
Backpacks for Notebooks: Enabling Containerized
Notebook Workflows in Distributed Environments

Md Saiful Islam∗, Talha Azaz†, Raza Ahmad†, A S M Shahadat Hossain‡, Furqan Baig§,
Shaowen Wang§, Kevin Lannon∗, Tanu Malik†‡, Douglas Thain∗

∗University of Notre Dame, Notre Dame, IN, USA; †DePaul University, Chicago, IL, USA;
‡University of Missouri, Columbia, MO, USA; §University of Illinois Urbana–Champaign, Champaign, IL, USA

mislam5@nd.edu, tazaz, raza.ahmad@depaul.edu, ahr8v@missouri.edu,
fbaig, shaowen@illinois.edu, klannon@nd.edu, tanu@missouri.edu, dthain@nd.edu

Abstract—Notebooks have become widely adopted in the sci-
entific community due to their interactive interface and ease of
sharing. However, using notebooks to execute large-scale scientific
workflows remains challenging. Scientific workflows are typically
distributed and require resource provisioning and data man-
agement prior to execution. Because notebooks do not natively
embed workflow specifications, users often resort to inserting
custom configuration steps directly within notebook cells to
enable provisioning. This practice undermines reproducibility,
as the same notebook may not run consistently across different
cluster environments. In this paper, we introduce the concept of
a notebook backpack—a companion specification that captures
the embedded workflow along with all relevant configuration
elements. We describe how notebook tracing can be leveraged
to automatically populate the backpack. We then describe
an integrated tool that provisions a backpack on distributed
resources. Using real-world case studies, we demonstrate that
the backpack abstraction enables minimal modification of the
notebook, portable execution, and cross-site reproducibility of
notebook-based workflows on HPC clusters without significantly
increasing notebook execution time.

I. INTRODUCTION

Notebooks [1] have become a hallmark of interactive com-
puting, increasingly adopted as the primary user interface for
scientific programming. While it is relatively easy to initiate
and develop a local analysis in a notebook, scaling this anal-
ysis beyond a single machine presents significant challenges.
When the need for scaling arises, users may turn to classical
workflow systems—such as Pegasus [2], Nextflow [3], or
TaskVine [4]—which are designed to orchestrate complex
workflows across distributed environments. However, these
systems are not always designed for seamless integration with
the interactive notebook paradigm, often compelling users
to transition their work outside the notebook environment.
Libraries like Dask [5] and Parsl [6] enable distributed exe-
cution from within notebooks, but require code modifications
and site-specific configuration. This tweaking undermines true
portability and consistent reproducibility, often leading to
subtle errors, underperformance, and a considerable burden
on the user to manage operational complexities [7].

Despite their popularity, reproducibility remains a major
challenge for notebooks, largely due to missing dependen-
cies and data availability [8], [9]. While notebook files

Workflow

Software

Data

Workflow

Workflow Runs
at Cluster A

Workflow Fails
at Cluster B

"Just run this workflow!"

HPC Cluster HPC Cluster

Fig. 1: Portability challenges in notebook workflows
A notebook workflow alone cannot execute successfully with-

out its supporting environment. Simply sharing the notebook
or script is not enough—we must also recreate the same
runtime environment, ensure access to the necessary data,
and provision appropriate computing resources to achieve
reproducible execution.

unify code and metadata, they typically omit environment
specifications, reducing portability across heterogeneous sys-
tems [10]. As shown in Figure 1, code alone is insuffi-
cient—environment, data, and resource specifications are es-
sential for reproducibility. This issue is exacerbated in dis-
tributed workflows. For instance, the notebook in Figure 2
performs batch matrix multiplication—a common task in ma-
chine learning. In this example, only the matrix multiplication
performed by multiply_pair is computationally expen-
sive—at O(n3)—and embarrassingly parallel, as each input
can be processed independently. To run such computations in
parallel, a workflow management system is required. Figure 3
illustrates how this can be achieved with TaskVine, dispatching
each matrix operation to remote workers. However, such
implementations require replicating all dependencies—at min-
imum, the correct version of numpy—on every worker node
[11], and users must provision compatible workers to the
cluster. This setup is non-trivial, as each cluster typically has
its own approach to launching and managing workers through
site-specific schedulers, containers, or protocols.

Furthermore, any data required by the workflow must be
staged appropriately, with valid and accessible paths. Hardcod-



def multiply_pair(A, B):
    import numpy as np
    A_np = np.array(A, dtype=float)
    B_np = np.array(B, dtype=float)
    C_np = A_np @ B_np
    return C_np.tolist()

def read_matrices_from_csv(filename):
    pairs = []
    with open(filename, 'r') as f:
        for row in csv.reader(f):
            vals = [float(v) for v in row]
            i = 0
            r1, c1 = int(vals[i]), int(vals[i+1])
            i += 2
            A = []
            for x in range(r1):
                A.append(vals[i+x*c1:i+(x+1)*c1])
            i += r1*c1
            r2, c2 = int(vals[i]), int(vals[i+1])
            i += 2
            B = []
            for x in range(r2):
                B.append(vals[i+x*c2:i+(x+1)*c2])
        
            pairs.append((A, B))
    return pairs

import csv
matrix_pairs = read_matrices_from_csv('matrices.csv')
results = []

for i, (A, B) in enumerate(matrix_pairs):
    C = multiply_pair(A, B)
    results.append(C)
    print(f"Pair {i}: result size {len(C)}x{len(C[0])}")

In [ ]:

In [ ]:

In [ ]:

5/20/25, 12:02 PM Untitled1

localhost:8888/lab/tree/matrix-new/Untitled1.ipynb 1/1

Fig. 2: Simple Batch Matrix Multiplication Workflow
This notebook performs batch matrix multiplication using

input pairs read from a CSV file. Each row in the file encodes
two matrices, which are multiplied using a NumPy-backed
function multiply_pair. The workload is embarrassingly
parallel, as each matrix pair is processed independently.

ing data paths in the notebook creates site-specific assumptions
that hinder portability and reproducibility. Instead, these de-
tails should be captured separately in an external specification
that accompanies the notebook. Such a specification can
define the software environment, data sources, and resource
requirements in a portable, declarative way, enabling the same
notebook to run unmodified across diverse systems.

