
November/December 2015 Copublished by the IEEE CS and the AIP 1521-9615/15/$31.00 © 2015 IEEE Computing in Science & Engineering 61

DistributeD systems

D
elivering software across a worldwide dis-
tributed system is a major challenge in
high-throughput scientific computing.
While we often think of an application

as a single executable that can be moved between
machines, the reality is often much more complex:
production applications are a complex assembly of
scripts, configuration files, libraries, and multiple
executables written in distinct languages with mu-
tual dependencies.

This problem is particularly acute in the high-
energy physics (HEP) community, which relies on
a large and dynamic set of software developed over
multiple decades by many authors in many differ-
ent languages and environments. In any scientific
effort, reproducibility is essential, and so the HEP
community has developed a discipline of carefully
collecting all the software that composes a given ap-
plication—compilers, libraries, interpreters, and so
on—into one place so that consistency is achieved
across the community. A member of a particular
experiment simply downloads the standard soft-
ware package in a certain version and proceeds
with work. However, copying the entire software
stack everywhere it’s needed isn’t practical—it can
be very large, new versions of the software stack are
produced on a regular basis, and any given job only
needs a small fraction of the total software. In this
way, scientific software differs from general-pur-
pose applications (such as Apache or Emacs) with

stable releases and small footprints that can be easily
packaged.

Within one computing center, deploying sci-
entific software isn’t usually a significant problem:
the software distribution can be made available on a
distributed filesystem mounted in a known location
on all the system’s nodes. However, to address scien-
tific problems at the largest scale, it becomes neces-
sary to harness machines at locations all around the
world. Distributed computing environments such
as Condor1 and Globus2 have long enabled users
to send jobs to other sites for execution, but users
of those systems quickly discovered that their jobs
couldn’t function without the necessary software
installed, nor did they have privileges to install the
software.

To address this problem, a distributed filesys-
tem designed specifically for distributing complex
software stacks at a global scale is required. The
solution must be efficient at distributing large
amounts of content around the world, while main-
taining the structure and semantics of a Portable
Operating System Interface (POSIX)-compatible
filesystem, directory tree, and metadata. It must
also be entirely user level, enabling it to be accessed
from any machine and in any environment without
requiring special privileges. The key observation is
that the software is only modified at the point of
publication—all other consumers are read-only
with high availability. Consistency and integrity are

The Evolution of Global Scale Filesystems for
Scientific Software Distribution

Jakob Blomer, Predrag Buncic, René Meusel, and Gerardo Ganis | CERN

Igor Sfiligoi | University of California, San Diego

Douglas Thain | University of Notre Dame

Delivering complex software across a worldwide distributed system is a major challenge in high-throughput
scientific computing. To address this problem in high-energy physics, a global scale filesystem delivers
software to hundreds of thousands of machines around the world.

62 November/December 2015

DistributeD systems

Related Work in Global Data Distribution

The work described in this article combines concepts found

in distributed filesystems, Web content distribution, and

distributed version control.

Many distributed filesystems have aimed for global data

sharing, with the Andrew Filesystem (AFS)1 coming the closest

to realizing this vision as a production system. As widely used

as AFS once was, the technical matter of deploying kernel

modifications limited its use within the context of distributed

systems. Moreover, the possibility to read and write from any

client requires servers to maintain state information per client

so that each server can typically serve no more than a few

hundred clients. Performance comparisons between AFS and

CernVM-FS for the use case of loading software show an order

of magnitude less network traffic induced by CernVM-FS and

thus greatly improved startup delays, despite the HTTP protocol

overhead.2

Some research prototypes with global ambitions (such

as OceanStore3 and Tahoe4) build on the idea of peer-to-peer

overlay networks to distribute files on a global scale. These

systems are designed for secure and reliable data sharing among

nodes that both consume and produce files. But compared to a

hierarchy of Web caches, geographically distributed peer-to-peer

systems are difficult to set up across firewalls and institutional

boundaries; they’re also technically difficult to tune for high

speed and responsiveness for a workload involving many small

files. As designed, these systems don’t deliver POSIX filesystem

semantics, and for a variety of reasons, never saw deployment

beyond research prototypes.

