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ABSTRACT

Scientific workflows execute a series of tasks where each task may
consume data as an input and produce data as an output. Within
these workflows, tasks often produce intermediate results that may
serve as inputs to subsequent tasks within the workflow. These
results can vary in size and may need to be transported to an-
other worker node. Data movement can become the primary bot-
tleneck for many scientific workflows thus minimizing the cost
of data movement can provide a significant performance benefit
for a given workflow. Distant futures enable transfers between
worker nodes, eliminating the need for intermediate results to pass
through a centralized manager for future tasks invocations. Addi-
tionally, asynchronous transfers enable increased concurrency by
preventing the blocking of task invocations. This poster shows the
performance benefit received from the implementation of distant
futures within a workflow that produces numerous intermediate
results.
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1 INTRODUCTION

A scientific workflow executes a series of tasks on a set of compute
nodes, often towards the computation of a single result. Within
these workflows, tasks may produce intermediate results which are
outputs that are to be consumed by one or more tasks as an input.
In certain paradigms, intermediate results are returned from the
compute node to a centralized manager for it to be redistributed
at a later time. This can be inefficient and can become more ap-
parent with many intermediate results, large results, and limited
bandwidth.

Futures are a common paradigm in which a task submission
returns a reference to a result that may be computed at a later time
[2]. The introduction of futures to scientific workflows can aid in
the increase of concurrency as a result may not be needed imme-
diately, allowing for other operations to occur without blocking.
This poster presents Distant futures which expands on futures
by distributing references to intermediate results to worker nodes
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import ndcctools.taskvine as vine
def gen_matrix(n):
def empty_matrix(n):

def matrix_multiply(a,b):
result = empty_matrix(len(a))
for i in range(len(a)):
for j in range(len(b[01)):
for k in range(len(b)):
result[iJ[j] += al[il[k] * b[kI[j]
return result

opts = {"min-workers":5, "memory":8000,"disk":8000}
e = vine.Executor(name="my_app",batch_type="'sge',opts=opts)

a = e.submit(matrix_multiply,gen_matrix(20),gen_matrix(20))
b = e.submit(matrix_multiply,gen_matrix(20),gen_matrix(20))
c = e.submit(matrix_multiply,a,b)

print(c.result())

Figure 1: TaskVine Futures Example
This application utilizes Taskvine’s futures paradigm. It creates two
futures a and b that are then passed as arguments to future c. The
ultimate result is printed by calling c.result()

on a compute cluster. Distant futures leverage the local storage of
the compute cluster and retain intermediate results at the location
of computation. Thus, subsequent tasks that consume the inter-
mediate data can be scheduled to the location in which the data
is present, removing the need to move the data. In the scenario
where a task cannot be scheduled to the worker in which the data
resides, intermediate data can be transferred between workers asyn-
chronously exploiting the in-cluster bandwidth and removing an
extra hop of movement that would have gone through the manager.
This can occur when a worker is busy with other tasks

Asynchronous transfers enable concurrency within the dis-
tant futures paradigm by preventing workers from blocking be-
fore tasks invocations. That is, by transferring intermediate results
asynchronously, tasks which depend on data or futures that can be
resolved locally are not blocked from execution if a previous task
needs to resolve a distant future by transferring an intermediate
result. Thus, Having transfers be done asynchronously can be per-
tinent to the overall performance of a workflow and any blocking
behavior can be very detrimental if the size of intermediate results
are large.

TaskVine, a workflow executor for scientific applications, en-
ables the creation of futures via its future executor. TaskVine’s
future executor is a subclass of Python’s concurrent.futures ex-
ecutor. Similarly to Python, a future is created by submitting a
function along with its arguments to the executor. The result of
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Figure 2: Worker View of Matrix Example on different Configurations
Execution of the TaskVine future matrix example using different configurations. These figures show that removing the extra hop through the
manager can significantly reduce the execution time of the overall application. Additionally, asynchronous transfers reduce the startup time for
task execution. Blue bars represent the time in which a task is executing. More compact tasks result in better performance. Light orange bars
represent time in which intermediate results are waiting to be retrieved from the manager. Less is better. Dark orange bars show the time a worker
spends making input transfers and staging data. Dark grey bars are input transfers via the manager.

the task can then be resolved by calling future.result(). TaskVine
creates a corresponding future task when a future is created. This
task serializes the function along with its arguments and sends
them to a worker node for computation. A distant future can be
created by passing a future as an argument to a future task. If an
argument is a future, instead of waiting for the future result to be
resolved, TaskVine replaces the future with a reference to the given
future task’s output. This enables the creation of distant futures.
The TaskVine manager will receive cache updates via the workers
once results are produced. Once all of a future task’s dependencies,
including the results of other future tasks if applicable, are available
on the compute cluster, that task will be scheduled. TaskVine prior-
itizes data locality and will attempt to schedule a task where the
necessary data dependencies are already present. Figure 1 shows
an example application using TaskVine’s future executor and the
creation of a distant future.

2 RESULTS

To show the effectiveness of distant futures and asynchronous
worker transfers, we ran an example workflow that will make the
best use of these features. The workflow performs a series of matrix
multiplications on randomly generated matrices of size 400 x 400.
The series of multiplications forms a binary tree of operations
resulting in a single matrix. Each matrix is roughly 1.4MB and each
task requires 600MB environment that must be transported to each
worker. The workflow has a total of 511 tasks that are executed by
10 workers submitted to a local compute cluster each with 4 cores.

This workflow is run in four configurations for each possibility
that toggles distant futures and asynchronous worker transfers.
While distant futures are disabled, intermediate matrix results are
returned to the manager and are dispatched to future tasks. Con-
versely, when enabled, intermediate results remain on the worker or
are transferred between workers when necessary. While asynchro-
nous transfers are disabled the worker will stage necessary input
files such as the environment and transfer intermediate matrices
synchronously. When enabled, this process is asynchronous allow-
ing the worker to receive new communications from the manager
and start new tasks.

Figure 2 shows selected executions of the matrix workflow on
each configuration from the workers’ perspective. Figure 2a is the
standard configuration without distant futures and asynchronous
transfers. The absence of distant futures results in more separation
between task executions as the manager has to receive intermediate
matrices before dispatching them to new tasks this is also appar-
ent in Figure 2b which has asynchronous transfers enabled but is
also not using distant futures. Figures 2c and 2d introduce distant
futures into the workflow which creates a noticeable drop in task
separation as new tasks can either be scheduled to the intermedi-
ate matrices present on a worker or can be transferred between
workers taking advantage of in-cluster bandwidth and eliminating
the need for a hop though the manager. Unlike Figure 2d, Figure 2c
does not enable asynchronous worker transfers. For this workflow,
this primarily makes a difference during startup. As the manager is
communicating with a worker, a worker may be busy staging or
transferring data causing the manager to stall. This is removed in
Figure 2d when asynchronous transfers are enabled.

The benefit received by using distant futures can heavily depend
on a number of factors such as the bandwidth available within a
cluster, the size of intermediate data, the availability of a shred file
system, and local disk space. However, Eliminating transfers that
would have otherwise needed an extra hop through the manager
can generally improve performance and is more apparent with
larger intermediate results.

3 RELATED WORK

Parsl [1] is a python library that enables the Creation of distributed
applications. This library allows for the creation of futures by anno-
tating python functions. Dask [3] is another library for distributed
applications. Dask creates a task graph that can be optimized and
given to an executor for execution. Dask.distributed allows for fu-
tures to be passed in as arguments to other tasks in which they are
transferred between workers. [4] explores the use of distributed
futures for fine-grained tasks in a manner that is fault-tolerant.
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