In this paper, we introduce the concept of a backpack for
notebooks—a structured companion specification that captures
the software, data, and resource dependencies needed for
executing notebook workflows on distributed systems. Since
the notebook file alone is incomplete [10], the backpack
acts as a lightweight, portable container with all necessary
context explicitly described. We demonstrate that backpacks
address critical challenges such as environment replication,
data staging, and resource provisioning. To support this, we
present Floability, a tool that implements the backpack specifi-
cation and automates notebook execution on clusters, enabling
consistent and reproducible workflows across diverse systems.

def multiply_pair(A, B):
    # same as before

def read_matrices_from_csv(filename):
    # same as before

import csv
import ndcctools.taskvine as vine

matrix_pairs = read_matrices_from_csv('matrices.csv')

m = vine.Manager([9123, 9150], name="matrix-tv")

tasks_map = {}
results = [None] * len(matrix_pairs)

# Submit tasks to TaskVine
for i, (A, B) in enumerate(matrix_pairs):
    task = vine.PythonTask(multiply_pair, A, B)
    t_id = m.submit(task)
    tasks_map[t_id] = i
    print(f"[manager] Submitted task for pair {i}")

# Wait for results
print("[manager] Waiting for tasks to complete...")
while not m.empty():
    done_task = m.wait(5)
    if done_task:
        idx = tasks_map[done_task.id]
        if done_task.successful():
            results[idx] = done_task.output
            print(f"[manager] Pair {idx} done")
        else:
           # Handle Failure

In [1]:

In [ ]:

In [ ]:

5/27/25, 2:41 PM csv-matrix-tv

localhost:8888/lab/workspaces/auto-I/tree/csv-matrix-tv.ipynb 1/1

Fig. 3: Distributed Matrix Multiplication Using TaskVine
This notebook transforms a simple call to multiply_pair

into a distributed Python task, which is submitted to the
TaskVine manager (outlined in red). Each matrix pair is
independently dispatched to remote workers, allowing parallel
execution and efficient resource use across HPC nodes.

II. REPRODUCIBILITY CHALLENGES IN DISTRIBUTED

NOTEBOOK WORKFLOWS

Users typically develop workflows incrementally, installing
packages and adding data on the fly. While this approach
works locally, moving to HPC or cloud environments reveals
hidden portability and reproducibility issues.

Consider the matrix multiplication notebooks in Figures
2 and 3. One runs locally, while the other uses TaskVine
to distribute it across remote workers. The TaskVine version
improves scalability but exposes key challenges:

1) Managing Software Dependencies Across Distributed
Nodes: Notebook workflows often install packages incre-
mentally using commands like pip install, which
only affect the local environment. In Figure 2, matrix
multiplication runs locally with numpy; in Figure 3, the
same function is offloaded to TaskVine workers, which
also require the correct version of numpy. Installing it
in the notebook has no effect on worker nodes. Instead
of duplicating the manager’s entire environment—which



Backpack

Workflow

Software

Data

Resources

Head Node Worker Nodes

Workflow

Software

Data

Software

Worker Code

Resources

floability

HPC Cluster

Notebook View

Fig. 4: Deploying a backpack with Floability
Floability consumes a backpack and launches a manager on

the HPC head node and spawns workers on compute nodes,
scaling dynamically as needed.

may contain large, unused libraries—workers should be
provisioned with minimal, task-specific environments for
efficiency and portability.

2) Proactive Data Management and Verification: Dis-
tributed workflows often process substantial amounts of
data, requiring alignment of computational resources and
data availability. If datasets are missing, inaccessible, or
corrupted mid-execution, it can waste computation and
cause workflow failure. For example, in Figure 3, if the
required CSV is missing or unreadable when needed
hours into execution, the workflow may stall. To prevent
this, datasets should be proactively discovered, verified,
and documented—including their source, access method,
and integrity—before execution.

3) Accurate Resource Specification for Distributed Exe-
cution: Distributed workflows require explicit provision-
ing of resources (e.g., CPU, RAM, GPUs) before exe-
cution. Under-provisioning causes failures, while over-
provisioning wastes resources. Accurately documenting
and specifying each worker’s needs is critical for efficient
execution.

These challenges show how incremental notebook develop-
ment complicates portability, reproducibility, and scalability in
distributed settings. The next section introduces backpacks—a
structured way to address these issues and enable seamless
execution across systems.

III. BACKPACKS

A backpack encapsulates a notebook workflow with struc-
tured specifications of all its dependencies—data, software,
and computational resources—needed for seamless execu-
tion across diverse environments. Traditionally, workflows are
shared with minimal documentation, often just the notebook.
In contrast, well-documented workflows specify all required
software, datasets, and resources. Backpacks formalize this
best practice, providing documentation that is both human-
readable and machine-parseable, enabling Floability to repro-
duce and deploy workflows across heterogeneous HPC clusters
with minimal manual intervention.