Several filesystem designs such as Ceph5 and Panache6

have addressed metadata performance by distributing metadata

across multiple servers, enabling parallel access to it. Although

this increases overall system throughput, it doesn’t improve

a single application’s metadata performance (it must request

items one by one). In contrast, the approach shown in this

article enables bulk delivery of metadata, which both accelerates

individual applications as well as increases throughput.

In many ways, HTTP supplanted filesystems as a means of

distributing data in the wide area, but it lacks any standardized

form of metadata access, making it unsuitable for direct

mounting from clients. The proposed WebDAV7 standard

adds metadata access methods to HTTP for the purposes of

collaborative authoring, but WebDAV isn’t designed for metadata-

intensive workloads, and important capabilities for software

distribution such as data verification, bulk metadata handling,

or consistent namespace updates aren’t part of the protocol.

GROW-FS and CernVM-FS work around this by natively delivering

metadata as HTTP objects.

The HTTP-Fuse8 filesystem delivered Linux operating

system distributions (similar to the way the CernVM virtual

appliance uses CernVM-FS) by using content-addressable

storage and data transport through the Coral content distribution

network.9 Content delivery networks (CDNs) such as Akamai and

CloudFront are now widely used for distributing HTTP objects

globally. Although CernVM-FS can use these technologies,

the HEP-specific proxy cache network allows for the careful

segregation, monitoring, and control of heavy network loads that

might otherwise conflict with commodity network access at the

institutions involved.

The Merkle tree is a widely used technique for the efficient

incremental computation and verification of checksums. CernVM-

FS is similar to a distributed version control system such as Git,

in that both use Merkle trees to name a given filesystem tree.

In fact, you can use Git as a simple content distribution system

for offline access. However, system objectives are very different:

Git assumes that repositories are relatively small and can be

duplicated in their entirety, whereas CernVM-FS is designed to

handle large repositories whose contents must be distributed on

demand to online filesystem operations.

References
1. J.H. Howard et al., “Scale and Performance in a Distributed

File System,” ACM Trans. Computer Systems, vol. 6, no. 1,

1988, pp. 51–81.

2. J. Blomer, “Decentralized Data Storage and Processing in the

Context of the LHC Experiments at CERN,” PhD thesis, Dept.

Computer Science, Technische Universitat Munchen, 2012.

3. J. Kubiatowicz et al., “Oceanstore: An Architecture for

Global-Scale Persistent Storage,” ACM Sigplan Notices,
vol. 35, no. 11, 2000, pp. 190–201.

4. Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-

Authority Filesystem,” Proc. 4th ACM Int’l Workshop Storage
Security and Survivability, 2008, pp. 21–26.

5. S.A. Weil et al., “Ceph: A Scalable, High-Performance

Distributed File System,” Proc. 7th Symp. Operating
Systems Design and Implementation, 2006, pp. 307–320.

6. M. Eshel et al., “Panache: A Parallel File System Cache for

Global File Access,” Proc. Usenix Conf. File and Storage
Technologies, 2010, pp. 155–168; www.cse.buffalo.edu/

faculty/tkosar/cse710_spring13/papers/panache.pdf.

7. Y. Goland et al., “HTTP Extensions for Distributed

Authoring–WEBDAV,” IETF RFC 2518, 1999; www.ics.uci.

edu/~ejw/authoring/protocol/rfc2518.html.

8. K. Suzaki et al., “HTTP-FUSE Xenoppix,” Proc. 2006 Linux
Symp., vol. 2, 2006, pp. 379–392.

9. M.J. Freedman, E. Freudenthal, and D. Mazieres,

“Democratizing Content Publication with Coral,” Proc. Usenix
Symp. Network Systems Design and Implementation (NSDI),

vol. 4, 2004, p. 8.

www.computer.org/cise 63

achieved via Merkle trees to checksum all content
up to the filesystem’s root. This enables read access
even during network outages.

