
Folding Proteins at 500 ns/hour
with Work Queue

Badi’ Abdul-Wahid⇤‡§, Li Yu⇤‡, Dinesh Rajan⇤‡,
Haoyun Feng⇤‡§, Eric Darve†¶k, Douglas Thain⇤‡, Jesús A. Izaguirre⇤‡§

⇤University of Notre Dame, Notre Dame, IN 46656
†Stanford University, 450 Serra Mall, Stanford, CA 94305

‡Department of Computer Science & Engineering
§Interdisciplinary Center for Network Science and Applications

¶Department of Mechanical Engineering
kInstitute for Computational and Mathematical Engineering

Abstract—Molecular modeling is a field that traditionally
has large computational costs. Until recently, most simula-
tion techniques relied on long trajectories, which inherently
have poor scalability. A new class of methods is proposed
that requires only a large number of short calculations,
and for which minimal communication between computer
nodes is required. We considered one of the more accurate
variants called Accelerated Weighted Ensemble Dynamics
(AWE) and for which distributed computing can be made
efficient. We implemented AWE using the Work Queue
framework for task management and applied it to an all
atom protein model (Fip35 WW domain). We can run
with excellent scalability by simultaneously utilizing het-
erogeneous resources from multiple computing platforms
such as clouds (Amazon EC2, Microsoft Azure), dedi-
cated clusters, grids, on multiple architectures (CPU/GPU,
32/64bit), and in a dynamic environment in which processes
are regularly added or removed from the pool. This has
allowed us to achieve an aggregate sampling rate of over
500 ns/hour. As a comparison, a single process typically
achieves 0.1 ns/hour.

I. INTRODUCTION

A significant challenge in the field of molecular dy-
namics is that of time scales. Many biomolecular pro-
cesses, such as folding, occur in the millisecond to sec-
ond timescales. However, traditional molecular dynamics
is limited to timesteps of 2 to 3 femtoseconds. While
direct sampling using trajectories (possibly computed in
parallel) has proven successful in understanding small
biological systems, the cost in terms of computational
time and data size is high. This is due in part to the
unbiased nature of these simulations: the low-energy
regions of the free-energy landscape are oversampled
while the (arguably more interesting) high-energy tran-
sition regions are rarely observed.

Recently, guided sampling techniques have been de-
veloped to enhance sampling of low-probability (but
critical) regions of the energy landscape, while providing
unbiased or “exact” statistics. One such technique is the
Accelerated Weighted Ensemble (AWE), which can be
used to predict both thermodynamic and kinetic proper-
ties [1]–[3]. This method partitions the conformational
space of the protein into macro-cells, that can be mapped
along the main transition pathways. An algorithm, used
to enhanced the sampling efficiency, is used to enforce
a fixed number of parallel “walkers” in each cell. By
assigning a probabilistic weight to each walker, one can
extract unbiased statistics from this technique.

Traditional molecular dynamics are usually run on
dedicated parallel machines with a high-performance
network and extensive software optimizations (see for
example Anton [4], Desmond [5], NAMD, Gromacs,
and LAMMPS). While powerful, such machines are
expensive, limited in availability, and typically scheduled
in a way that discourages long-running programs. In
contrast AWE is designed to be able to run on a large
collection of processes connected only through a high-
latency low-bandwith network.

In this paper, we demonstrate how we can harness
heterogeneous computing resources such as computer
clusters, clouds, and grids consisting of thousands of
CPUs and GPUs. The requirements of our parallel soft-
ware framework is that it can:

1) Concurrently use heterogeneous resources
2) Use resources as they become available and while

the simulation is on-going
3) Release resources that are not used so that they are

available to other projects



4) Scale to a large number of processes
5) Minimize communication time and idle processes
We therefore consider that the computing resource is

not static, but rather evolves dynamically with compute
nodes being added and dropped as required. Such a
parallel framework was implemented for this paper using
Work Queue [6].