The backpack design directly addresses the three main
challenges discussed in Section II: (1) software dependencies
are explicitly separated for manager and worker nodes; (2)

data requirements are proactively specified and verified; and
(3) resource needs are precisely documented. Each backpack
consists of four primary components:

A. Workflow Specification

The workflow component defines the computational logic,
typically as a Jupyter notebook or script. To ensure portability
across different HPC environments, workflows must adhere to
specific guidelines:

• Use environment variables or relative paths instead of
absolute file paths

• Separate computation logic from resource allocation logic
• Avoid site-specific configurations or resource identifiers

B. Software Dependencies

The software specification explicitly defines all dependen-
cies required by the workflow. This component uses YAML
format similar to Conda’s environment.yml and includes:

• Manager Environment (environment.yml): Speci-
fies the complete software stack required on the manager
node for workflow orchestration.

• Worker Environment (worker_environment.yml):
Defines minimal, task-specific dependencies for worker
nodes. If omitted, workers default to the manager’s
environment. This separation enables efficient resource
utilization, as demonstrated in the matrix multiplication
example (Figure 3), where workers only need numpy
rather than the manager’s full environment.

• Custom Installation Scripts: Optional bash scripts for
software that cannot be installed through standard pack-
age managers, such as custom-compiled binaries or spe-
cialized libraries.

C. Data Specification

The data component (data.yml) defines how datasets
should be retrieved, stored, and verified, ensuring proactive
data management. Each data entry specifies:

• Name: Descriptive identifier (e.g., training_set)
• Source: URL or filesystem path with retrieval method
• Target Location: Destination within the execution envi-

ronment
• Checksum: MD5 hash for integrity verification
• Post-Fetch Operations: Additional processing (e.g., de-

compression)
This specification can reference large repositories such as

OSDF [12] or XRootD [13]. It helps prevent failures where
missing data stalls workflows by recording identifiers and ac-
cess methods so workers can retrieve data without duplication.

D. Resource Requirements

The resource specification (resource.yml) provides a
blueprint for resources needed for successful execution:

• Worker Count and Type: Number of parallel workers
(e.g., TaskVine, Dask)



Fig. 5: End-to-End Process for Capturing Notebook Dependencies in Floability
The figure illustrates how Floability captures software and data dependencies from a notebook. It uses system call tracing to

extract manager and worker software packages, which are then validated to produce an environment file with precise
versions. Data dependencies are extracted from the logs and presented for manual verification.

• Worker Specifications: CPUs, memory, and disk space
per worker

• Access Credentials: SSH keys or authentication tokens
for resource access

As illustrated in Figure 4, the backpack abstraction trans-
forms the incomplete notebook workflow shown in Figure 1
into a complete, portable package that can execute consistently
across different HPC clusters with minimal user intervention.

IV. GENERATING BACKPACK DEPENDENCIES

A Floability backpack comprises code, data, workflow, and
compute requirements, all of which may already exist in
the user’s environment alongside the notebook. This section
explains how we can automate software and data dependency
extraction. Figure 5 shows the end-to-end process.

A. Generating Software Dependencies

Generating notebook execution log: We generate provenance
logs for notebook and worker processes using strace [14],
which records every system call—including all files accessed
during execution. Separate logs are collected for the manager
and each worker. By tracing the entire workflow execution, we
capture all libraries, binaries, and data files referenced during
execution.

Extracting software dependencies: Whenever the notebook
imports a Python package, the log records the full path of the
accessed files. We parse this log to extract the package set,
capturing each name for validation in the next step.

Validating Software Details: Once dependencies are identi-
fied, Floability validates them to create a precise, reproducible
environment specification. It detects the environment type
(e.g., Conda or virtualenv) using markers like sys.prefix
and CONDA_PREFIX. Active environments are queried with
conda list or pip list to retrieve accurate package
versions. System call logs are filtered and cross-referenced
with installed packages, retaining only valid, installable ones.
Conda and pip packages are separated, with channel info
recorded as needed.

This process outputs two complete environment.yml
files—one for the manager and one for the workers—listing
the Python version, required packages, and channels. Unlike
pip freeze or conda env export, which dump every
installed package, Floability’s audit records only packages
actually used during execution.

B. Generating Data Dependencies

To generate data dependencies of a notebook program, we
modify Python’s open function to log all data files accessed
during execution. These include files used by both manager
and workers, distinguished by comparing their paths with
execution logs from strace. The logged list may also con-
tain configuration or settings files from certain packages and
libraries, which are removed through post-processing based on
path analysis. For example, files in proc, sys, or site-packages
are non-data files and excluded. This does not produce a
complete list of data dependencies—remote files accessed via
protocols such as HTTP or XRootD are not captured—and
instead provides a starting point for the user to complete
manually.

C. Generating Dependencies at Cell Level

To provide fine-grained reproducibility and environment
capture, we also generate software and data dependencies at
the level of individual notebook cells. This is achieved by
registering and invoking functions which are triggered before
and after the execution of every cell. Through these trigger
functions, we write special instructions to the execution log
which mark the beginning and end of the cell execution.

By analyzing intervals between these markers in the prove-
nance logs, we identify which files and Python packages
are accessed by each cell. The resulting dependency data is
compiled into a YAML specification for selective re-execution,
debugging, or modular environment provisioning. Figure 5
shows this format on the right.