Traditional filesystem technologies simply can’t
meet these needs because they were never designed
for unprivileged deployment or operation at large
scale across wide area networks (see the “Related
Work in Global Data Distribution” sidebar). Web
content delivery systems are closer to the mark, but
they don’t provide the filesystem tree structures or
efficient metadata delivery required by these appli-
cations. This article describes the evolution of the
global filesystem concept in the HEP computing
community. An early prototype (called GROW)
validated the basic idea but revealed limitations in
design and implementation. CERN started a new
implementation (CernVM-FS; http://cernvm.cern.
ch/portal/filesystem) with improved performance
and scalability; it now serves the needs of many
communities in HEP, astrophysics, and life scienc-
es, running on hundreds of thousands of machines
around the world on a daily basis.

Design Objectives
A global-scale filesystem for scientific software dis-
tribution must meet the following needs:

•	 World-wide scalability. HEP applications must
run at enormous scale to enable timely process-
ing of the data produced by the Large Hadron
Collider (LHC). The filesystem should be able
to scale to hundreds of thousands of machines
spread across potentially thousands of sites
around the world. A multilayer hierarchy is the
only effective means of achieving global scale.

•	 Unprivileged deployment. Although a given user
might be able to obtain administrator privileges
on a few machines, or perhaps even an entire
site, no one can possibly have such access at a
global scale. Thus, the system must be usable
by an ordinary user on the client side without
requiring software installation, kernel mod-
ules, deployment of virtual machines, or similar
techniques.

•	 Infrastructure compatibility. Large computing
centers often operate in a restricted networking
environment, with good reason. Firewalls and
other network translating devices often make
it difficult or impossible to employ nonstan-
dard ports or protocols, only allowing traffic via
well-known channels such as HTTP or Secure
Shell (SSH). Thus, our design relies heavily on
the established Web caching infrastructure.

•	 Application-level consistency. Many previous file-
system designs have struggled with the tradeoffs
described by the CAP (consistency, availability,
partition tolerance) theorem3 because they as-
sume that a client’s objective is always to read
the most recent version of data available. In this
case, software must remain consistent while the
application runs, so a single snapshot of the
filesystem must be delivered to the application
throughout the run, greatly improving perfor-
mance, availability, and reproducibility.

•	 Efficient metadata access. HEP applications
often have a period of intense metadata: the
application startup involves running scripts,
searching multiple directories, loading configu-
ration files, accessing libraries, and so forth. A
large number of metadata lookups result in fail-
ure because the scripts are searching for entries
that don’t exist. A suitable solution must be effi-
cient at supporting millions of metadata opera-
tions on a cold cache in a short period of time.

A first prototype of such a filesystem was conceived
in the context of the (now concluded) Collider
Detector at Fermilab (CDF) experiment.

Case Study: The CDF Experiment
CDF was typical of HEP experiments in that a
computational model of the physical detector was
created and then subjected to simulated particles to
understand how the real device would respond to
real particles. These simulations were run an enor-
mous number of times in different configurations
to fully understand the detector’s behavior. Access
to thousands of machines was necessary to generate
results in a timely manner.

The CDF standard software distribution was
composed of several hundred different software re-
lease versions, each composed of thousands of small
files, plus a shared area. The files themselves in the
software releases never changed; versioning was
used extensively to allow long-term scientific repro-
ducibility. Files in the shared area were allowed to
change, but this was heavily discouraged. A typical
user job would access a fraction of files in the shared
area (such as startup scripts) plus a subset of files
in one of the software release directories. Although
a given user was likely to only use 1 percent of the
files in the repository, the precise set would differ be-
tween users and wasn’t easily determined in advance.

Until the early 2000s, CDF relied on using
monolithic local clusters, in which the software
was mounted on a single network filesystem (NFS)

64 November/December 2015

DistributeD systems

server and accessed over a LAN. Researchers desired
to access machines on the global computing grid,
but NFS didn’t have the performance or security to
be accessed over the WAN. AFS was more suited to
global access, but it proved administratively impos-
sible to convince every site to install it, due to the
challenges of deploying kernel modules and open-
ing up firewalls.