We applied AWE to the Fip35 WW domain, which is
composed of 545 atoms. To our knowledge, this is the
first application of AWE to simulating protein folding
for an all-atom description of the protein. We achieve
excellent scalability, averaging an aggregate sampling
rate of 500 ns/hour, with peak throughput at 1 µs/hour.
Additionally, we are able to use many different re-
sources representing multiple computing environments to
achieve this. They include GPU and CPU clusters, cycle-
scavenge nodes using Condor, dedicated machines, and
cloud-computing platforms, namely Amazon EC2 and
Windows Azure. Note that all the resources are used
concurrently and are able to accumulate the statistics
required by AWE. Finally, we show that resources are
dynamically allocated as the applications enter different
stages, and that the application framework is robust to
failure.

The remainder of the paper is organized as follows.
Sections II and III describe the AWE algorithm and
Work Queue framework. Section IV discusses the scal-
ing issues, challenges, and results. Section V provides
results of the Alanine Dipeptide validation of AWE and
application to Fip35 WW domain.

II. ACCELERATED WEIGHTED ENSEMBLE

We briefly present the AWE algorithm. Direct molec-
ular dynamics calculations of rates (the focus of this
work) and free energy for large proteins (or other types
of biomolecules) is made challenging by the presence
of large meta-stable basins (minima of the free energy)
that can trap the system for extended periods of time.
Although many methods exist to calculate free energy,
fewer are available to calculate rates. Most approaches
rely on the existence of a single saddle point or transition
point (the point of highest energy along a minimum free
energy pathway) that determines the rate of transition
between the reactant states and product states. This may
correspond, for example, to protein folding or a change
in the conformation of the protein (i.e., from inactive
to active state). Those methods are typically not very
accurate when multiple pathways exist, when the saddle
point does not sharply “peak,” and, in general, calcu-
lating such transition points is practically difficult. To
circumvent these issues, methods have been developed
to calculate rates in a more direct manner while avoiding

the fatal slow-down resulting from the existence of meta-
stable basins. These methods rely on a partitioning of
the conformational space of the protein into a large
number of macro-states or cells and a direct sampling
of transition statistics between cells. This is the case for
example with Markov State Models [7]–[9]. However, a
drawback of these methods is that their accuracy depends
on the Markovity of the system, which is in practice
seldom observed unless “optimal” cells are used [10].

In contrast, the AWE method is also based on sam-
pling macro-states but can be proven to always lead
to an exact rate (assuming an absence of statistical
errors from finite sampling) with no systematic bias. The
method is based on running a large number of walkers
or simulations in each cell. Walkers naturally tend to
move out of cells that have low probabilies and move
toward high-probability cells. As a result some cells get
depleted while others get overcrowded. To overcome
this and maintain the efficiency of the simulation, we
employ the following procedure. At regular intervals, we
stop the time integrator for all trajectories and consider
how many walkers each cell contains. Each walker i is
assigned a weight wi. When the number of walkers is
too low, walkers are duplicated and assigned reduced
statistical weights. Similarly when a cell contains too
many walkers, we randomly select a walker among a
set of walkers S using their probabilistic weights and
assign to it the sum of all weights in S. We proved that
this can be done in a statistically unbiased manner.
Readers interested in further details, including a python
code implementation, are referred to [3].

If this procedure is applied as described, upon reach-
ing steady-state the weights of walkers in each cell con-
verge to the probability of the cell so that this procedure
can be used to calculate the free energy. Because of the
resampling procedure (splitting and merging of walkers),
even low-probability cells can be sampled with great
accuracy.

However, to calculate rates, a further modification
must be made. The reactant states are defined using a
set A while set B is associated with product states.
Each walker is assigned a color, either blue for A or
red for B. At each step in the simulation whenever a
blue walker enters B, its color changes to red, and vice
versa. The rate from A to B is then directly obtained by
computing the flux of blue particles that change color,
and similarly for the B to A rate. This scheme can be
extended to multiple colors and sets, leading to not just
a forward and backward rates, but multiple kinetic rates
for the molecular system. From a simulation standpoint,
the method therefore requires the following sequence of

2



W W

W W W

W W W

W W W W W W

... W

...