Another approach is to create a specialized kernel that per-
forms static analysis of each cell’s code. This has limitations:
in distributed workflows, manager and worker code cannot



batch system

batch job

Workflow Resource SpecsSoftware Specs

worker software env

vine_worker

Data Specs

copy

Workflow

manager software env

floability

1.Deploy
Backpack

fetch

data

$$$

install

manager
tarball

worker
tarball

$$$

notebook kernel

vine_manager
data connect2.Interactive

Access

provision

vine_factory

dynamically
submit
workers

floability instance

Fig. 6: Floability Architecture
Floability architecture consists of a manager process running

on the head node and multiple worker processes running on
compute nodes. The vine_factory, vine_worker, and
vine_manager components are inherited from TaskVine.
The factory process is responsible for launching and dynami-
cally scaling workers in the cluster.

be distinguished by code analysis, and specialized kernels
restrict users from running customized kernels. Similarly, data
dependencies can be inferred by analyzing notebook execution
logs with heuristics to separate data from code/configuration
files. However, this is error-prone and less accurate than our
approach, which dynamically modifies the behavior of the
open function call.

V. DISTRIBUTED DEPLOYMENT WITH FLOABILITY

Floability implements the backpack specification and auto-
mates the execution of notebook-based scientific workflows
on high-performance computing (HPC) clusters. It launches
a Jupyter server on the cluster head node and dynamically
spawns workers on compute nodes. Floability handles environ-
ment setup, resource allocation, and workflow orchestration,
allowing users to focus on science rather than infrastructure.
By leveraging standardized backpacks, Floability ensures that
workflows remain portable, reproducible, and scalable across
diverse HPC sites.

A. Architecture and Workflow

As shown in Figure 6, Floability uses a distributed archi-
tecture to execute notebook workflows on HPC clusters. It
consumes a backpack and creates a Floability instance, which
includes a manager process, a factory process, multiple worker
processes, a Jupyter notebook server, and a lifecycle process.
It first fetches the data specified in the backpack’s data specifi-
cation. If any required file is missing or its checksum fails ver-
ification, floability verify aborts the run immediately
and prints a concise remediation message, preventing wasted
cluster time. Then, it creates a Conda environment using
the backpack’s software specification. Based on the resource
specification, the factory process launches the workers in the
given runtime environment.

The manager coordinates workflow execution, while the
factory manages the worker lifecycle. The workers execute the
tasks defined in the notebook, and their results are sent back
to the manager for aggregation and final output. The lifecycle
process monitors execution and cleans up resources once the
workflow completes.

B. Underlying Infrastructure: TaskVine Integration

Floability is built on top of TaskVine, a distributed execution
engine designed to coordinate large-scale, dynamic workloads
across clusters. TaskVine provides the core infrastructure
for managing remote task execution, enabling Floability to
decouple workflow logic from the complexities of resource
management and distribution.

A key component is vine_factory, which launches and
manages worker processes on clusters. By default, it provi-
sions standard Vine workers that connect back to a TaskVine
manager in the notebook kernel, but it can also launch arbitrary
worker processes, supporting heterogeneous workloads.

While Floability uses TaskVine as a reference backend,
the core concept is a general manager-and-worker model for
distributed execution. In this architecture, tasks are submitted
directly from the notebook, with the manager process residing
inside the notebook kernel and worker processes running on
distributed nodes. This approach is agnostic to the underlying
execution engine and can be extended to support a variety of
distributed frameworks beyond TaskVine, providing flexibility
while maintaining a consistent, portable workflow interface.

C. Floability CLI

Floability provides a command-line interface (CLI) for
managing the full lifecycle of distributed notebook workflows,
including packaging, auditing, data fetching, and execution.

Floability offers two execution modes. floability run
starts a live Jupyter session for interactive, exploratory work.
floability execute runs the notebook headlessly in
batch mode, then returns the fully populated .ipynb. This
lets users automate a workflow while still benefiting from the
notebook’s rich, shareable output.

Other key subcommands include:
• floability audit — audits notebook and worker

execution locally to generate software and data specifica-
tions for the backpack

• floability fetch — retrieves input data as speci-
fied

• floability verify — checks the completeness and
validity of a backpack

These CLI tools enable seamless transition from interac-
tive development to reproducible, distributed execution across
heterogeneous environments.

VI. EVALUATION AND USE CASES

We evaluate Floability by applying it to real-world sci-
entific workflows that were originally developed on local
workstations but intended for large-scale HPC clusters. Our



goal is to assess Floability’s ability to provide portability,
reproducibility, and ease of execution across heterogeneous
computing environments and workflow systems.

We selected three representative applications from different
scientific domains. These applications are available in the
Floability Examples repository [15]. The workflows are:

1) Distributed Image Convolution (DConv): An image
processing pipeline that performs tiled filtering using the
im2col + GEMM approach. Implemented with native
TaskVine.

2) Climate Trend Analysis (CTrend): A climate science
workflow that analyzes long-term temperature trends us-
ing NOAA Global Summary of the Month data with Parsl
and TaskVine.

3) CMS DV5 Analysis (DV5): A high-energy physics anal-
ysis pipeline that processes collider data using Dask and
the Coffea framework.

Each application differs in its task count, dataset size,
software stack, and resource needs. Table II summarizes these
static workload properties, including environment sizes and
worker provisioning configurations. To reduce setup time and
enable rapid experimentation, we use lightweight datasets
and simplified configurations suitable for proof-of-concept
deployment. This lets us focus on Floability’s core capabili-
ties: automatic environment capture, cross-site portability, and
reproducible execution—rather than raw performance bench-
marking.

