
ENAVis: Enterprise Network
Activities Visualization

Qi Liao, Andrew Blaich, Aaron Striegel, and Douglas Thain – University of Notre Dame

ABSTRACT

With the prevalence of multi-user environments, it has become an increasingly challenging
task to precisely identify who is doing what on an enterprise network. Current management
systems that rely on inferring user identity and application usage via log files from routers and
switches are not capable of accurately reporting and managing a large-scale network due to the
coarseness of the collected data. We propose a system that utilizes finer-grained data in the form of
local context, i.e., the precise user and application associated with a network connection. Through
the use of dynamic correlation and graph modeling, we developed a visualization tool called
ENAVis (Enterprise Network Activities Visualization). ENAVis aids a real-world administrator in
allowing them to more efficiently manage and gain insight about the connectivity between hosts,
users, and applications that is otherwise obfuscated, lost or not collected in systems currently
deployed in an enterprise setting.

Introduction

Complex systems are hard to understand and
visualize. The causes for this problem are due to the
specific data not being available or the inability to cor-
relate and present the data in a meaningful and under-
standable way. Additionally, the administrator faces an
overwhelming amount of data to manage especially on
large scale enterprise networks. Network connections
ranging from a few hundred to several thousand are
generated on a daily basis by each host. Tracking
down precisely who (users) and what (applications)
are responsible for the generation of this network con-
nectivity is a non-trivial task. Administrators need a
tool that allows them to sift through massive amounts
of traffic logs in a visually appealing and interactive
manner that encourages data exploration rather than
hindering it.

Despite the abundant amount of data available,
the coarseness of the data derived from point-to-point
logging does not make it particularly useful. The cur-
rent logging schemes such as NetFlow [1] data, pro-
vide activity details in terms of IP addresses and ports,
but are unable to tell which users and what applica-
tions are running on the managed network. Since the
identity of the traffic flow is important [2], and the
users and applications are the essential components of
the network, the identity should be associated with the
users and applications in addition to the hosts.

It is necessary for the context of a connection, i.e.,
the user and application responsible for the network
activity, to be known rather than simply where (address)
it came from and went to. Existing solutions to this
problem have involved tie-ins of network flow data and
authentication systems such as Active Directory [3] and
Kerberos [4, 5]. Critically, these existing logging sys-
tems are not geared towards real-world system admini-
stration. Network flow data will only detail the where of

a connection, whereas an Active Directory and Ker-
beros tie-in can explain the who. A few visualization
and data exploration tools [6, 7] that exist, primarily
rely on chaining together network connections based on
the flow data. However, multiple hop connections are
typically obfuscated due to the nature of network flows;
the level of detail supplied is traditionally limited to the
IP addresses and port numbers involved.

Rather, a method to interactively explore the
inter-relationships of the data so as to gain insight as
to what is occurring as opposed to inferring, due to
lack of log details or time to trace-back and locate the
necessary information, is needed. For example, if an
account on a network is compromised then it needs to
be known what hosts that user account attempted to
log into, along with the applications and programs
they attempted to run, and files that may have been
modified or touched. Knowing exactly who (users)
and what (applications), not inferring from IP and
port, at both sides of connections is of particular inter-
est in policy compliance auditing. Being able to
present all of this information in a single visual
appeasing and manageable view would be a tremen-
dous asset for network administrators.

To facilitate solving the above problems, we
present ENAVis (Enterprise Network Activities Visual-
ization). ENAVis is a tool for visualizing the network
activities among hosts/domains, users and applica-
tions, which is possible through the gathering of local
context information. ENAVis offers interesting, ready-
to-use, and invaluable functions for monitoring, visu-
alizing, exploring and investigating the activities on a
network by real-world network administrators.

Through the use of a highly detailed local context
data collection system spanning over 300 machines with
a mixture of student, faculty and grid computing nodes
on the University of Notre Dame’s campus since April

22nd Large Installation System Administration Conference (LISA ’08) 59



ENAVis: Enterprise Network Activities Visualization Liao, et al.

2007, we have collected over 300 GB of raw data and
developed ENAVis to allow an administrator to explore
this informative data set.

With ENAVis, the administrator is presented with
an array of connectivity graphs and statistics on how
the network is being used. To assist the user in under-
standing the many possible visualization modes, we
provide a novel meta-visualization which compactly
represents and controls how data is represented. By
adjusting the Host-User-Application (HUA) control,
the user may easily expand, contract, and explore a
very rich data space in a visually appealing and highly
interactive manner. Figure 1 illustrates the ENAVis
approach and how it ties into an enterprise network.

Figure 1: Inline (left) vs. end-host (right) monitoring scheme. End-host gatherers the missing local context (user, ap-
plication, files, etc.) associated with each network connection.

The key highlights of this paper include:

• Data Collection: The light-weight, easy-to-de-
ploy monitoring agent, the Monitor, collects the
missing yet important local context information
(who, what, when, and where) associated with
each network connection in an enterprise net-
work at a very fine level of granularity.

• Graph Model: Our novel hierarchical graph
representation of data in terms of domain/hosts,
users, and applications (HUA) captures the dy-
namic relationship and interaction between ma-
chines and user applications.

• Vi s u a l i z a t i o n: An easy-to-use yet powerful
graphical interface that makes exploration of
large amounts of network connectivity interac-
tive and manageable.

The rest of paper is organized as follows. In the
next section we discuss the objectives of our tool, i.e.,
the design principles and desired functions. We empha-
size the problems this paper targets and propose our

solutions. We then talk about the design and implemen-
tation of the data collection system. Next, the graph
model in terms of combinations of hosts/domains,
users, and applications is presented. Then we examine
several important cases to demonstrate how the visual-
ization tool functions. The design and implementation
of functional models of ENAVi s are presented in the fol-
lowing section. The related work section compares our
system with currently existing tools. Finally, we con-
clude and suggest future work.

Objectives

It is good practice for administrators to log the
system events and network activities [8]. However, the
large amount of data accumulated each day is difficult
for human beings to understand and explore. Visual-
ization is therefore an important topic in network and
system adminstration since it eases the manual process
of going through log data and correlate information
and present it in a meaningful way. The objectives of
ENAVis is to plot various combinations of the fea-
ture/attribute vectors in the log data and provide a cus-
tomizable and interactive interface for human auditors
to explore and investigate the activities that occurred
on their networks. Most importantly, a unique inter-
hosts/users/processes matching capability included in
ENAVis provides the administrator with intuitive infor-
mation on the dependant relationships, which may
help many other important problems such as security
tracing and fault localization.

Problem Statement and Solution

There are two problems which we tackle in this
paper. First, there is a lack of tools and data to capture
the user and application level of network activities.

60 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

Second, there is also a lack of tools to visualize and
capture the inter-relationships of such data. They are
discussed in more detail below.

In addressing the first problem, administrators do
not usually lack for log data for security measurement
[7]. However, administrators are facing a dilemma that
on one side is an overwhelming amount of data, but on
the other side many of these data are not at the level of
detail they would like. Although there are tools to log
network activities in either packet or flow format,
there is no light-weight mechanism in current practice
to monitor the network at a finer granularity than host-
to-host. For example, the network IP addresses in-
cluded in the packet header only means locators for
the machines. It tells nothing about the identities of
the end-users. On the other hand, the transport layer’s
port numbers are also less meaningful in determining
the actual end-processes. While using deep packet
inspection requires an understanding of all known pro-
tocols, it is still unknown which users and applications
are sending those data.

Motivated by the observation that the end host
has full visibility of the user’s processes, our approach
to the first problem is to deploy a simple agent on the
end hosts to collect these missing local context data
for each network connection. The agent is easy to
deploy and lightweight in that it is purely written in a
bash script that calls commonly available system tools
such as netstat and ps. Through careful mapping
between each TCP/UDP socket with the user ID and
process ID, we associate users and applications with
each network connection. The data is then sent se-
curely from each host to a central database server for
correlation, analysis and audit.