...

... ...

Master 0

Pool
Worker

Master 1

HPC Cluster
Notre Dame

Condor Pool
Notre Dame

Amazon EC2 Azure
Microsoft

ICME Cluster
Stanford

Start/Stop
Workers

Capacity

Advertise
Capacity

Transfer Data
Run Tasks

Advertise

for Masters
Query

Catalog

Fig. 1. An overview of the Work Queue framework. Master programs
coordinate tasks and data on Workers running on multiple resources.
The Catalog tracks running masters and makes this information
available to Worker Pools, which maintain an appropriate number of
workers on each resource.

steps:
1) Run in parallel a large number of short trajecto-

ries. This represents the bulk of the computational
work.

2) Parallel barrier. Collect cells statistics and deter-
mine how walkers should be split and merged. This
step requires minimal exchange of data.

3) Go to step 1 for additional sampling if statistics
are insufficient.

III. THE WORK QUEUE PARALLEL FRAMEWORK

To implement a distributed version of AWE, we
used Work Queue [6], a framework for implementing
massively parallel data intensive applications. We briefly
introduce it, and then focus on the aspects necessary to
run AWE at massive scale.

The Work Queue (WQ) framework consists of a
master program that coordinates the overall computation
and multiple workers that carry out the individual tasks.
The master program is written using the WQ API (which
supports C, Python, and Perl) and is responsible for
defining new tasks and processing their output. Each
individual task consists of a standalone sub-program to
run, along with a definition of the necessary input and
output files for the task. The WQ library is responsible
for dispatching tasks to workers, moving input and
output files, and handling failures transparently.

To implement the AWE algorithm, the high-level
AWE logic is contained in a WQ master program written

in Python, while the individual tasks consist of stan-
dalone molecular dynamics (MD) simulations. These
MD codes are off-the-shelf codes that do not need
to be modified. For this paper, we used a code that has
the capability of running on multicore CPUs and GPUs.

To run a WQ program, the end user simply starts
the master program in a suitable location, then starts up
worker processes on whatever resources he or she has
available. Workers can be started by hand on individual
machines, or they can be started on distributed resources
such as clusters, clouds, and grids, including Condor
[11], SGE [12], Amazon EC2, and Windows Azure. As
the workers become available, the master will start to
transfer data and execute tasks.

For a small-scale application (100 workers or less),
the mechanism described so far is sufficient. However,
as we scale up to thousands of workers running millions
of tasks for multiple masters over long time scale, more
careful management is required. The following features
have been implemented:

Discovery. In the simplest case, one can direct work-
ers to contact a master at a given network address.
However, this requires one to reconfigure workers every
time a new master program is started, or if an existing
master must be moved. To address this, we provide
a Catalog Server to facilitiate discovery. WQ masters
periodically report their name, location, and resources
needs to the catalog server. Workers query the catalog
server for appropriate masters by name, and use that
information to connect. In this way, masters may be
started, stopped, and moved without reconfiguring all of
the workers.

Worker Management. Sustaining a large number
of workers on a given cluster, cloud, or grid requires
constant maintenance. For example, the submission itself
may take considerable time; the submissions might be
temporarily denied; the workers might be rescheduled or
terminated. On the other hand, if a master has run out
of tasks to execute, then it would be wasteful to reserve
workers that would sit idle.

To serve this need, we provide the Worker Pool tool,
which interfaces with multiple resource management
systems to maintain an appropriate number of workers
over an extended time period. The Worker Pool queries
the catalog for currently running masters, sums the
current need for workers and then interfaces with the
desired system to submit or remove workers as needed.
This is done with a degree of hysteresis to prevent
resonance, and within some hard limits set by the user
to avoid overloading the system.

Load Management. At very large scales, there is
always the danger of having too many workers for a

3



given master to handle. This could be due to a simple
logical mismatch: a master with 1,000 tasks simply does
not have enough tasks to keep 2,000 workers busy. Or it
could be due to a performance mismatch: a master with
10,000 tasks might not be able to keep 1,000 workers
busy if the IO-CPU ratio of the tasks is too high for the
underlying network to support.

