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Executive Summary 
A 2007 EPA report [1] estimates the US spent $4.5 billion 
on electrical power to operate and cool IT and HPC servers 
in 2006. The same report forecasts a staggering 2011 
national IT electric energy expenditure of 7.4 billion. The 
computation/information technology industry has 
responded with innovations in processors, hardware, and 
systems software to reduce the growth of the oppressive 
power requirements. In parallel to these economic IT 
energy concerns, recognition of public demand for 
environmental stewardship and sustainability has come 
center stage. The general public and environmental 
advocacy groups are demanding proactive steps toward 
conservation and green processes. In response, the 
technology industry has launched collaboratives such as 
The Green Grid and multiple corporate initiatives such as 
Sun Microsystems’ ECO Responsibility Initiative, HP’s 
ECO Solutions, and IBM’s Project Big Green. 

To meet the continued growth in the number of IT/HPC 
users [2] and capability demands of those users [3], new 
energy-focused design paradigms are required. We 
introduce the Grid Heating (GH) paradigm. GH recognizes 
that, despite evolving low power architectures, demands for 
increased capability will drive up power consumption 
toward economic limits on par with capital equipment 
costs. In contrast to the design of a single facility for 
centralized compute infrastructure, GH capitalizes on grid 
and virtualization technologies to distribute compute 
infrastructure (along with exhaust heat as shown in Fig. 1) 
in-line with existing municipal and industrial thermal 
requirements. 

Figure 1 – Thermal images from one of Notre Dame’s data 
centers. 
 

 

 

 

 

 

 

 

 

The Principles of Grid Heating 
GH’s fundamental core is the recognition that 
computational infrastructure can be strategically grid 
distributed inline with municipal facilities and industrial 
processes requiring the thermal byproduct. Frameworks 
built upon this core reduce or remove cooling requirements 
and realize cost sharing on primary utility expenditures. 
The technology builds upon efficiency improvements for 
the traditional centralized data center made by multiple 
organizations such as the High-Performance Buildings for 
High-Tech Industries Team at LBNL [4], the ASHRAE 
Technical Committee 9.9 for Mission Critical Facilities, 
Technology Spaces, and Electronic Equipment [5], and the 
Uptime Institute [6,7].  

Individual data centers have reutilized the thermal 
byproduct to the benefit of their own facility [8]. However, 
to utilize all of the thermal energy effectively year-round, a 
grid distributed approach is desirable. GH models 
recognize that the transformation and/or transportation of 
the waste heat quickly reduces efficiency, and therefore 
targets the distribution and scale of each heating grid node 
to match the geographic and thermal requirements of the 
target heat sink. GH deployments must also address the 
physical and practical considerations of operating a 
computational infrastructure. A sample list of physical 
considerations must include basic hardware operational 
requirements of temperature, humidity, and air particulate. 
For example, practical factors include suitable 
bandwidth/data locality, security, system administrator 
access, reliability/redundancy, and acoustics. 

 

 

 

 

 

 

The GH Cluster Framework 

This work focuses on a GH Cluster instantiation of a grid 
heating framework. A GH Cluster framework is based upon 
a scalable and tightly interconnected multi-node 
configuration similar to the traditional rack configurations. 
A full 40-unit rack, partial rack, or multiple racks could be 
selected to best match the annual heating requirement of a 
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particular facility. The GH Cluster could be a stand-alone 
enclosure collocated with an industrial heat sink or facility. 
Waste heat transferred via air or liquid media is directly 
utilized as shown in Fig. 2. Examples include air heating of 
a greenhouse, pre-heating hot water for a hospital, or 
primary heat for a water treatment plant.  

 

 

 

 

 

Figure 2 - GH Cluster schematic 

For the purposes of this paper, we will introduce and focus 
on the Sustainable Distributed Data Center (SDDC), a 
specific GH Cluster prototype. The SDDC deployment is 
the current phase of Notre Dame’s partnership with the 
City of South Bend and South Bend Botanical Society as 
presented in the following experimental section. 
 

Figure 3 – Dynamic temperature control  

3. Experimentation 

Temperature Control Validation 

Given the basic observation that the electrical energy 
consumed by modern computational infrastructure is 
predominantly transformed into thermal energy (we 
acknowledge minor transformations into mechanical work 

by the fans, hard drives, etc.); a thermal energy surplus on 
the order of the input electrical energy will be locally 
available. We took this basic observation and validated it 
with a more challenging experiment (figure 3). The goal 
was to provide thermal control of a multiuser workspace 
through dynamic resource utilization and job scheduling. 

Multiple test scenarios were designed and evaluated to 
capture the cluster’s ability to meet and oscillate about 
temperature targets. In figure 3, we present one such test 
scenario starting with all machines powered off and a room 
temperature just above 78°F.  Once the room had 
equilibrated to a stable temperature with machines idling, a 
test script was run to adjust target room temperatures and 
prompt the grid heating cluster nodes to dynamically accept 
jobs. As shown in figure 3, the target temperature was 
updated every six hours from 86° to 88° to 90° to 88° and 
then down to 70°F, which effectively put the machines 
back in the idle condition. The oscillations in the figure 
demonstrate the thermal variance in the room as jobs 
moved from suspend to resume status. Note the graph also 
reflects the properties of the machines’ maximum thermal 
capacity. Given the successful validation of fine-grained IT 
exhaust temperature control, we then began the endeavor to 
build a multi-institution collaboration on larger grid heating 
prototypes. 