The second problem, independent of data collec-
tion mechanism, is how to understand and interpret
the data. The natural question to ask is now that we
have the data, how should we visualize it in a more
intuitive manner? With the amount of workload on a
busy system administrator, being able to quickly
browse through the data, view summary statistics and
charts, and interact with connectivity graphs can help
them very much.

Visualization is the key to solve the second prob-
lem, which is the focus of this paper. It is commonly
recognized that many of the human errors are due to
the lack of understanding of their domain knowledge.
A properly designed human-computer interaction can
expedite data understanding and improve the explo-
ration process. Our solution is to develop a powerful
yet friendly graphic user interface that allows the net-
work administrators to view their network activities at
the user and application levels in addition to the topol-
ogy created by the host connectivity . The design prin-
ciples of our system are described in the next section.

Design Principles

The target of the system, namely what is to be
achieved by this tool, is detailed below:

Know who, what, when and where (4W): The
fundamental motivation of the system is for an admin-
istrator to know what is happening on their network,
i.e., who (which users) are running what (applications)
on where (which hosts) at when (what time). All infor-
mation relevant to the connection context needs to be
recorded.

Compute, generate, and trace heterogeneous

graphs: In order to visualize the 4W aspects of the
data, the tool needs to transform the raw data into an
animated graph topology view. The graph is consid-
ered heterogenous because each node in the graph can
be either a domain, host, user or application and edges
are the network connections observed between them
during a customizable time frame. Based on user
events (such as clicking/dragging a node, applying fil-
tering rules, and filtering number of hops to view from
the highlighted node), the graph is instantly regener-
ated to reflect the changes. Figure 2 shows an example
of such a graph. The bipartite matching (pairwise con-
nections between nodes, users, and applications) sim-
plifies the viewing and tracing of the network connec-
tivity relationships among the nodes. Various graph
algorithms [9] can be applied to produce interesting
paths/cycles based on user activities.

Figure 2: An example heterogeneous graph generated
by ENAVis contains host, user, and application
nodes.

Investigate interactively: Although understand-
ing data and recognizing the patterns among it through
visualization techniques such as plotted charts and
graphs is important, another important feature designed
for the tool is the ability to explore the data interac-
tively. Through only a few mouse operations, the ad-
ministrator is able to make queries to the database,
DNS, and LDAP servers for more detailed information,
analogous to ‘‘please tell me more about this.’’

Plot charts and report summary statistics: The
visualization tool should have the capability to plot

22nd Large Installation System Administration Conference (LISA ’08) 61



ENAVis: Enterprise Network Activities Visualization Liao, et al.

charts based on time, host, user, and application infor-
mation:

• line chart: useful for viewing number of con-
nections for selected domains, hosts, users, and
applications.

• pie chart: useful for determining the percentage
that each host/user/application contributes to
the total traffic generated.

• scatter plot: useful to see the distribution of
connectivity points with possible combination
of x/y coordinates such as IP addresses, port
numbers, user IDs, and time.

The tool would also be able to provide summary
statistics based on the daily log data, such as the top
and average hosts, users or applications making the
most number of connections, and to produce need-
attention reports on demand for an administrator’s
review.

��� ��������
�	
�� �	
��

�	
��
�	
��

������ ��� ������

��	
��
������������������� !"#$%&

'!�()*+ ,-�.# / 
0�* ! ����12- !*�1 %3!*#4445/.! $!*6!*789 :;<=>

?;=@=A
&�,0 $!*6!*�'$ $!*6!*

Figure 3: Overview of the system’s architecture shows the monitoring, collecting, analyzing and visualizing of the
local context from the connections made by users and applications within an enterprise network.

Make it simple, efficient and customizable:
Ideally, the tool should be simple yet powerful, usable
for real-world administrators.

• Simplicity: The tool must be easy to use even
for first-time users. Exploring and viewing net-
work activities should consist of only moderate
mouse clicks.

• Efficiency: Despite the large amount of data
available, if the tool responds too slow it will
reduce the user’s experience. We admit it is a
challenging task to, upon user’s request, query
the database, download the files, plot charts, and
generate animated graphs, while keeping efficient
use of the available memory with large data sets.

• Customization: While most users will not need to
modify the base set of views, the ability to cus-
tomize via a modular viewer is a powerful fea-
ture. Ideally, users would be able to customize
their configuration and build an environment in

which they are most interested (ex. Top 10
Applications, Current Connectivity of Human
Resource (HR) Users, Status of Grid Compute
Nodes, etc.).

Consider future extensibility: One potential
extension for the tool is to analyze the underlying data
by applying various data mining and machine learning
techniques. For example, building trees to classify net-
work events, or building clusters to group similar user
behaviors, and identifying anomaly based on the
model built. The extension for data mining and anom-
aly detection is an ongoing work and will be included
in future releases.

Data Collection

This section describes the type of data we have
been collecting and gives an overview of the entire sys-
tem. It defines and introduces local context. As dis-
cussed earlier in the Objectives Section, the first prob-
lem we are trying to solve is how to collect the missing
context, i.e., to capture the user and application level of
network activities (4W). The system we propose ties
the user and application identities into the enterprise
network management by utilizing existing tools (netstat,
ps, lsof), which together build a hierarchical gathering
of local context related to network connectivity.

System Overview

The data gathering component utilizes commonly
available tools in order to take advantage of develop-
ment robustness and administrator familiarity. The tools
should augment the existing data significantly, i.e., not
just another method to report IPflows or SNMP data.

A natural fit for these criterion is the netstat tool,
in essence the equivalent of whois for network con-
nectivity. Moreover, netstat can be coupled with other
tools such as the process table via ps (linking process

62 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

ID to the application and arguments) and the open file
handles via lsof (linking the application to files and an
alternative method for linking the application to con-
nection). Each of the tools or equivalent is present by
default on most major operating systems and each of
the tools runs with minimal computational cost.

Host Proto Local IP Local Port Foreign IP Foreign Port STATE

32dfdffb tcp 180.83.70.53 33318 180.83.46.242 636 ESTABLISHED

57e0a268 tcp 180.83.70.224 9230 162.203.142.116 50942 ESTABLISHED

321fc626 tcp 180.83.193.184 43825 180.83.46.242 636 ESTABLISHED

cf58df4b tcp 180.83.21.235 22 242.86.74.143 46688 ESTABLISHED

bb326ee6 tcp 180.83.21.98 39493 180.83.46.242 389 ESTABLISHED

ad8a26cf tcp 180.83.41.162 9679 17.11.56.128 0 LISTEN

3a677f01 udp 17.11.56.128 40423 17.11.56.128 0 –

Start Stop UID GID i_node PID PPID Direction Application

1178116633 1197926231 104092 40 6875664 30525 30520 1 firefox-bin

1177746632 1197926196 108172 40 29494600 16114 4325 2 condor_starter

1178046253 1178047203 119100 40 12618336 15863 1 1 mozilla-bin

1190653418 1198003091 0 0 5981424 27669 3669 1 sshd:

1190607911 1197926168 105273 40 8121972 12901 24139 1 vim

1177381883 1177381889 108172 40 25103156 10615 4264 0 condor_starter

1177425206 1177867251 0 42 26116251 4365 3771 0 gdm-binary

Path Args

/usr/lib64/firefox-1.5.0.10/firefox-bin -UILocale en-US

/afs/nd.edu/user37/condor/software/i386_rhel30/sbin/condor_starter -f macbeth.rcac.purdue.edu

/usr/lib/mozilla-seamonkey-1.0.8/mozilla-bin -UILocale en-US

/usr/sbin/sshd [accepted]

/usr/bin/vim exercise1.c

/afs/nd.edu/user37/condor/software/i386_rhel30/sbin/condor_starter -f bach.helios.nd.edu

/usr/bin/gdm-binary -nodaemon

Table 1: Sample network connectivity data from the fusion of netstat, ps and lsof (Host names and network addresses are

anonymized). Among the fields, HosT, Proto, Local IP, Local Port, Foreign IP, Foreign Port, State, i_node, UID, and

PID are from netstat; Application, Args, GID, and PPID are from ps; Path is from lsof; Direction is deduced from pre-

vious Listen state; Start and Stop are from diff.