To address this problem, the master explicitly tracks
its capacity to support workers. The logical capacity is
simply the number of tasks currently in the master’s
queue. The performance capacity is the number of
workers that can be kept busy when the network is
completely utilized. (This is computed by tracking the
CPU-IO ratio of recently executed tasks.) Both capacity
numbers are reported to the catalog, in order to inform
the Worker Pool how many workers are actually needed.

In addition, if the number of workers actually con-
nected to a master exceeds the logical or performance
capacity, the master releases the workers, so that they
may look for another master to serve.

IV. EXPERIENCE WITH AWE AND WORK QUEUE

We ran multiple AWE applications on the scale of
several thousand cores for several days at a time. In this
section, we will share some of experience in running
applications at large scale, demonstrating the fault toler-
ance, dynamic reconfiguration, and attainable throughput
of the system.

As an example, we share a timeline of three AWE
applications started at different points over a three day
period. All three masters report to the same catalog
server and share the available workers as their needs
change. Over the course of the three days, we ran
workers on a variety of computing resources available to
us, each with varying availability. Each of the following
resources was managed by a single Worker Pool:

Notre Dame HPC: A 6000-core HPC cluster shared
among many campus users, managed by the Sun Grid
Engine [12] batch system. Notre Dame Condor: A 1200
core campus-scale Condor pool [13] that harnesses idle
cycles from Notre Dame and also “flocks” with with
Condor pools at Purdue University and the University of
Wisconsin-Madison. Stanford ICME: A dedicated clus-
ter at Stanford University, consisting of about 200 CPUs
and 100 NVIDIA C2070 GPUs. Amazon EC2: Standard
virtual machines from the Amazon commercial cloud.
Microsoft Azure: Virtual machines obtained through the
Azure “worker role” running the Work Queue software
built via the Cygwin compatibility layer.

Fig. 2 shows a timeline of the run. Each of the three
graphs shows the number of workers connected to each
master. We began by starting Master 1, then starting the

Fig. 3. A snapshot of the number of workers busy with or ready to be
assigned a task over the course of one week. The periodicity is due to
stragglers that must be completed before the next iteration can begin.
The areas under the “busy” and “ready” curves reflect the useful and
wasted resource usage.

Worker Pool for ND-HPC and ND-Condor. Master 2 was
started at hour 12, and it began using workers that master
1 no longer required. About hour 15, the ICME Worker
Pool was launched, and assigned workers to Master 2,
which had a greater need than Master 1. Master 3 was
started at hour 17 and gained unused workers from the
other masters. About hour 45, we started the Worker Pool
for Amazon, which contributed to all three masters.

After running three masters for several days, we
removed Masters 2 and 3 and allowed Master 1 to
continue running for a week. Fig. 3 displays two of the
states that workers can be in when connected to a master.
A worker is in the “ready” state when it has successfully
connected to a master but has not yet been assigned a
task. The “busy” state indicates that a worker has been
given a task to complete. Over the course of the week we
can observe that the available workers fluctuates between
1700 and 2500. This is expected, since these experiments
overlapped with the peak usage times for SGE, ICME,
and Condor. We typically observed the highest number
of workers during the nights and weekends.

Fig. 4 displays the distribution of task execution
times we observed over the run, indicating the non-
uniform properties of the combined resources. While
there were very few GPU machines available, due to
their ability to execute the tasks rapidly they were able
to run a large portion of all the tasks. The ND-HPC,
Stanford-ICME CPU and Amazon EC2 workers have
similar performance. ND-Condor workers displayed a
wide distribution of execution times, while the Azure
workers were only able to return a very small percentage
of the results due to network constraints.

The following observations can be made:
Concurrency changes require worker balancing. As

can be seen in both Fig. 2 and 3, each of the applications

4



M1 starts M1 releases 
workers.

M0 releases 
workers.

M2 starts M2 acquires workers 
released by M0 and M1.