We begin by auditing each application on a local machine to
capture software and data dependencies. These backpacks are
then manually refined with domain-specific adjustments before
being executed on three different HPC clusters. The following
sections present our evaluation in three parts: (1) local audit,
(2) cross-site deployment, and (3) qualitative observations.

A. Auditing on Local Run

To generate backpack dependencies, we ran each workflow
locally using a reduced number of tasks and a single local
worker. The notebook code was executed with both the man-
ager and worker processes running on the same machine and
audited using strace, as described in Section IV. Table I reports
the average of three runs per application, comparing plain
notebook execution, execution while generating the backpack,
and execution under an interactive application-virtualization
(AV) method like FLINC [16] which runs the notebooks
and audits its execution into a container-like package. The
results demonstrate that time taken to generate the backpack
by auditing the notebook execution is comparable to the
interactive AV method. The slight overhead is attributed to
the code executed to extract software and data dependencies
from execution logs.

B. Running on HPC Clusters

After auditing and refining the application backpacks lo-
cally, we deployed each workflow to five HPC clusters—Notre
Dame CRC (HTCondor) [17], Purdue Anvil (Slurm) [18], UT

TABLE I: Execution time (seconds) for plain notebook ex-
ecution (NB Only), interactive application virtualization (Int.
AV), and backpack generation (Backpack Gen.). Final columns
show captured dependencies.

App. NB
Only

Int.
AV

Backpack
Gen.

# Mgr.
Deps.

# Wkr.
Deps.

DV5 19.59 22.45 23.31 77 61
DConv 183.58 183.13 212.61 93 4
CTrend 29.00 38.72 43.32 88 54

Stampede3 (Slurm) [19], and OSG [20] OSPool (HTCondor)
[21] — as well as an AWS cluster (Slurm), without altering
their backpack specifications. This cross-site evaluation tests
Floability’s ability to execute complex workflows portably
under different resource managers and system policies.

Table III presents the runtime decomposition for each appli-
cation, showing the cost of environment setup and notebook
execution on each site. “First” runs include the one-time
cost of building manager and worker environments, whereas
“Repeat” runs reuse those cached environments.

Each application was executed using the floability
execute command without modifying the backpack content
across sites. While the runtimes varied between clusters due
to infrastructure differences, all workflows completed success-
fully using the same specifications.

TABLE II: Static Properties of Applications Used in Cross-
Site Evaluation (sizes in MB).

App. Backpack
Size #Tasks Mgr.

Env Size
Wkr.

Env Size #Wkr

DConv 2.7 1024 564 82 5–10
CTrend 30 335 631 150 5–10
DV5 2.1 16 610 566 2–5

C. Qualitative Observations

During deployment across four HPC systems, we observed
several site-specific differences that highlight both the chal-
lenges of cross-site portability and Floability’s flexibility in
addressing them.

Site-Specific Configurations: Different sites required vary-
ing batch job configurations. Stampede3 required explicit
queue names and time limits in job submissions, while other
sites had different defaults. OSPool differed more signifi-
cantly, as we needed special permission from the OSPool
administrators to open sockets on the access point node for
manager–worker communication. Floability accommodated
these variations through flexible command-line arguments and
resource specifications. In addition, some clusters—such as
Purdue Anvil—had limited access to /tmp, requiring us to
redirect the scratch directory to a shared filesystem path, which
can be configured through a Floability command-line option.

Storage System Variations: We observed significant per-
formance differences based on storage architectures, partic-



TABLE III: Decomposition of application runtimes (seconds) across five HPC systems. “First” runs include cold-start overheads
for environment build + data fetch, while “Repeat” runs reuse cached artifacts. Values are reported as mean ± SD over three
executions of each run type.

Metric ND
CRC

Purdue
Anvil

UT
Stampede3

AWS
Cluster OSPool

First Run (cold start)

DConv

Total Runtime 292± 5 744± 54 684± 11 216± 33 897± 37
Env Creation (M+W) 132± 1 516± 37 307± 16 107± 7 71± 6
Env Extraction 26± 1 36± 3 116± 3 26± 1 319± 23
Notebook Execution 116± 9 174± 13 229± 15 66± 20 496± 33

CTrend

Total Runtime 265± 2 1052± 53 405± 9 302± 35 1185±203
Env Creation (M+W) 159± 16 763± 38 217± 15 133± 8 85± 13
Env Extraction 30± 1 44± 2 97± 8 30± 1 352± 13
Notebook Execution 57± 2 225± 11 75± 5 127± 37 694±213

DV5

Total Runtime 370± 6 1212± 15 827± 9 500± 5 455± 41
Env Creation (M+W) 303± 3 973± 15 598± 25 242± 6 165± 11
Env Extraction 28± 4 43± 2 105± 13 29± 1 72± 10
Notebook Execution 25± 1 172± 2 103± 4 215± 4 205± 19

Repeat Run (cached software environment and data)

DConv

Total Runtime 136± 21 255± 27 330± 12 88± 6 791± 35
Env Creation (M+W) 0 0 0 0 0
Env Extraction 29± 5 39± 1 116± 6 26± 1 303± 31
Notebook Execution 98± 20 198± 26 171± 6 51± 6 476± 5

CTrend

Total Runtime 107± 3 304± 26 201± 6 216± 10 1146±333
Env Creation (M+W) 0 0 0 0 0
Env Extraction 29± 1 44± 1 90± 4 32± 3 335± 19
Notebook Execution 64± 4 240± 27 101± 13 172± 12 694±345

DV5

Total Runtime 70± 2 281± 16 218± 6 89± 5 354± 53
Env Creation (M+W) 0 0 0 0 0
Env Extraction 29± 2 44± 2 83± 2 37± 6 69± 15
Notebook Execution 28± 1 217± 18 115± 9 40± 8 273± 58

ularly during conda environment creation. At Notre Dame
CRC, we utilized local storage on the login node for environ-
ment creation, resulting in substantially faster setup times. In
contrast, Purdue Anvil required the use of shared filesystems
for all operations, leading to the longest environment creation
times across all sites. Stampede3 allowed local environment
creation but required extraction to shared storage for worker
access,causing higher extraction times. These differences un-
derscore the value of understanding site-specific storage and
leveraging hybrid local/shared setups when possible.