Figure 3 shows an overview of the data gathering
and analyzing architecture. Each host employs the
monitoring agent whose purpose is to periodically poll
the tools and push the locally buffered data to the
repository for future analysis. The administrator can
then retrieve the data from the repository (or reposito-
ries) for the purpose of analysis and forensics from a
single vantage point replete with local context. The
local context is defined as the information fully detail-
ing a network connection (protocol, src/dst IP/port),
user, application, application arguments, and network-
related file accesses. The lightweight nature of the sys-
tem comes from the fact that it provides local context
with regards to the presence of connectivity (network
and files), not the content passed in the connectivity
itself (data payloads, packet headers, etc.).

A Hierarchy for Gathering Local Context

We now briefly describe the three major tools
used in our data gathering system, what each supplies,
and how the supplied information can be fused

together to provide a complete view of the local con-
text associated with each network connection. Con-
ceptually, one can view the data available from the
tools and their fused data in terms of tiers. In the base
tier, Tier 1 (simple local context), only netstat data is
analyzed. The next tier, Tier 2 (enhanced local con-
text), enhances the local context of netstat to offer
increased application information as well as the
process tree. The final tier, Tier 3 (complete local con-
text), offers insight regarding potential information
flow (what files a connected process is touching) and a
more precise identification of the application (exact
path, libraries, etc.). An example of the result of the
fusion of the data from these three tools as stored in
our database is shown in Table 1.1

Tier One (netstat)

netstat [10], is the most important command uti-
lized to capture each instance of network connectivity
occurring on the monitored system. In comparison to
the standard rules in the firewall, netstat provides simi-
lar information with regards to the connection tuple
(protocol, source IP, destination IP, source port, destina-
tion port). The State field can be any of the twelve

1For privacy purpose, host names are hashed and IP ad-
dresses are mapped by using prefix-preserving anonymiza-
tion technique.

22nd Large Installation System Administration Conference (LISA ’08) 63



ENAVi s : Enterprise Network Activities Visualization Liao, et al.

values such as SYN_SENT/RECV, FIN_WAIT, etc., but we
focus on the LISTEN and ESTABLISHED state for TCP
connections.

Tier Two (netstat+ps)

ps is the second tier command that is used to sup-
plement the information from netstat. It provides a list
of all current running processes. Although the -p flag
in netstat provides important information such as the
program ID/name responsible for each socket, it does
not provide the whole picture. Through another light-
weight tool, the ps [11] command, not only is the
application name make available, but also the argu-
ments provided to the application can be retrieved. We
note that while lsof tool with -i option provides similar
information as netstat and ps supply, lsof is not avail-
able everywhere and less stable than netstat and ps.

Tier Three (netstat+ps+lsof)

The optional lsof [12] command lists each open
file on the current host and provides the third tier of
information. By extracting the PID and UID from net-
stat and/or ps, a linkage can now be made to what files
are being accessed for the PID responsible for a net-
work connection. With the help of lsof, a more accu-
rate picture of the application itself can be provided,
as noted by the absolute application path (not just the
executed command), the libraries, and files touched by
the application.

The most interesting aspect of lsof is the discern-
ment of an application’s location. From a policy man-
agement standpoint, centrally served (ex. NFS/AFS
mount) or validated local versions (ex. MD5, SHA1
hash) can reduce the ambiguity associated with appli-
cations. The notion of classifying according to appli-
cation location can offer an additional mechanism for
extracting characteristics such as versions of applica-
tions. In a broad sense, one could view applications as
existing in one of three forms, user local (local direc-
tory or user path), machine local (root-level install, ex.
/usr/bin), and enterprise served (root-level mounted).
The file accesses of the applications noted by lsof can
also be categorized in a similar manner.

Host Config Info

When the agent component initializes for the
first time, it collects an array of system-wide informa-
tion that is sent back to the central administration
server. The information collected includes:

• Current System Time

• Host name and OS version (i.e., uname -a)

• Snapshot of /etc/passwd and /etc/group

• List of iptable rules (i.e., iptables -L)

• Network Interface Parameters (i.e., ifconfig -a)

• Hardware info (i.e., /proc/cpuinfo, /proc/meminfo,
/proc/uptime, /proc/version, etc.)

• Tool Versions (i.e., netstat --version, ps --version,
lsof -v, etc.)

• Any other information that administrators would
like to collect.

Implementation

The data collection agent was implemented as a
bash script that calls UNIX commands netstat, ps, lsof,
and diff periodically. The benefit of implementing the
agent as a script is its immediate deployability without
any special changes to the network or hosts. MySQL
server is set up on an dual-core Opteron box running
Solaris 10 with two 400 GB disks. A parsing program
written in Java that is used to parse the collected raw
data from each host and is inserted into the database
using the Java Database Connectivity (JDBC) inter-
face. The structure of the database is composed of a
set of tables, each of which stores the output from
each of the tools as described earlier in this section.

The data collection agent is deployed on 300+
machines throughout our campus. The machines are a
mix of CSE faculties and students office computers,
scientific grid computing nodes, and engineering lab
machines. The goal was to capture various characteris-
tics ranging from manual human interaction to batch
job oriented network connection styles. We have been
running data collection over one year since April 2007
with a database size of 300 GB. Although the current
state of the deployed agent utilizes only the Linux ver-
sion of these tools, Solaris and Mac OS X versions
have been developed and tested as well, and a native
Windows agent is under development.

Concerning the cost of agent deployment, the
average CPU usage of the agents observed on hosts in
our engineering computer labs where students may log
on via console or ssh peaks at four or five percent only
when the agent is awakened to call the netstat, ps, lsof
and diff. The empirical data suggests that the config-
urable sampling rate of five seconds is a good balance
of granularity of logging and overhead. The memory
usage is bound by the usage of those standard UNIX
tools. Concerning the diff output size, lsof has the largest
volume followed by netstat and ps. As stated earlier, the
usage of lsof is optional due to its relatively high
expense when compared with netstat and ps. Overall,
the average total data size of each host per day is 2.8
MB, or in other words less than 1 GB for each moni-
tored host per year. Moderate disk space requirement
allows for one common 500 GB disk to store all data
for an entire year on a 500-host network. Since the
agents push out the data every 15 minutes in our set-
ting, the total bandwidth consumption for collecting
such data is only 120 Kb/s for a monitoring scale of
500 hosts (all hosts within the 120 Kb/s), and therefore
the network bandwidth overhead is negligible.

While an event-based model appears more ap-
pealing, a bash script that only uses standard UNIX
commands is adopted for fast and easy deployment
without any modification to the kernel or recompila-
tion for different architectures. On the other hand, our
novel usage of diff output (by comparing previous and
current calls) achieves the event-based model to some
extent because only the difference is recorded, not all

64 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

data. The difference can be interpreted as the begin-
ning of a new connection/activity or the end of an
existing connnection/activity. It is understood that the
data collected in this polling scheme may not be per-
fect and could miss some transient events such as TCP
connection state changes. The script is also not the
most efficient way of logging compared to a compiled
binary program. One of the purposes of the system is
to invoke thoughts on what type of data should be col-
lected and how ready-to-deploy and widely available
tools can achieve this. It is also possible that we com-
bine the reports from the end hosts with the NetFlow
data if we want more accuracy in connection time,
direction, packet size, etc. The full visibility at the end
hosts provides a richer context (in terms of users and
applications) of network connectivity that is not read-
ily available from inline monitoring.