Fig. 2. A timeline of the number of workers working with three masters, showing the resources from which the workers came. Progression is
as follows: Master 0 (M0) is started and run alone for 11 hours. M1 is then started. Since M0 has entered the straggling phase, M1 begins to
pick up the workers that are released by M0. When M2 is started at hour 18, the pool allocates new workers and migrates workers from M0 and
M1 to M2. Hours 30, 38, and 55 show similar behavior: as one master enters a slow phase, others are able to use the available resources. The
masters report their resource needs and usage to the catalogue server. These data are then used by the pools to allocate and migrate workers. In
practice, this worker migration scheme is not completely visible in the plot due to several factors: the total number of workers is not constant
and the time to start workers can change due to environmental factors (such as job allocation policies, network issues, resource usage by other
users). Nevertheless, the utility of the pool is evident: once started, the pools managed the workers without any user intervention.

Fig. 4. Distribution of task execution times. The fastest tasks were
completed on the GPU while the middling times fell mainly to the grid
and EC2 machines. The machines available through Condor displayed
a wide range of performance, while the Windows Azure instances were
the least performant for our application.

expresses a very large concurrency initially, which then
drops down as the current iteration waits for stragglers to
complete. While there are techniques that can be used to
reduce stragglers, some level of variability is inevitable.

Thus, to maximize overall throughput, it is essential for
masters to release unused workers so that they can
be applied elsewhere.

Varying resource availability demands fault-tolerance.
Our framework demonstrated fault-tolerance with work-
ers becoming unavailable; this did not affect the correct-
ness of the overall calculation or significantly impact
performance.

Using whole programs as tasks has acceptable over-
head. Each instance of a “task” in WQ requires starting a
new instance of the molecular dynamics simulation. This
is potentially costly, because the application requires
34 MB of program files (task initialization) and 100 KB
of input files (task allocation) for each task. Because
WQ caches the needed files at each worker, the larger
cost is only paid when a new worker must be initialized.
For AWE, we observed that less than 2% of all the
tasks sent required task initialization, the remaining 98%
where task allocations. Due to the effects of caching, the
average communication time observed was 54 millisec
(of 617385 completed tasks). Thus, even though the cost

5



for a task initialization is high, the overhead remained
small: the total communication time (9.3 hours) amounts
to 2.1% of the master wall clock time (433 hours).

Speedup and efficiency are acceptable. After allowing
one master to run for several weeks we compute the
following. By computing the total CPU time from all
the tasks we compute speedup as follows:

S =

X

Task i

TCPU,i

Twall, master

This yields a parallel speedup of 831 times over
running AWE with a single worker for Fip35. Currently,
the main bottleneck is the straggling workers, as the
iterations complete the majority of their tasks in 6 to
7 hours, but spend the remaining time waiting for a few
hundred tasks to return. This results in an efficiency of
0.5. This is reflected in Fig. 3 as the periodicity exhibited
by the connected workers.

Another measure of efficiency is the ratio of wasted
to useful work, or the effective efficiency. We define
useful work (Wuseful) as done by the “busy” workers and
wasted work (Wwasted) as that done by “ready” workers
(see Fig. 3; a ready worker is sitting idle waiting for
work from the master).

Eeffective = 1� Wwasted

Wuseful

By taking the ratio of the areas under the respective
curves our effective efficiency is 0.89.

V. AWE RESULTS

An advantage of the AWE method is that it allows
decoupling of the conformation sampling procedure from
the kinetics analysis. As part of the preprocessing steps,
sampling along transition paths may be obtained using
techniques such as replica exchange, high temperature
simulations, low viscosity implicit solvent simulations,
etc. Once the conformational space has been partitioned
into cells, AWE will compute the reaction rates of the
given system. This section presents a benchmark of
AWE running with Work Queue on a large biomolecular
system as well as presenting two pathways recovered
from the resultant network that had been previously
posited in the literature.

We applied AWE to the Fip35 WW domain, a fast
folding mutant of the WW domain with 33 residues
whose native state is formed by three beta sheets sepa-
rated by two short loops. The experimental folding time
of Fip35 is known to be in the low microsecond range
and is estimated at 13 µs [14].