This experience convinced the CDF computing
team that it needed a solution that didn’t require
system privileges to work. The Parrot user-level
filesystem (http://ccl.cse.nd.edu/software/parrot)4
looked like a suitable technology for mounting a
filesystem, but it didn’t (yet) support a protocol for
caching software accessed over the WAN. The cach-
ing requirement led to consideration of the HTTP
protocol because it had strong and mature support
of distributed caching. The relatively small size of
most CDF files also nicely fit the typical HTTP use
case. The problem, however, was how to present
these files in a filesystem-like manner.

The Prototype Filesystem: GROW-FS
To meet CDF’s needs, a prototype filesystem called
GROW-FS (http://ccl.cse.nd.edu/software/parrot)

was created. Figure 1 shows the system architec-
ture. On the server side, GROW-FS is simply an
ordinary webserver that exports the desired soft-
ware. Using the HTTP protocol makes it easy to
transit multiple networks because it’s rarely blocked
by firewalls. However, HTTP has one significant
drawback: it doesn’t offer access to filesystem meta-
data in any standard way. Here, metadata includes
directory listings and file details such as size, owner,
and permissions.

To enable efficient metadata access, GROW-FS
requires the server operator to run a script that tra-
verses the filesystem and produces a metadata table
listing all files along with their metadata and (option-
ally) a checksum of file contents. The filesystem tree
as a whole is a Merkle tree, in which each directory’s
checksum is computed from the checksum of the
files it contains. As a result, the directory’s root has
a checksum that represents the entire tree’s contents.

On the client side, the GROW-FS library im-
plements a read-only filesystem by combining the
metadata table and file objects. When the filesystem
is first accessed, the library downloads the entire
metadata table and holds it in memory. This al-
lows all directory reads and metadata lookups to be

GROW client GROW server

WWW
proxy
cache

WWW
server

HTTP
GET

H
TT

P
 G

E
TTrapped

system calls

Unix
application

Parrot

GROW library

Local access

meta
data
table

Metadata
table

Build
metadata
table

Access
files and

metadata
table

directly

a

b c

Exported filesystemLocal cache directory

a

b

Figure 1. GROW-FS architecture. On the server side, GROW-FS is simply an ordinary webserver that exports the desired
software. Using the HTTP protocol makes it easy to transit multiple networks because it’s rarely blocked by firewalls.

www.computer.org/cise 65

satisfied from client memory. File accesses are im-
plemented by downloading the desired file from the
server, caching it on local disk by name, and then
accessing the file directly.

Finally, Parrot attaches the application to the
GROW-FS library. Parrot is a user-level tool for at-
taching standard Unix applications to a variety of
remote data services such as HTTP, FTP, iRODS,
and HDFS. It works by capturing all of an applica-
tion’s system calls via the ptrace debugging inter-
face. System calls that refer to files in the GROW-
FS namespace, such as /grow/www.cern.ch/
file, are converted into calls in the GROW-FS
library, thus transparently attaching the application
to the remote service.

For several years, GROW-FS enabled CDF sim-
ulations to run on several thousand CPUs simulta-
neously across the LHC Computing Grid (LCG),
including IN2P3 in France, GridKA in Germany,
and Fermilab in the US.5 The prototype was effi-
cient at running CDF codes and demonstrated that
a user-level filesystem delivered over HTTP could
be highly effective. In particular,

•	 GROW-FS did an excellent job of localizing
I/O, particularly metadata access. Once a lo-
cal cache was warmed up, similar applications
could run repeatedly with little or no contact
with the server. Metadata access was handled
entirely within client memory, which resulted
in the application’s very fast initial configura-
tion. Only the data necessary for the given ap-
plication was moved over the network.