Network Connectivity Graphs

In this section, we lay out the theoretical founda-
tion for the graph representations of the data we col-
lected. We make a unique contribution using a het-
erogenous graph model that involves mappings be-
tween hosts, users and applications (HUA). The inter-
esting graph model can have applications in the area
of enterprise network management, security, auditing,
problem debugging and fault localization. Figure 4
shows one of the graphs of the network viewed
through ENAVis.

Figure 4: A  graph view of the network connectivity
data, a feature included in the ENAVi s tool. Explo-
ration starts from various operations on a selected
node, which can be either host, user or application.

User and Application Chaining

The motivation for doing user and application
level matching comes from the question: what are the
foreign applications and users behind the other side of

the connection? It is of particular interest as the tradi-
tional packet analysis is not of any usefulness in
knowing the identity of applications or users. With our
system, the identity (user/application) of both sides of
the end-to-end connection can be linked together
assuming both hosts are monitored.

In its simplest form, a bipartite matching is found
if an established connection recorded on Host A with
srcA and dstB matches another established connection
record on Host B with srcB and dstA within the same
time frame. The time frame can be from a single hour
to several days depending on the granularity require-
ment. It is easy to see that by going through the n
records of all established connections and bucket-sort-
ing those records into a destination-based lookup
hashtable tabledst will take linear time. Going through
tabledst and building a second source-based lookup
hashtable tablesrc as described in Algorithm 1 will also
take linear time. To create the connection chains, we
iterate through all n records; each step requires two
lookups in tabledst and tablesrc, which takes constant
time. The number of records in tablesrc to be fused and
outputted are at most n in the worst case if all n
recorded connections occurred between monitored
hosts. Therefore, the complexity of the above chaining
algorithm is O(n), where n is the number of recorded
established connections.

Input: conns (records of established connections
within a time window)

Output: a bipartite matching of connections
Bipartite_Matching(conns)

foreach record in conns do
bucket sort by srci into tabledst;

end
foreach key in tabledst do

make tablesrc whose keys are dstj and values are
original connection records with srcj and dstj;

end
foreach record in conns do

if tabledst contains key (dsti) AND
tablesrc also contains key (srci) then

find bipartite matching;
output the fusion of connsi and tablesrc’s

records;
end

end
Algorithm 1: Connection Chaining.

Table 2 shows an example of such connection
chaining after the fusion of the log data uploaded by
the agents. Each new connection chaining record
begins with the start and stop time of each connection
and is further divided into the left and the right part.
The top part is the local identity in terms of host name,
IP/Port pair, user, and application associated with the
connection. Similarly, the bottom part is the foreign
identity in the same format. Before, at one end of the
connection (say at server side), the identity of who
connecting to the server is vaguely inferred from the

22nd Large Installation System Administration Conference (LISA ’08) 65



ENAVis: Enterprise Network Activities Visualization Liao, et al.

IP/Port pair (assuming only user A can use that client
machine). Now, the identity of who is connecting to a
host can be precisely known from the bipartite match-
ing (no longer inferred from the IP/Port). Which user
and what application are revealed at both sides of con-
nection. This is useful in evaluating the effectiveness
of the enforcement of the existing policy on the enter-
prise network.

Start Stop Location Host IP/Port(proto) User Application

Local 211fba9b 180.83.12.112/631(tcp) 0 cupsd

Remote 3a9d336a 180.83.12.178/34406(tcp) 97392 gnome-pdf-view
1177527137 1177527148

Local 211fba9b 180.83.12.112/631(tcp) 0 cupsd

Remote 06baa7ef 180.83.12.85/35775(tcp) 92362 gedit
1177543303 1177543309

Local f464cee2 180.83.183.147/54427(tcp) 105464 parrot

Remote c9c6e734 180.83.159.14/9094(tcp) 108172 chirp_server
1177448975 1177449026

Local 0642271a 180.83.12.72/40096(tcp) 33 dumper1

Remote 38af7aa6 180.83.12.241/33084(tcp) 33 amandad
1177391778 1177391807

Local 0642271a 180.83.12.72/40211(tcp) 33 dumper3

Remote 2c0adb9e 180.83.12.172/38429(tcp) 33 gzip
1177392075 1177392151

Local 0642271a 180.83.12.72/40212(tcp) 33 dumper3

Remote 2c0adb9e 180.83.12.172/53342(tcp) 33 sendbackup
1177392075 1177392151

Local b83855ad 77.46.16.81/36019(tcp) 317 httpd

Remote b83855ad 77.46.16.81/1521(tcp) 27 oracletestdb
1177515292 1177515299

Local c9c6e732 180.83.159.108/9094(tcp) 108172 chirp_server

Remote ad8a26cf 180.83.41.162/49857(tcp) 102744 condor_exec.e
1177610657 1177611222

Local c9c6e733 180.83.159.135/9710(tcp) 108172 condor_schedd

Remote ad8a26cf 180.83.41.162/9788(tcp) 108172 condor_startd
1177610633 1177610638

Local c9c6e733 180.83.159.135/9314(tcp) 102744 condor_shadow

Remote ff75683d 180.83.12.132/9868(tcp) 108172 condor_starter
1177625404 1177625765

Local af8f7bb2 180.83.12.155/34479(tcp) 97464 ssh

Remote 633bfecc 180.83.12.167/22(tcp) 0 sshd:root
1177548953 1177548992

Local 06baa7ef 180.83.12.85/34739(tcp) 92362 gedit

Remote 211fba9b 180.83.12.112/631(tcp) 0 cupsd
1177459056 1177459112

Local 06baa7ef 180.83.12.85/35714(tcp) 0 ssh

Remote 633bfecc 180.83.12.167/22(tcp) 0 sshd: root
1177541462 1177541473

Table 2: An output example of bipartite matching. Not only are the IP Address and Port known for each established
connection, but also the User and Process identity at both ends of the connections now become known (host
names and network addresses are anonymized here).

Heterogenous Graph Model

Once we have collected and matched enhanced
connectivity information, the next step is to visualize
the network connections in the form of a graph. How-
ever, while we have a rich pool of data containing the
entirety of host, user, and application connectivity, it is
not desirable to view all the data at once. For instance,
we may only want to view how users are interacting or
perhaps would like visualize which application mix is
being executed and by what hosts. To that end, we
have created a novel control tool based on three core
node characteristics, i.e., hosts, users, and applications
(HUA), as illustrated in Figure 5. At the top, we have
H denoting the host level chaining. This is also the
most common scenario, in which all the connectivity

Figure 5: A meta graph illustrating the various combi-
nations of states (H, U, A, HU, HA, UA, HUA)
for modeling our network connectivity graphs. H,
U, and A stands for Hosts, Users, and Applica-
tions respectively.

between physical end-host machines is constructed. At
the lower left and right, we have U and A, denoting
the user and application level chaining; this is useful
when we want to quickly know which users or appli-
cations have been communicating with each other.

The interesting exploration continues when we
consider the various combination of the states shown

66 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

H

AU

Figure 6: A  HU graph representation showing user 1
(U1) on host 1 and 2 (H1, H2) are talking to each
other. Similarly, user 2 (U2) on H1 and user 4
(U4) on H2 are talking to each other. The user-
level bipartite matching resulting a shortcut path
that forms a simple cycle to distinguish multiuser
connectivity.