Our procedure was as follows: we ran a long sim-
ulation (over 200 µs) in which multiple folding and
unfolding events are observed, using the Amber96 force
field with Generalized Born implicit solvent, and a
timestep of 2 fs. This simulation was run on an Nvidia
GeForce GTX 480 GPU using OpenMM [15]. The
viscosity parameter (! ) was set to 1 ps�1 to accelerate
conformational sampling. Conformations are stored ev-
ery 1 ns. We then prepared several initial Markov State
Models (subsampling the long simulations at 500 ns)
using MSMBuilder [16], constraining the total number
of cells (“micro states” in MSMBuilder terminology) to
range between 100 and 5000. Comparisons were done
using the RMSD between the " and # carbons of the beta
sheets, with a cutoff of 3 Å. Furthermore, we forced the
native state to be considered as one of these microstates
before assigning the remaining conformations.

One property of the MSM is that reaction rates can
be predicted by choosing varying lag times between
snapshots, and computing the transition matrix. As this
matrix is a stochastic matrix, the eigenvalues provide
the implied timescales. We selected an MSM with 1000
states as it provided an acceptable tradeoff between
separation of timescales (the Markovian property) and
presence of noise. The slowest implied timescale or
mean passage time computed by the MSM converged
to approximately 10µs.

The next step was to run 2 iterations of AWE using
these cell definitions as input. One of the important
parameters for AWE is the length of the trajectory
computed by each walker. If the trajectories are too
long, there is a risk of cells getting empty and loss
of efficiency. If they are too short, frequent global
synchronizations are needed. This trial run was used to
establish a trajectory length of 500 ps. Another impor-
tant parameter is the partitioning of the conformational
space, and the definition of the cells. Since the unfolded
ensemble of conformations can be extremely large we
need to reduce the time AWE spends sampling this
region, and enrich the cells in the transition and folded
basins. We define conformations with an RMSD to the
native structure in the range of [0, 3], (3, 6], (6,+1]
Å to correspond respectively to folded, transition, and
unfolded states. Therefore, using this initial MSM, we
constructed a new MSM where the number of cells in the
unfolded regions is reduced, which is then used for the
final runs of AWE. The timescales of this final MSM are
comparable to those of the MSM, around 10µs. Note that
MSM and AWE are different models and therefore their
predictions are not expected to match. Upon convergence
AWE is always more accurate.

6



Fig. 5. Folding and unfolding flux for Fip35 for each AWE iteration.

The final setup for AWE was the following: 601 cells,
20 walkers per cell, walker length of 500 ps using
! = 50 ps�1 with Amber96 and the Generalized Born
model of Onufriev, Bashford and Case (OBC). We define
the unfolded and folded cells as the “blue” and “red”
cores. Walkers not belonging to either of these cores are
assigned a random color, otherwise they take the core
color. We then ran AWE for 50 iterations and examined
the flux between the unfolded and folded regions, as well
as the network of transitions between the cells. Fig. 5
displays the folding and unfolding fluxes from AWE.

Fig. 6. Network of cell connections after running AWE for Fip35.
Blue, grey, and red nodes represent the unfolded, transition, and folded
cells. Node size indicates betweenness centrality. The unfolded regions
is large, with many transitions between unfolded conformations. In
order to fold, blue states must pass through the transition states (grey)
before attaining the folded (red) conformations.

Additionally, we constructed the interaction network
(Fig. 6) based on the transitions between cells as ob-
served during the AWE procedure. We computed the
betweenness centrality of all nodes. For node i, it is
defined as the number of pairwise shortest paths from all
vertices to all others that pass through node i. This gives
a measure of how important node i is for connecting

different portions of the network. In order to favor more
probable paths we reweight the graph using the negative
log of the probability of the edge, before applying a
weighted shortest paths algorithm. As a result we are
able to recover two folding pathways from the network,
as shown in Fig. 7. These pathways are distinguished by
cells 591 and 404, which respectively show hairpin 2 and
1 forming before the other. Furthermore, these pathways
are corroborated by previous work (there is an extensive
literature on this topic, see e.g. [17]–[20]), which posits
that Loop 1 formation is initiated at near the loop region
and “zippers up” via hydrogen bonding, and Loop 2 is
formed by a hydrophobic collapse (a transition which
may be inferred from the 404 ! 600 edge).