Data Availability: In our evaluation, all workflows either
downloaded data from the internet or included small datasets
directly in the backpack. However, for production workflows
with large datasets, downloading data from the archival loca-
tion is inefficient and often impractical. Real-world deploy-
ments would typically access data through shared storage
systems like the Open Science Data Federation (OSDF) [12],
[22] or require data to be pre-staged on the cluster’s shared
filesystem. Regardless of the source—backpack, shared stor-
age, or remote URL—Floability verifies that all required data
are present and correctly staged before execution begins.

Performance Considerations: The runtime variations and
standard deviations in Table III reflect infrastructure differ-

ences rather than Floability overhead. ND CRC had the lowest
variability, indicating predictable performance, while OSPool
showed the highest due to its opportunistic resource model
and lack of a shared file system, with workers retrieving
data directly from remote sources. AWS was consistently
stable with competitive setup times, whereas Purdue Anvil
and Stampede3 showed moderate variation, likely from later
ACCESS allocations. Across sites, queue policies, network
configurations, and storage systems differed. Despite these
differences, all workflows ran successfully using identical
backpack specifications, with only minor command-line ad-
justments, demonstrating Floability’s portability while allow-
ing site-specific adaptations.

VII. RELATED WORK

Research on notebook-based distributed workflows spans
workflow portability, reproducibility, dependency tracking, and
distributed execution. We examine existing approaches and
identify gaps our backpack abstraction addresses.

Containerization and Environment Management: Con-
tainer technologies provide different levels of isolation and
portability. Full container solutions like Singularity/Apptainer
[23] and Charliecloud [24] package entire operating systems,



achieving HPC portability with near bare-metal performance
[25]. HPCCM-based approaches [26] and scalability studies
[27] demonstrate container viability for HPC but focus on
traditional applications. At the other end of the spectrum,
environment-only tools like Conda-pack [28] and Poncho [11]
create lightweight, relocatable environments without full OS
isolation. Poetry [29] and Pipenv provide deterministic builds
through lock files, while Spack [30] and EasyBuild [31]
offer HPC-specific package management but require explicit
build recipes. Our backpack approach occupies a middle
ground—more comprehensive than environment definitions
yet lighter than full containers.

Workflow Systems and Distributed Execution: Tradi-
tional workflow systems like Pegasus [2], Nextflow [3], Make-
flow [32], and TaskVine [4] provide robust fault-tolerant
execution across clusters but require expressing workflows in
domain-specific languages. CWL [33] standardizes workflow
descriptions for portability but loses notebook interactivity.
From within notebooks, Dask [5] and Parsl [6] enable parallel
execution through explicit API usage, requiring code modi-
fications. Papermill [34] and nbconvert execute notebooks as
monolithic units without distributed task support.

Notebook Reproducibility and Provenance: Several tools
capture execution dependencies to enable reproducibility. Re-
proZip [35], noWorkflow [36], [37], FLINC [16], and Sciunit
[38], [39] use system call tracing, AST analysis, and profiling
to capture environments and provenance. While these tools
excel at tracking execution and dependent files, they focus
on provenance rather than distributed execution. Floability
extends dependency tracking through floability audit,
which uniquely separates manager and worker dependencies.
Binder [40] and Repo2Docker [41] create shareable environ-
ments but do not address distributed workflow execution or
the separation of manager and worker dependencies required
for HPC deployment.

Our Contributions: The backpack abstraction bridges the
gap between heavyweight containers and lightweight envi-
ronment definitions. By automatically extracting dependencies
with manager/worker separation, we create optimized, portable
notebook workflows without code modification. This approach
combines the benefits of containerization (isolation, repro-
ducibility) with the efficiency of targeted dependency man-
agement, enabling seamless notebook execution from laptops
to HPC clusters while preserving the interactive development
paradigm.

VIII. DISCUSSION AND FUTURE WORK

In our evaluation, backpacks successfully captured and
reproduced notebook workflows across heterogeneous HPC
environments, demonstrating portability without code mod-
ification. However, several important challenges remain for
achieving complete computational reproducibility.

Data Reproducibility and Privacy: While backpacks en-
able workflow portability, true reproducibility requires iden-
tical datasets. For large datasets, sharing is often infeasible

due to size, ownership, or privacy constraints. Future work
could explore sealed computations—where backpacks execute
analyses on protected datasets without exposing raw data,
requiring integration with secure computing frameworks.

Dynamic Resource Adaptation: Our current implementa-
tion requires manual resource specification. Since Floability
already traces dependencies, extending this to automatically
profile resource usage (CPU, memory, I/O) would enable in-
telligent resource allocation based on workflow characteristics
and historical data.

Automated Concurrency Detection: Notebooks often con-
tain implicit parallelism—cells that could execute concurrently
but are serialized by the linear execution model. Developing
analysis techniques to automatically identify independent cells
and transform them into distributed tasks would improve
performance without user intervention.