H

AU

H

AU

Figure 7: Suppose host 3 (H3) is an external host not
running the agent and therefore no mapping
between users on H1 and H3. The top graph has
ambiguity between U1 and U2 that connecting to
H3. An alternative HU graph representation can be
constructed by removing edge between host nodes.

in Figure 5, namely a heterogenous graph containing
the hosts, users, and applications (HUA). We can
imagine a 4D space, where the time, host, user and

application interact with each other. We briefly discuss
these graphs below.

H: At a higher layer, we have the host connectiv-
ity, basically denoted by traditional IP/port pairs
among servers and clients. Using H only is analogous
to a connectivity view offered by NetFlow data.

U: At the middle layer, we have the user connec-
tivity, in which we can observe the connectivity rela-
tionships among the users. Because multiple users can
log onto the same machine and a single user can log
onto multiple machines, by treating an enterprise user
(no matter how many physical hosts they have logged
on) as one single entity node, we are able to observe
the overall network activities among users.

A: At the bottom layer, we have the application
connectivity, in which we can observe the connectivity
relationships among applications. A simple example
would be which browsers are interacting on my
intranet web server (i.e., Firefox 2.0, Internet Explorer
7, etc.) without worrying about user-agent spoofing.
Similarly, what applications (and their versions) are
checking out licenses from my license server?

HU: The first mix-mode is the interaction be-
tween users and hosts. As we said earlier, a user can
log on multiple hosts and a host has multiple users
simultaneously logged in. There are two options for
constructing such HU graphs. First, we simply merge
the H and U graphs. This ‘glue’ process is done by con-
structing an edge between the user and the host only if
that user has made at least one connection on that host.
A simple graph example is illustrated in Figure 6.
Notice there is no ambiguity in who causes the traffic
between host 1 and 2 because the connectivity forms a
simple cycle (i.e., no vertex is traversed twice) that cov-
ers both vertices H1 and H2. For example, we know
user 2 on host 1 has connections with user 4 on host 2,
but user 1 cannot have connections with user 4 because
a simple cycle is not formed. Note that this is only true
when both host 1 and 2 are running the agents. If there
is an external domain not under our control, there can
be ambiguity in this representation, as shown in Figure
7. Therefore, the second graph representation of the
data is constructed by simply removing the edge be-
tween hosts, taking the observation that there must a
user associated with each connection on a host. Host
nodes can be reached from the user nodes.

HA: Similar to HU, hosts and applications can
be used to construct a connectivity graph when users
are of less concern. Constructing HA graphs is similar
to constructing HU graphs.

UA: The concept of location of physical hosts
becomes less relevant as the real players on the net-
work are the users and applications. In this case, we
can temporarily filter out H and only leave UA
because we are more interested in who (users) and
what (applications) are running on the network. UA
graphs is therefore a perfect choice. Constructing such
graphs are similar to HU and HA.

22nd Large Installation System Administration Conference (LISA ’08) 67



ENAVis: Enterprise Network Activities Visualization Liao, et al.

HUA: Lastly, building hosts, users and applica-
tions into one graph provides the most comprehensive
view as we show in later case studies. Constructing
such a graph is just merging H, U, A graphs by using
user nodes as the ‘glue’ for host and application
nodes, i.e., an edge is drawn between a host and a user
and between a user and an application if the user on
that host has made at least one connection using that
application. An edge connecting two application nodes
represents the network connectivity between their
respective users on two end hosts.

H1 H2 Hn

MRTG

NetFlow

Central auth 

server (Kerberos)

H1 H2 Hn

U1 U2U3 U4U1

?

ENAVis

Select

time range
database

Charts / 

Graphs / 

Queries

load

trace ssh 

log

Figure 8: On the left is an example of problem tracing
carried out by a sys admin by hopping through
central authentication server log and local hosts
ssh logs. On the right we show that admin does
not have to deal with the scale of a distributed
system. The investigation is a quick, convenient,
fixed-step process with mouse-click driven explo-
ration.

Application Discussion and Case Studies

We discuss several cases scenarios in which
ENAVis can be helpful in local network management.
The graphical exploration reduces the tedious, error-
prone nature of log checking and mapping down to a
few mouse clicks, which makes administrators’ life
much easier. With the capability of correlating hosts,
users and applications through interacting with HUA
graphs and straightforward statistical charts offered by
ENAVis, the investigation carried out by the system
and network adminstration can be confined to O(1)
steps and does not have to hop through O(n) hosts in
scale of a distributed system. Figure 8 illustrates the
benefit of ENAVis visualization.

We will study several cases in detail with sup-
porting graphs and data from using the tool. These
scenarios are

• user and application-level policy compliance
check;

• find the source of network bandwidth slowness;

• investigate and cleanup after user account com-
promise;

Scenario 1: Policy Compliance

The management needs to know whether their
employees have complied with the company’s network
usage policy with regards to finance information com-
pliance. Specifically, the administrator is requested to
provide a report of whether the mechanisms are ade-
quate for enforcing the current policy. For this case
study, consider a financial intranet server whose access
policy is defined such that only authorized users can
access or even see the financial system. To that end, a
set of host-based firewall rules are put in place on the
finance server (finance.nd.edu) with restrictions to the
hosts of authorized finance personnel (concert.cse.nd.
edu, striegel) on the company campus.

Current approach: First, the admin checks that
the firewall rules (IP/port) settings are correct for the
finance server through the application of a policy rule
visualization tool such as [13]. Once the rules are vali-
dated, the administrator checks the ipfilter log and
NetFlow log data to ensure that only authorized hosts
accessed the server. Upon only seeing authorized hosts
on the list (concert), the admin concludes that the pol-
icy is sound and not violated.

ENAVis approach: Unfortunately, the earlier ap-
proach is only sufficient if the host to user mapping
stays consistent, i.e., only user striegel uses the host
concert.cse.nd.edu. If host to user mapping is dynamic
or unclear, the notion of host as identity quickly
breaks down (see Figure 9). Suppose in the same envi-
ronment that ssh connectivity was enabled on the net-
work. In the scenario of Figure 9, an unauthorized user
qliao connects from IrishFB.nd.edu with X11 for-
warding to concert.cse.nd.edu and launches an in-
stance of firefox to access the finance web server. In a
multiuser environment, where multiple users are
logged onto the same machine and make network con-
nections, other tools have no way of differentiating
those connections because the connections all have the
same source IP. Similarly, the legitimate user striegel
may carelessly connect from a Starbucks shop to his
office desktop concert in order to access a financial
account just for convenience. Neither of these two
cases is desirable and is a violation of the policy
because the original intent of the policy was that any-
one not part of the finance department should not be
able to access the finance host.

The tiered graph created with ENAVis includes
nodes representing hosts, users and applications, tak-
ing advantage of our data which records every UID
and PID associated with each network socket created.
Since each connection tuple now is expanded to be
{time, proto, src_ip/port, dst_ip/port, usr, app}, we

68 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

have finer granularity on the policy control on the user
and application level in addition to the host level,
which can be clearly seen from the ENAVis graph
(Figure 9). The admin is able to find the problem
which is not offered by other tools, namely the unin-
tentional configuration of concert with no ssh restric-
tion causes the violation of the policy.

Figure 9: An ENVAVis HUA graph captures two pos-
sible host IP ACL policy violations caused by the
unintentional configuration on host concert with-
out ssh restriction.

Figure 10: A simple example showing policy compli-
ance control on application versions for vulnera-
bility avoidance and license management.

In addition to policy compliance checks at the
host and user level, another side benefit is to check the
policy compliance at the application level. Consider
the case when the admin wants to make sure only the
most up-to-date version of applications are approved
for use on the network (see Figure 10 for an example).
There have been known vulnerabilities in earlier ver-
sion (1.5.x) of firefox and the policy states users must
use the properly patched version. A simple HA graph
would reveal any non-compliance with this policy by

looking at the applications connecting to the web
server. In addition to vulnerability control, it is also
useful for license management. Usually, the organiza-
tion buys a fixed amount of licenses from the software
vendors. The license server should only check out a
license to legitimate users and newest version of the
application software. Our tool makes it possible to
track this type of compliance as well.