Fig. 7. Two Fip35 folding pathways as found from the AWE network.
Colors blue, grey, and red represent “unfolded”, “intermediate”, and
“folded” conformations, respectively. These paths are corroborated by
literature studies of the WW domain that indicates pathways exist in
which Loop 1 forms first, and vice versa. The mechanism of these
pathways indicate that Loop 1 formation may be initiated near the loop
region and “zip” up via hydrogen bonding to form the beta sheet, while
formation of Loop 2 can be seen as a “hydrophobic collapse.” Cells
404 and 591 correspond to these Hydrophobic Collapse and Zipper
intermediates in the folding pathways, respectively.

Fig. 8. The Zipper and Collapse pathway intermediates from AWE
(as mentioned in Fig. 7) shown in orange (cell 591) and green (cell
404) respectively. Cell 591 formed Loop 2 first, and Loop 1 is in the
process of forming (see the kink at Loop 1). The angle suggests a
“zipper”-like mechanism as previously mentioned. Cell 404 has Loop
1 already formed, with Loop 2 in the process of “collapsing” as the
third beta-sheet forms.

7



VI. CONCLUSIONS

We have presented the application to protein folding
of Work Queue, a simple yet powerful framework for
dynamic distributed applications. An important aspect is
that Work Queue can be used with any molecular dy-
namics (MD) code and only interacts through input and
output files. The master script is written in Python such
that other algorithms can be easily implemented. Our
application bears some resemblance to Copernicus [21].
Compared to the latter, our adaptive sampling method
is unbiased (does not require Markovity). In addition,
whereas Copernicus relies on custom-made solutions for
every aspect of the infrastructure and computation, we
rely on Work Queue and its Python bindings and can
accommodate any MD code.

VII. ACKNOWLEDGEMENTS

We thank Prof. Vijay S. Pande and his group for
useful discussions of Markov State Models and adap-
tive sampling methodologies. JAI acknowledges funding
from grants NSF CCF-1018570, NIH 1R01 GM101935-
01 and NIH 7R01 AI039071. James Sweet at Notre
Dame ran the long folding simulation used as input
to AWE. DLT and JAI received research credits from
Amazon EC2. DLT acknowledges funding from NSF-
OCI-1148330 and NSF-CNS-0643229. The Institute for
Computational and Mathematical Engineering at Stan-
ford allowed use of their GPU cluster, and the Center
for Research Computing at Notre Dame supported this
work.

REFERENCES

[1] G. A. Huber and S. Kim, “Weighted-ensemble Brownian dy-
namics simulations for protein association reactions.” Biophys.
J., vol. 70, no. 1, pp. 97–110, Jan. 1996.

[2] B. W. Zhang, D. Jasnow, and D. M. Zuckerman, “Efficient and
verified simulation of a path ensemble for conformational change
in a united-residue model of calmodulin.” Proc. Natl. Acad. Sci.
USA, vol. 104, no. 46, pp. 18 043–18 048, Nov. 2007.

[3] E. Darve and E. Ryu, “Computing reaction rates in bio-molecular
systems using discrete macro-states,” in Innovations in Biomolec-
ular Modeling and Simulations. Royal Society of Chemistry,
May 2012.

[4] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H.
Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C.
Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R.
Ho, D. J. Ierardi, I. Kolossvary, J. L. Klepeis, T. Layman,
C. Mcleavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan,
J. Spengler, M. Theobald, B. Towles, and S. C. Wang, “Anton,
a special-purpose machine for molecular dynamics simulation,”
Communications of the ACM, vol. 51, no. 7, pp. 91–97, 2008.