Enhanced Tooling: Floability could benefit from real-time
monitoring dashboards within Jupyter, intelligent data staging
that automatically selects between local caching and data
federation services, and native support for multiple execution
frameworks beyond TaskVine.

IX. CONCLUSION

We introduced the concept of backpacks for notebooks—a
structured and portable specification that captures all de-
pendencies for executing notebook workflows across dis-
tributed systems. By explicitly defining software environments,
data, and resource requirements, backpacks enable scalable,
portable, and reproducible notebook execution beyond a single
machine.

Our implementation, Floability, demonstrates that notebook
workflows can achieve portability and reproducibility across
heterogeneous HPC environments without code modification.
Evaluation on real scientific applications across four HPC
systems showed that backpacks successfully abstract infras-
tructure differences while maintaining execution consistency.

The backpack abstraction represents a significant step to-
ward making notebooks first-class citizens in HPC environ-
ments. By decoupling the interactive development experience
from the complexities of distributed execution, we enable
scientists to focus on their research while ensuring their
computational methods remain portable, reproducible, and
scalable.

AVAILABILITY

Floability is open-source software, available at
https://floability.github.io. The example backpacks used
in our evaluation are hosted at https://github.com/floability/
floability-examples.

ACKNOWLEDGMENT

We thank Ben Tovar (Research Software Engineer, Univer-
sity of Notre Dame) for his help with the Floability conda
release and for providing the DV5 application.

https://floability.github.io
https://github.com/floability/floability-examples
https://github.com/floability/floability-examples


REFERENCES

[1] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay et al., “Jupyter
notebooks–a publishing format for reproducible computational work-
flows,” in Positioning and power in academic publishing: Players, agents
and agendas. IOS press, 2016, pp. 87–90.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[3] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, pp. 316–319, 2017.

[4] R. F. da Silva, G. Juve, E. Deelman, T. Glatard, F. Desprez, D. Thain,
B. Tovar, and M. Livny, “Toward Fine Grained Online Task Chracter-
istics Estimation in Scientific Workflows,” in Workshop on Workflows
in Support of Large Scale Science (WORKS), 2013, pp. 58–67, doi:
10.1145/2534248.2534254.

[5] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in SciPy, 2015.

[6] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster et al., “Parsl: Per-
vasive parallel programming in python,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 25–36.

[7] A. Rule, A. Birmingham, C. Zuniga, I. Altintas, S.-C. Huang, R. Knight,
N. Moshiri, M. H. Nguyen, S. B. Rosenthal, F. Pérez et al., “Ten
simple rules for writing and sharing computational analyses in jupyter
notebooks,” p. e1007007, 2019.

[8] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-
scale study about quality and reproducibility of jupyter notebooks,”
in 2019 IEEE/ACM 16th international conference on mining software
repositories (MSR). IEEE, 2019, pp. 507–517.

[9] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik,
“What’s wrong with computational notebooks? pain points, needs, and
design opportunities,” in Proceedings of the 2020 CHI conference on
human factors in computing systems, 2020, pp. 1–12.

[10] R. Ahmad, N. N. Manne, and T. Malik, “Reproducible notebook con-
tainers using application virtualization,” in 2022 IEEE 18th International
Conference on e-Science (e-Science). IEEE, 2022, pp. 1–10.

[11] B. Sly-Delgado, N. Locascio, D. Simonetti, B. Wiseman, B. Tovar, and
D. Thain, “PONCHO: Dynamic Package Synthesis for Distributed and
Serverless Python Applications,” in Workshop on High Performance
Serverless Computing, 2022, doi: 10.1145/3526060.3535459.

[12] OSG, “Open science data federation,” 2015, https://doi.org/10.21231/
0KVZ-VE57.

[13] A. Hanushevsky, A. Dorigo et al., “Xrootd: Scalable architecture for
data access,” 2025, https://xrootd.slac.stanford.edu/.

[14] strace developers, “strace: Diagnostic, debugging and instructional
userspace tracer for linux,” https://strace.io, version 6.7, Accessed: 2024-
05-25.

[15] Floability Team, “Floability examples,” https://github.com/floability/
floability-examples, 2025, accessed: 2025-05-26.

[16] “FLINC,” 2022, [Online; accessed 19-May-2025]. [Online]. Available:
https://github.com/depaul-dice/Flinc

[17] U. of Notre Dame Center for Research Computing, “Center for research
computing,” https://crc.nd.edu, accessed: 2025-05-26.

[18] X. C. Song, P. Smith, R. Kalyanam, X. Zhu, E. Adams, K. Colby,
P. Finnegan, E. Gough, E. Hillery, R. Irvine et al., “Anvil-system ar-
chitecture and experiences from deployment and early user operations,”
pp. 1–9, 2022.

[19] T. A. C. Center, “Stampede3 supercomputer at tacc,” https://www.tacc.
utexas.edu/systems/stampede3, accessed: 2025-05-26.

[20] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner,
M. Wilde, A. Blatecky, J. McGee, and R. Quick, “The open science
grid,” Journal of Physics: Conference Series, vol. 78, p. 012057, 2007.

[21] OSG, “Ospool,” 2006, https://doi.org/10.21231/906P-4D78.
[22] Pelican Platform, “Pelicanfs: An fsspec implementation that integrates

with the pelican platform,” https://github.com/PelicanPlatform/pelicanfs,
accessed: 2025-05-26.

[23] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5, p.
e0177459, 2017.

[24] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for user-defined software stacks in hpc,” in Proceedings of the interna-
tional conference for high performance computing, networking, storage
and analysis, 2017, pp. 1–10.