Scenario 2: Network Bandwidth Slow

In this scenario, users file a case report to the
system administrator complaining about the network
being slow.

Current approach: The admin pulls the MRTG
data through SNMP queries to the routers, and deter-
mines everything looks fine. The routers only has 30%
of traffic load. Since the bandwidth slowness was
reported five hours ago, the admin searches the Net-
Flow log data trying to locate the problem host.
Finally, the admin locks down two problem hosts: one
is a graduate student’s desktop and the other is a
machine in a lab.

For the graduate student’s machine, the admin is
pretty sure that student is the cause, thus she sends out
a warning message to that student for a suspected vio-
lation of the network usage policy and if the user does
not comply his network port will be shut down. For
the machine in the computer lab, unfortunately it is in
a multi-user environment. The admin has to decide
who has been on it during the problem time period.
She spends much of her time searching the ssh logs
and correlating the logging information with a central
box such as a Kerberos server trying to find who was
logged in during that time. Finally, the admin narrows
the search down to 10 users that have been on the sys-
tem during the two hours of heavy use.

Needless to say the process is tedious. Imagine if
the admin has 1000 machines and an administrator has
to log onto each one to look at the ssh log, it will
waste tremendous amounts of time. The process is
also less fruitful because the admin cannot determine
if the increased network connectivity is due to a legiti-
mate reason (i.e., research experiments, etc.) or illegit-
imate purpose (i.e., illegal file sharing, etc.).

ENAVi s approach: The admin loads the most
recent data collected by the agents into the visualizer
and has a quick plot on the number of connections
across her network (Figure 11). The admin clearly sees a
spike between January 10, 2008, time 9:00 and 16:00,
which matches the network slowness complaints that
users had reported. The increase in network activities is
mainly contributed to an enterprise user. The admin
selects each cluster from the drop-down menu and
quickly narrows the search down to an abnormally busy
host: clapton.cse.nd.edu (Figure 12). By simply clicking
on the host name, a pie chart is automatically plotted to
reflect the top users on the host clapton.cse.nd.edu, as
illustrated in Figure 13. On the left pane, all users

22nd Large Installation System Administration Conference (LISA ’08) 69



ENAVis: Enterprise Network Activities Visualization Liao, et al.

Figure 11: Number of hourly network connections
(top red line) separated by enterprise (middle blue
line) and local users (bottom green line) on the
monitored network. The admin sees a spike in
network activities.

Figure 12: After examining the charts on a few clus-
ters, the problem source is pinned down to one
host’s (clapton) abnormally high network activi-
ties.

logged on that host that have made at least one net-
work connection are listed in decreasing order.

The admin clicks on the problem user ID, two
things happen. First, the tool automatically performs
an LDAP lookup (it will check a local cache first to
avoid excessively hitting the LDAP server) and dis-
plays the user information on the bottom of the graph
(i.e., the user’s first/last name, department affiliation,
user name and AFS directory, etc.). Second, it auto-
matically plots a pie chart (Figure 14) showing the top
applications that user had used to make network con-
nections. It is straightforward to see from the chart
that the file sharing program BitTorrent and Gnutella
constitute the top two applications that the user asmith
had used. By now the problem has been traced to the
source and the necessary action as dictated by the

Figure 13: The left pane of the User tab includes a
complete list (ordered by the magnitude of net-
work connections) of users logged on the selected
hosts/clusters in the Host tab. In this case, user
517606 has the top activities among all users on
the host clapton. LDAP lookup on UID is dis-
played on the bottom pane.

Figure 14: View the category of top applications run
by a problem user (517606) that making most net-
work connections. File sharing applications such
as BitTorrent and Gnutella occupy three quarters
of the total connections on host clapton.

compliance policy will take place. All the admin does
is less than ten mouse clicks. The graphical visualiza-
tion and automation makes the admin quickly pin
down the problem source without a tedious manual
search process. The central correlation of the user and
application information is the key.

Scenario 3: Cleanup After Compromise

A phishing email pretending to be from the IT
department claims they are updating the system and
require all users to send in their passwords, or their
accounts will be suspended. A naive user believes this
scam and therefore his password is suspected to have
been compromised.

70 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

Current approach: The system administrator
needs to find out which hosts the compromised user
account has used. Have those hosts been compromised
as well? What applications did that user invoke? What
data files did this user account touch during the past
two weeks since the user revealed his password? The
admin must make sure the student/faculty’s sensitive
information and intellectual property was not leaked
from the network. In order to do this, the admin
checks a centralized server such as an Active Direc-
tory or Kerberos 5’s log file. Fortunately, the log file is
still there, and the admin can then manually search
and find all hosts that user has been trying to log into
via the ssh pluggable authentication modules (PAM).
The admin logs into each machine and makes sure
they are clean. However, the admin has no idea what
files have been read/modified or been sent out to
external hosts. The admin also does not know what
applications have been run by that user account
because the data is not available.

Figure 15: The HUA network graph reveals a high-
lighted user (jdoe) has logged on seven machines
via ssh and has used the application John the Rip-
per to crack password files on those machines.

ENAVis approach: The admin simply generates a
network graph by selecting the HUA from the graph
menu. The admin highlights the problem user node
(jdoe) (as in Figure 15). It is straightforward to see
which hosts the user has touched during the time
frame and what applications the user used. The file
access information logged by lsof is not available to
other tools, neither in a centralized authentication
server nor in the normal end-host’s access logs.
Although we do not normally plot the lsof data, each
file accessed by that user is kept in the master data-
base. Therefore, a single query would reveal all files
that user ID has touched among all the hosts. In this
case, a visual graph is very helpful to see what hosts
and users that a compromised user account has con-
tacted and which applications it has attempted to

launch. This helps expedite significantly such an
investigation should it occur.

Other Functionalities

There are a few other potential uses of the tool,
which we briefly cover here. For example, network
fault localization. By comparing and contrast the dif-
ference between a working set and a problem set of
network connectivity graphs, a system administrator
would be able to detect the possible causes of network
faults. Another example would be forensic auditing.
The detailed user activities recorded in database may
provide evidence when it is needed by some govern-
ment agency.

Data mining is another potential use of our tool
to detect possible anomalies in the network by invok-
ing data mining and machine learning algorithms built
into the tool (future work). The tool automatically col-
ors nodes (hosts, users, applications) based on the
clusters. Various classifiers kick in to evaluate the risk
scores of the network events. It then generates a report
that needs the attention or possible action by the man-
agement team.

ENAVis: The Visualization Tool

This section describes the implementation of
functions of each module in the viewer2 and how they
can be used to explore the local context of monitored
networks. The visualization tool was implemented
using Java. The plotting functions utilized JFreeChart
[14] and the graph animation was build on top of
Prefuse [15], both are free open-source Java libraries.

Time Selection and System Message

As mentioned earlier, the tool should provide a
quick summary of the past history, a time window
defined by the user, and provide extensive reports on
statistics of the hosts, users, and applications. The
start and stop time of an investigation can either be
specified as the command line arguments or simply
selected from a GUI calendar object within the tool’s
interface. The tool then scans through the local disk to
check if it already has the data files for the specified
time range. If not, those files will be downloaded on
demand in the form of either XML or comma-sepa-
rated files at the user’s choice. The ‘‘Update’’ button
causes the tool to synchronize with the data file server.

Number of Connections Made By Users

The ‘‘Hosts’’ tab, shown in Figure 11, presents
an overview picture on the number of network con-
nections made by either enterprise users or the local
users. On the left pane, administrator can select a set
of predefined physical clusters (or all nodes in the net-
work) from a combo box (drop-down list), which in
turn propagates a complete list of monitored hosts
within the cluster, where the user can select each spe-
cific host to view.