 

Greenhouse Deployment 

We proceeded with our first grid heating deployment at the 
City of South Bend Botanical Conservatories and 
Greenhouse (SBGH). The SBGH (Fig. 4) is a traditional 
glass greenhouse facility with multiple interconnected 
structures of which the most recently constructed was in the 
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1970s. Municipal funds are not available for capital 
upgrades, and rising annual natural gas heating costs grew 
to over $115,000 in 2006. Primary heat is provided via 
natural gas boilers that provide steam heat to the majority 
of the building. The target goal is to provide baseline GH 
Cluster heating capability to the facility in place of fossil 
fuel heat, using the existing boilers on a limited basis 
during peak winter weather. The system is consequently 
designed to utilize free cooling for the majority of the 
warmer months. 

 

 

 

 

 

Figure 4 – South Bend Botanical Conservatory and 
Potawatomi Greenhouse 

The University of Notre Dame has partnered with the City 
of South Bend on a three-phase GH deployment to provide 
direct thermal benefit to the SBGH and year round 
operations of our computational equipment. Phase 1 has 
been completed successfully, and entailed the initial 
deployment of sufficient computational infrastructure to 
enable remote submission of scientific simulations from the 
Notre Dame campus to the SBGH. Primary phase one 
components included a traditional compute rack (figure 5) 
located within the desert collection dome structure. The 
rack was configured with traditional 1U compute nodes 
similar to that used in the thermal control tests. Network 
interconnectivity to the Notre Dame campus was provided 
by a local ISP. Successful completion was marked by the 
delivery of byproduct heat, while facilitating molecular 
dynamics simulations performed by the LCLS research 
group to accelerate molecular trajectory generation [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 – Phase 1 Grid Heating Cluster prototype and 
successful remote simulations 

We are now in phase two of the deployment with a focus 
on scaling and securing the compute infrastructure via a 
Sustainable Distributed Data Center prototype. The SDDC 
is a 20' wide x 8' long x 8' high containerized data center 
facility. Using the DOE Data Center Energy Profiler 
yielded a potential DCiE of 0.81. As of December 2008, 
SDDC fabrication and necessary site work (utility power, 
fiber network access, and foundations) at the greenhouse 
has been completed. The SDDC is slotted for commission 
in Jan 2009 during the peak winter demand.   The prototype 
is outfitted with a 208 Volt 225 Amp panel providing up to 
45kW of power, or an equivalent 150,000 BTU/h of heat. 
This prototype configuration transforms an annual data 
center electrical power bill of $35,000 into 150,000 BTU/h 
of useable heat for the greenhouse. 

For year round SDDC operations we determined the 
suitability of free cooling and supplemental humidification 
by reviewing respective information from the National 
Climatic Data Center [10] as shown in figure 6. Observe 
that the average highs do not exceed the maximum 
ASHRAE allowable inlet face temperature [5].  For the 
small number of hours annually which are above average, 
the SDDC is equipped with a modest traditional HVAC 
apparatus. Heat evacuation to the greenhouse is handled by 
a ventilation/transmission fan in the SDDC. Proper mixing 
of inlet and inside air during the cold low humidity winter 
months will be managed by SDDC outside air louvers. 
Recent findings on particulate load by LBNL [11] indicate 
outside air particulate loads are often well below EPA and 
manufacturer guidelines; however, standard filters and 
readings relative to the local vicinity are planned. This 
phase two work also includes a connection to the St. Joe 
Valley Metronet fiber-optic network shared by South Bend 
and Notre Dame. 
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Figure 6 – Daily temperature normals with ASHRAE 
allowable max/min temperatures 
Figure 6 – Daily temperature normals with ASHRAE 
allowable max/min temperatures 

  

Benefits Derive from Holistic View  Benefits Derive from Holistic View  
It is important to note evolving commercial applications in 
grid, utility, and cloud computing [12, 13, 14] that would 
directly benefit from a grid heating configuration. As the 
computational infrastructure configuration and locality is 
obscured from the end user, the flexibility to distribute and 
configure grows, allowing for additional economic and 
environmental optimizations. Along these lines, the 
growing acceptance of virtualization [15, 16, and 17] in 
commercial applications will also allow greater flexibility 
in the design and deployment of infrastructure.  

It is important to note evolving commercial applications in 
grid, utility, and cloud computing [12, 13, 14] that would 
directly benefit from a grid heating configuration. As the 
computational infrastructure configuration and locality is 
obscured from the end user, the flexibility to distribute and 
configure grows, allowing for additional economic and 
environmental optimizations. Along these lines, the 
growing acceptance of virtualization [15, 16, and 17] in 
commercial applications will also allow greater flexibility 
in the design and deployment of infrastructure.  

While these grid frameworks are evolving, a large body of 
work has studied the problem of managing energy, heat, 
and load in large centralized data centers. In addition to 
those works cited earlier in this paper, Schmidt et al [18, 
19] provide a good current overview of the mechanical 
issues of cooling units, heat sinks, fans, and so forth. Given 
an adequate mechanical infrastructure, several server 
management techniques can also be applied to reduce 
energy costs. For example, inactive servers can be shut 
down, or loads migrated as more energy efficient hardware 
become idle/available. Chase [20] and Bradley [21] 
describe techniques for balancing performance, cost, and 
energy in this situation. To avoid hot spots, it is necessary 
to map the relation between components and heat [22], and 
then shape loads so as to evenly distribute the heat [23]. 
Further, large institutions such as the University of Illinois 
and NCSA are taking a holistic look at their entire campus 
utilities infrastructure to efficiently operate their data 
center. Despite the efficiency benefits of these new 
techniques, Patel et al. [24] report that a typical data center 
still consumes about as much energy for cooling as it does 
for productive work. The advances in efficient traditional 

infrastructures and a GH framework will serve in tandem to 
provide greater computational capability while reducing 
economic and environmental costs. 
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