[25] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, “A tale of two
systems: Using containers to deploy hpc applications on supercomputers
and clouds,” in 2017 IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom). IEEE, 2017, pp. 74–81.

[26] S. Hoque, M. S. De Brito, A. Willner, O. Keil, and T. Magedanz,
“Towards container orchestration in fog computing infrastructures,” in
2017 IEEE 41st Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2. IEEE, 2017, pp. 294–299.

[27] S. Abdulah, J. Ejarque, O. Marzouk, H. Ltaief, Y. Sun, M. G. Genton,
R. M. Badia, and D. E. Keyes, “Portability and scalability evaluation
of large-scale statistical modeling and prediction software through hpc-
ready containers,” Future Generation Computer Systems, vol. 161, pp.
248–258, 2024.

[28] Anaconda, Inc., “conda-pack: Package conda environments for redistri-
bution,” 2018, [Online]. Available: https://conda.github.io/conda-pack/.
[Online]. Available: https://conda.github.io/conda-pack/

[29] S. Eustace, “Poetry: Python packaging and dependency management
made easy,” 2018, [Online]. Available: https://python-poetry.org/.
[Online]. Available: https://python-poetry.org/

[30] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
De Supinski, and S. Futral, “The spack package manager: bringing order
to hpc software chaos,” in Proceedings of the international conference
for high performance computing, networking, storage and analysis,
2015, pp. 1–12.

[31] M. Geimer, K. Hoste, and R. McLay, “Modern scientific software
management using easybuild and lmod,” in 2014 First International
Workshop on HPC User Support Tools. IEEE, 2014, pp. 41–51.

[32] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A
Portable Abstraction for Data Intensive Computing on Clusters,
Clouds, and Grids,” in Workshop on Scalable Workflow Enactment
Engines and Technologies (SWEET) at ACM SIGMOD, 2012, doi:
10.1145/2443416.2443417.

[33] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić,
H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble et al., “Methods
included: standardizing computational reuse and portability with the
common workflow language,” Communications of the ACM, vol. 65,
no. 6, pp. 54–63, 2022.

[34] nteract contributors, “Papermill: Parameterize and execute jupyter note-
books,” 2018, [Online]. Available: https://github.com/nteract/papermill.
[Online]. Available: https://github.com/nteract/papermill

[35] F. Chirigati, R. Rampin, D. Shasha, and J. Freire, “Reprozip: Compu-
tational reproducibility with ease,” in Proceedings of the 2016 interna-
tional conference on management of data, 2016, pp. 2085–2088.

[36] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire, “nowork-
flow: capturing and analyzing provenance of scripts,” in Provenance
and Annotation of Data and Processes: 5th International Provenance
and Annotation Workshop, IPAW 2014, Cologne, Germany, June 9-13,
2014. Revised Selected Papers 5. Springer, 2015, pp. 71–83.

[37] J. F. N. Pimentel, V. Braganholo, L. Murta, and J. Freire, “Collecting and
analyzing provenance on interactive notebooks: When {IPython} meets
{noWorkflow},” in 7th USENIX workshop on the theory and practice
of provenance (TaPP 15), 2015.

[38] D. H. Ton That, G. Fils, Z. Yuan, and T. Malik, “Sciunits: Reusable
research objects,” in IEEE eScience, Auckland, New Zealand, 2017.

[39] T. Malik and et. al., “Sciunit,” https://sciunit.run/, 2017, [Online; ac-
cessed 20-July-2021].

[40] B. Ragan-Kelley, C. Willing, F. Akici, D. Lippa, D. Niederhut, and
M. Pacer, “Binder 2.0-reproducible, interactive, sharable environments
for science at scale,” in Proceedings of the 17th python in science
conference. F. Akici, D. Lippa, D. Niederhut, and M. Pacer, eds.,
2018, pp. 113–120.

[41] Project Jupyter, “jupyter/repo2docker: Turn repositories into jupyter-
enabled docker images,” 2017, [Online]. Available: https://github.com/
jupyter/repo2docker. [Online]. Available: https://github.com/jupyter/
repo2docker

https://doi.org/10.21231/0KVZ-VE57
https://doi.org/10.21231/0KVZ-VE57
https://xrootd.slac.stanford.edu/
https://strace.io
https://github.com/floability/floability-examples
https://github.com/floability/floability-examples
https://github.com/depaul-dice/Flinc
https://crc.nd.edu
https://www.tacc.utexas.edu/systems/stampede3
https://www.tacc.utexas.edu/systems/stampede3
https://doi.org/10.21231/906P-4D78
https://github.com/PelicanPlatform/pelicanfs
https://conda.github.io/conda-pack/
https://conda.github.io/conda-pack/
https://python-poetry.org/
https://python-poetry.org/
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://sciunit.run/
https://github.com/jupyter/repo2docker
https://github.com/jupyter/repo2docker
https://github.com/jupyter/repo2docker
https://github.com/jupyter/repo2docker

	Introduction
	Reproducibility Challenges in Distributed Notebook Workflows
	Backpacks
	Workflow Specification
	Software Dependencies
	Data Specification
	Resource Requirements

	Generating Backpack Dependencies
	Generating Software Dependencies
	Generating Data Dependencies
	Generating Dependencies at Cell Level

	Distributed Deployment with Floability
	Architecture and Workflow
	Underlying Infrastructure: TaskVine Integration
	Floability CLI

	Evaluation and Use Cases
	Auditing on Local Run
	Running on HPC Clusters
	Qualitative Observations

	Related Work
	Discussion and Future Work
	Conclusion
	References