2More information and code available at http://netscale.cse.
nd.edu/LockDown .

22nd Large Installation System Administration Conference (LISA ’08) 71



ENAVis: Enterprise Network Activities Visualization Liao, et al.

After selecting which host, cluster, or all moni-
tored nodes, the user can further specify the time gran-
ularity of investigation by selecting one of the four
radio buttons on top, i.e., ‘‘past hour’’, ‘‘past day’’,
‘‘past week’’, or ‘‘all’’. Based on the selection, a line
chart is automatically refreshed to reflect the change.
The different colors of lines, as indicated in the legend
box at the bottom, indicates whether it is made by
enterprise users or the local users. The differentiation
of enterprise and local users is through querying the
LDAP servers. The query results are cached locally to
ensure any future lookup on the same UID will not hit
the LDAP server.

Host Configuration

Each host configuration information can be dis-
played by right-clicking the host name in the list, and
choose ‘‘configuration’’ from the pop-up menu. This
triggers a query against the database host information
table that return a complete list of a host’s system sta-
tuses collected by the agent. The information currently
stored for each host is: OS type and version, patch
level, up time, local user and group info, firewall (ipt-
able) rules, ethernet and network addresses for each
network interface, hardware (CPU/mem/disk) informa-
tion and versions of various system tools; as described
in the Data Collection part of the paper. This function-
ality gives a quick and handy way for the system ad-
ministrator to view each system status within the tool
without requiring logging into each machine separately.

Alternative Data View

While graphical visualization is great, the option
of being able to examine the raw data is always handy
just in case the investigator needs to. Therefore, a ta-
ble view is provided within the tool interface to dis-
play all raw connectivity records.

Users

Based on the various combination of hosts/clus-
ters and time frames selected in the ‘‘Hosts’’ tab, the
‘‘Users’’ tab shows a vivid percentage summary as a
pie chart for the top n users that are making the largest
number of network connections. Figure 13 is one
screenshot. The bottom frame shows a summary of
user information: first/last name, netID, AFS home
directory, department affiliation and job title, which
are pulled from the enterprise LDAP server with the
similar cache scheme described earlier.

Applications

The investigation flow continues in ‘‘Apps’’ tab
(Figure 14), which shows a classification on the top
applications run by a specific user. The pie chart tells a
network administrator what is running on his network,
e.g., are they mainly web browsers, email clients,
printers, office software, or condor batch jobs, etc.?
Presumably, different users have different behaviors in
choosing personalized applications for network ac-
cesses. This is especially interesting for data mining
and anomaly detection.

Figure 16: Popup provides detail-on-demand. In order
to facilitate ‘‘please tell me more’’ function,
popup event is implemented to display node prop-
erties by querying the database.

Connectivity Graphs

The network graphs, a significant feature included
in the viewer, are supported by the open source Prefuse
[15] library. We perform the bipartite matching on the
nodes and transform the data into the GraphML format
[16]. A heterogenous graph view of the network con-
nectivity graph is presented earlier in Figure 4. On the
right pane is a control tool set that can adjust the anima-
tion of the nodes interacting with each other by setting
drag force, spring length, etc. The view can also zoom-
in/out and be dragged around.

The connectivity filter allows the viewer to dis-
play only the number of hops from the question node.
The hop count can be increased to give an extended
view of the connected components in a larger chaining
path. The node filter allows an investigator to select an
arbitrary node (host/domain, user, or application) in
the graph from a combo box rather than trying to
locate a node in the graph itself.

The interactive feature is introduced to each gen-
erated graph through right-clicking on nodes. The
menu is enable/disabled based on the context of the
node type. For example, for a host node shown in Fig-
ure 16, one can query the database on-demand by sim-
ply select an item in the popup menu.

Related Work

Broadly speaking, the network monitoring and
analysis can be categorized into two models. In the
first type, in-network devices record and collect data
using tools such as tcpdump or Cisco’s NetFlow [1]
profiling. The other type is end-host monitoring using
an agent mechanism. The end-host monitoring ap-
proach has the advantage of being able to see more
information than inline monitoring since it has full
visibility of the network activities occurring on each
host. We adopted the latter model for our data collec-
tion system.

72 22nd Large Installation System Administration Conference (LISA ’08)



Liao, et al. ENAVis: Enterprise Network Activities Visualization

sFlow [17] uses agents on switches/routers to log
packets and send the logs to a central collector for
analyzing. However, the traffic monitoring is at the
packet level, thus missing the local context informa-
tion for each connection. Another network traffic data
visualizer is Multi Router Traffic Grapher (MRTG)
[18] that monitors router traffic in a graphical form
based on SNMP-enabled devices. There are also a few
other visual analyzers based around using NetFlow’s
data. ISIS [6] is a tool that visualizes temporal rela-
tionships among network flow data by using a time-
line and event plot. By plotting time in combinations
with IPs, ISIS trys to find correlations between events
to aid investigations regarding network intrusion. NVi-
sionIP and VisFlowConnect-IP [7] have also been
developed to visualize NetFlow data. As stated earlier,
the key weakness of NetFlow data is the missing user
and application information, which we posit is critical
for enterprise network management.

Visualization techniques have been applied to
view static data, such as distributed firewall rules to
detect potential conflicts or anomalies. PolicyVis [13]
is a visualization tool for inspecting firewall rules. It
helps detect policy anomalies by plotting IP addresses
and port numbers specified by the firewall rules in a
2D space and looking for overlap. We are in line with
one of their motivations that visual inspection can be
useful in understanding the otherwise complicated
relationships among this form of data. Instead of visu-
alizing policy rules, we visualize the dynamic data,
which is the actual network activities made by users’
applications. The visual analysis done on the empirical
data is a substantial and necessary supplement to the
static rules inspection as a proof of correctness to the
policy rules.

Beyond the analysis of network data, various
clean slate efforts have attempted to bring identity into
the network flow. Among the re-architecturing at-
tempts in the enterprise network, SANE [19] and
Ethane [20] take a drastic approach in that instead of
using a traditional layered approach, a single protec-
tion layer governs all connectivity within the enter-
prise. The enforcement of enterprise-wide security
policies is done at the link layer. User authentication
to a centralized server and switch-level source routes
are mandatory to access services and end hosts.
Within a SANE enterprise, IP address are not used for
identification, location, or routing.

Finally, out of the various related works, perhaps
the works closest to ours are those of [21] and [22]. In
[21], the authors propose capturing the inter-dependen-
cies among network components in ‘Leslie graphs,’
based on the original dependency work of Lamport. The
‘‘black-box’’ approach relies on the correlation of
observed network traffic to infer system dependencies.
The agents in their system called AND perform tempo-
ral correlation of the packets sent and received by the
hosts; where the central server engine performs
Bayesian inference from the reports generated by the

agents. While these works mainly focus on computing
the dependency graphs for fault localization (i.e.,
debugging the location of network failure or sluggish
performance), our system focuses on the lightweight
aspects of information gathering and how to visualize
not only connectivity but, the context of the connectiv-
ity itself. In short, while these tools help to locate
dependency-related performance problems at the host-
level in a theoretical sense, ENAVis provides a robust
platform for exploring and visualizing the connectivity
data for a much wider assortment of security and per-
formance-related issues.

Conclusion

It is desirable, yet difficult, to know exactly who
and what is running on an enterprise network. In cur-
rent network architecture, the identity of user and
application in network flows is inferred from a
packet’s content (i.e., IP addresses and port numbers)
rather than directly from the context (user processes)
that actually make those connections.