[5] K. Bowers, E. Chow, H. Xu, R. Dror, M. Eastwood, B. Gregersen,
J. Klepeis, I. Kolossvary, M. Moraes, F. Sacerdoti, J. Salmon,
Y. Shan, and D. Shaw, “ACM/IEEE SC 2006 Conference
(SC’06),” in ACM/IEEE SC 2006 Conference (SC’06). IEEE,
2006, pp. 43–43.

[6] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain,
“Work Queue + Python: A Framework For Scalable Scientific
Ensemble Applications,” in Workshop on Python for High Per-
formance and Scientific Computing at SC11, 2011.

[7] W. C. Swope, J. W. Pitera, and F. Suits, “Describing Protein Fold-
ing Kinetics by Molecular Dynamics Simulations. 1. Theory,” J.
Phys. Chem. B, vol. 108, no. 21, pp. 6571–6581, May 2004.

[8] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C.
Swope, “Automatic discovery of metastable states for the con-
struction of Markov models of macromolecular conformational
dynamics,” J. Chem. Phys., vol. 126, no. 15, p. 155101, 2007.

[9] V. S. Pande, K. Beauchamp, and G. R. Bowman, “Everything
you wanted to know about Markov State Models but were afraid
to ask.” Methods, vol. 52, no. 1, pp. 99–105, Sep. 2010.

[10] E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber, “On
the assumptions underlying milestoning,” J. Chem. Phys., vol.
129, no. 17, 2008.

[11] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle
workstations,” in Eighth International Conference of Distributed
Computing Systems, June 1988.

[12] W. Gentzsch, “Sun Grid Engine: Towards Creating a Compute
Power Grid,” in Proceedings of the 1st International Symposium
on Cluster Computing and the Grid, ser. CCGRID ’01, 2001.

[13] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,”
in Grid Computing: Making the Global Infrastructure a Reality,
F. Berman, A. Hey, and G. Fox, Eds. John Wiley, 2003.

[14] F. Liu, D. Du, A. a. Fuller, J. E. Davoren, P. Wipf, J. W. Kelly, and
M. Gruebele, “An experimental survey of the transition between
two-state and downhill protein folding scenarios.” Proc. Natl.
Acad. Sci. USA, vol. 105, no. 7, pp. 2369–2374, 2008.

[15] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston,
S. Legrand, A. L. Beberg, D. L. Ensign, C. M. Bruns, and V. S.
Pande, “Accelerating molecular dynamic simulation on graphics
processing units.” J. Comp. Chem., vol. 30, no. 6, pp. 864–872,
2009.

[16] G. R. Bowman, X. Huang, and V. S. Pande, “Using generalized
ensemble simulations and Markov state models to identify con-
formational states.” Methods, vol. 49, no. 2, pp. 197–201, Oct.
2009.

[17] W. Zheng, B. Qi, M. A. Rohrdanz, A. Caflisch, A. R. Dinner,
and C. Clementi, “Delineation of folding pathways of a �-sheet
miniprotein.” J. Phys. Chem. B, vol. 115, no. 44, pp. 13 065–
13 074, Nov. 2011.

[18] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O.
Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon,
Y. Shan, and W. Wriggers, “Atomic-Level Characterization of the
Structural Dynamics of Proteins,” Science, vol. 330, no. 6002, pp.
341–346, 2010.

[19] F. Noe, C. Schutte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl,
“Constructing the equilibrium ensemble of folding pathways
from short off-equilibrium simulations.” Proc. Natl. Acad. Sci.
USA, vol. 106, no. 45, pp. 19 011–19 016, 2009.

[20] V. Pande, “Meeting halfway on the bridge between protein
folding theory and experiment,” Proc. Natl. Acad. Sci. USA, vol.
100, no. 7, pp. 3555–3556, Mar. 2003.

[21] S. Pronk, G. Bowman, K. Beauchamp, B. Hess, P. Kasson, and
E. Lindahl, “Copernicus : A new paradigm for parallel adaptive
molecular dynamics,” Supercomputing, 2011.

8


