, restart, and abort capabilities. As a result, the sys-
tem is highly robust: any component may be disconnected
or reset, and the workload will still complete. Likewise, a
large workload may be cleanly aborted midstream, even in
the face of disconnections.

Figure 2 shows the performance of our DataLab proto-
type on a network of 250 Linux-based active storage units.
The system is processing an iris segmentation workload on
6000 images. The estimated sequential execution time of
this workload is fifteen hours. By scaling the system up, the
runtime is reduced to less than ten minutes, turning a long
batch workload into a nearly-interactive task. While our
prototype still has opportunities for further speedups, this
demonstrates that the approach is fundamentally sound.

The concept of active storage was first proposed by Riedel
and Gibson [1] as a restricted computing facility integrated
into low-level disk controllers. Later work has focused on
applying the active storage concept to existing hardware by
treating an entire conventional machine as an active storage

unit (ASU) [2, 3] within a larger network. Several systems
have been proposed for exploting active storage clusters for
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Figure 2: Performance of Prototype

performing read only queries on large datasets. For exam-
ple, MapReduce [4] parallelizes large-scale workloads whose
output can be expressed as key-value pairs. Dryad [5] en-
ables the construction of large graphs of pipelined processes
that implement complex SQL queries.

The new contribution of DataLab in this area is the use
of distributed transactions for robustness, a concrete syntax

for use by non-expert users, and internal management of
output-intensive operations. Future work will address more
complex workflows and scaling to thousands of nodes.
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