In this paper, we describe a network local context
data collection system and ENAVi s, an Enterprise Net-
work Activities Visualization and analysis tool. In addi-
tion to the regular analysis functions provided similarly
by NetFlow and packet monitoring tools, ENAVi s offers
interesting new features of visual analysis on the user’s
and application’s level. Connectivity graphs in combi-
nations of hosts, users and applications capture the
dynamic interactions among these essential components
in the network, and provide an interactive exploration
of the network connection log data. Future work is
planned to incorporate data mining techniques into the
tool to aid in automatic analysis of the data.

Acknowledgements

The authors would like to thank Curt Freeland,
faculty specialist at CSE department of University of
Notre Dame, for helping deploying the system. Spe-
cial thanks to Adam Moskowitz and the anonymous
reviewers for their insightful comments.

This work was supported in part by the National
Science Foundation (CNS-03-47392, CNS-05-49087)
as well as a Sun Academic Excellence Grant (AEG)
(EDUD-7824-080234-US).

Author Biographies

Qi Liao is a Ph.D. student at the Computer Sci-
ence & Engineering department of the University of
Notre Dame. His current research interests include
computer security, network management, data mining
and economic applications on networks and security.
He received his master degree in computer science
and engineering (MSCSE) from the University of
Notre Dame, Indiana. Qi graduated with a B.S. and
Departmental Distinction in Computer Science from
Hartwick College, New York, with minor concentra-
tion in Mathematics. He is a member of Kappa Mu

22nd Large Installation System Administration Conference (LISA ’08) 73



ENAVis: Enterprise Network Activities Visualization Liao, et al.

Epsilon and Upsilon Pi Epsilon. Reach him at qliao@
nd.edu .

Andrew Blaich is a Ph.D student at the University
of Notre Dame’s Computer Science and Engineering
Department. His research interests are focused on com-
puter security and networking; with current work being
done on network management. He received his B.S. and
M.S. in Computer Engineering from Villanova Univer-
sity. Andrew can be reached at ablaich@nd.edu .

Dr. Aaron Striegel is currently an assistant profes-
sor in the Department of Computer Science & Engi-
neering at the University of Notre Dame. He received
his Ph.D. in December 2002 in Computer Engineering
at Iowa State University under the direction of Dr. G.
Manimaran. His research interests include networking
(bandwidth conservation, QoS), computer security, grid
computing, and real-time systems. During his tenure as
a student at Iowa State, he worked for various compa-
nies in research and development that included Sun
Microsystems, Architecture Technology Corporation,
and Emerson Process. He has received research and
equipment funding from NSF, DARPA, Sun Microsys-
tems, Hewlett Packard, Architecture Technology Cor-
poration, and Intel. Dr. Striegel was the recipient of an
NSF CAREER award in 2004. Dr. Striegel can be
reached at striegel@nd.edu .

Douglas Thain is Assistant Professor of Com-
puter Science and Engineering at the University of
Notre Dame. His research interests focus on harness-
ing large scale computing systems such as clusters,
clouds, and grids to attack large problems in science
and engineering. Dr. Thain received the Ph.D. from
the University of Wisconsin in 2004. He can be
reached at dthain@nd.edu .

Bibliography

[1] Cisco Systems, ‘‘Introduction to Cisco IOS Net-
Flow – A Technical Overview (White Paper),’’
October, 2007, http://www.cisco.com/en/US/
products/ps6601/prod_white_papers_list.html .

[2] Moskowitz, R. and P. Nikander, ‘‘Host Identity
Protocol (HIP) Architecture,’’ RFC 4423, May,
2006.

[3] Microsoft, Planning, Implementing, and Main-
taining a Microsoft Windows Server 2003 Active
Directory Infrasture, Microsoft Press, 2003.

[4] Neuman, C., T. Yu, S. Hartman, and K. Raeburn,
‘‘The Kerberos Network Authentication Service
(V5),’’ RFC 4120, July, 2005.

[5] MIT, ‘‘Kerberos: The Network Authentication
Protocol,’’ 2008, http://web.mit.edu/Kerberos/ .

[6] Pham, D., J. Gerth, M. Lee, A. Paepcke, and T.
Winograd, ‘‘Visual Analysis of Network Flow
Data with Timelines and Event Plots,’’ Workshop
on Visualization for Computer Security (VizSEC),
Sacramento, CA, pp. 85-99, October 29, 2007.

[7] Yurcik, W., ‘‘Visualizing Netflows for Security at
Line Speed: The SIFT Tool Suite,’’ 19th Large

Installation System Administration Conference
(LISA ’05), San Diego, CA, p. 16. December 4-9,
2005.

[8] Takada, T. and H. Koike, ‘‘MieLog: A Highly
Interactive Visual Log Browser Using Informa-
tion Visualization and Statistical Analysis,’’ Pro-
ceedings of the 16th USENIX Conference on Sys-
tem Administration (LISA ’02), Philadelphia, PA,
pp. 133-144, November 3-8, 2002.

[9] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, second edi-
tion, MIT Press and McGraw-Hill, 2001.

[10] netstat(8), Linux Programmer ’s Manual.

[11] ps(1), Linux User’s Manual.

[12] Abell, V., LiSt Open Files (lsof), Open-Source,
UNIX Administrative Tool, ftp://lsof.itap.purdue.
edu/pub/tools/unix/lsof/ .

[13] Tran, T., E. Al-Shaer, and R. Boutaba, ‘‘Poli-
cyVis: Firewall Security Policy Visualization and
Inspection,’’ 21st Large Installation System Ad-
ministration Conference (LISA ’07), Dallas, TX,
pp. 1-16, November 11-16, 2007.

[14] JFreeChart, ‘‘Free Java Chart Library,’’ http://
www.jfree.org/jfreechart/ .

[15] Prefuse, ‘‘The Prefuse Visualization Toolkit,’’
http://prefuse.org/ .

[16] GraphML, ‘‘The graphml File Format,’’ http://
graphml.graphdrawing.org/ .

[17] sFlow, ‘‘Traffic Monitoring Using sFlow,’’ 2003,
http://www.sflow.org/sFlowOverview.pdf .

[18] Oetiker, T., ‘‘MRTG – The Multi Router Traffic
Grapher,’’ 12th Systems Administration Confer-
ence (LISA ’98), Boston, MA, pp. 141-147, De-
cember 6-11, 1998.

[19] Casado, M., T. Garfinkel, A. Akella, M. J. Freed-
man, D. Boneh, N. McKeown, and S. Shenker,
‘‘SANE: A Protection Architecture for Enterprise
Networks,’’ 15th USENIX Security Symposium,
Vancouver, Canada, p. 10, July, 2006.

[20] Casado, M., M. Freedman, J. Pettit, J. Luo, N.
McKeown, and S. Shenker, ‘‘Ethane: Taking Con-
trol of the Enterprise,’’ Proceedings of ACM SIG-
COMM, Kyoto, Japan, pp. 1-12, 2007.

[21] Bahl, P., P. Barham, R. Black, R. Chandra, M.
Goldszmidt, R. Isaacs, S. Kandula, L. Li, J. Mac-
Cormick, D. A. Maltz, R. Mortier, M. Wawrzo-
niak, and M. Zhang, ‘‘Discovering Dependencies
for Network Management,’’ ACM SIGCOMM 5th
Workshop on Hot Topics in Networks (Hotnets-
V), Irvine, California, pp. 97-102, November 29
and 30, 2006.

[22] Bahl, P., R. Chandra, A. Greenberg, S. Kandula,
D. A. Maltz, and M. Zhang, ‘‘Towards Highly
Reliable Enterprise Network Services via Infer-
ence of Multi-Level Dependencies.’’ ACM SIG-
COMM Computer Communication Review, Vol.
37, Num. 4, pp. 13-24, 2007.

74 22nd Large Installation System Administration Conference (LISA ’08)