•	 Parrot’s overhead for accessing GROW-FS was
acceptable for simulation codes. At a microlev-
el, Parrot slowed down individual system calls,
sometimes by a factor of 10 compared to ac-
cessing a local filesystem. However, when con-
sidering I/O costs against simulation runtime
measured in hours, the overall slowdown was
less than 5 percent compared to a local run.

But there were also significant limitations:

•	 Constructing the metadata table at the server
became an increasing cost as software sizes
grew. It took approximately 30 minutes to
build the 20 Mbytes of metadata for CDF soft-
ware distribution. This was acceptable for occa-
sional updates but became a burden as software
updates increased in frequency.

•	 Cold client startup could be quite expensive. At
the first reference to a filesystem, GROW-FS

would require downloading the entire metadata
table and unpacking it in memory. Again, this
was acceptable for CDF but for a much larger
filesystem, it resulted in traffic bursts as mul-
tiple clients began simultaneously.

•	 Proxy cache discovery was also much harder
than expected. Many HEP sites deployed proxy
caches near clusters to support a variety of ap-
plications, but there was no standard way for a
running job to discover the nearest cache’s loca-
tion. If users couldn’t determine this, the file-
system would fall back to accessing the central
repository directly, which didn’t scale.

•	 Although GROW-FS could detect (and pre-
vent) inconsistencies, it didn’t support multiple
software versions simultaneously. The server
could only be updated between runs of the
analysis jobs.

Overall, GROW-FS demonstrated that software
distribution via a global filesystem was feasible, but
more work was needed to reach the next level of
scalability.

The Production System: CernVM-FS
CernVM-FS derives its name from being part of
CernVM, an R&D project established at CERN in
2008 to investigate how virtualization technology
could improve the daily interaction of physicists
with experiment software frameworks.6 When the
project started, the way in which computing re-
sources are provided to scientific experiments was
changing. Along with the resources from managed
computer centers within the grid, a substan-
tial amount of future resources would be unman-
aged and opportunistic. The cloud emerged as an
interface to access resources, with commercial and
academic infrastructure-as-a-service (IaaS) clouds,
volunteers’ computers, or special-purpose comput-
ers used in data taking that remain unused when
the detector undergoes maintenance and upgrades.
Such resources required a virtual machine image.
Due to the size and fast rate of changes of the LHC
application stack, baking the application software
into the virtual machine image wasn’t feasible; the
only possibility was to deliver the application soft-
ware on demand via a network file system.

The scale of software distribution for LHC ex-
periments raised by one to two orders of magnitude
in comparison to former HEP experiments. The
ATLAS experiment, for instance, produces new ver-
sions of the experiment software almost on a daily
basis. Any particular software version comprises

66 November/December 2015

DistributeD systems

some 200,000 files and directories that sum up to
10 Gbytes, comparable to the size of an office suite
or an operating system. And while new versions
keep being added, older versions need to remain
available for the sake of reproducibility.7

Figure 2 shows CernVM-FS’s architecture. The
problem of separating the application software from
a virtual machine to create a lighter virtual machine
that’s easier to maintain slightly differed from the
software distribution problem GROW-FS addressed.
Being in full control of the environment let us move
from a pure user-level interface to a FUSE (http://
fuse.sourceforge.net) filesystem, which provides bet-
ter performance due to its use of kernel-level caches.
One of the new challenges, however, was disconnect-
ed operation for virtual machines that run on physi-
cists’ or volunteers’ laptops.

These differences turned out to be not funda-
mental. A single infrastructure could serve soft-
ware distribution needs for grids as well as clouds,
while slight variations to the filesystem client code

offered different interfaces and modes of local cach-
es tailored to the environment at hand. For exam-
ple, Parrot could access CernVM-FS from restricted
and opportunistic resources, and FUSE could be
used inside virtual machines and cooperating grid
sites, if necessary through an NFS interface. An-
other mode of operation lets CernVM-FS act as a
Linux root filesystem, thereby loading both applica-
tion software and the operating system binaries on
demand from the network.8

When building the CernVM-FS content deliv-
ery network, we extended GROW-FS’s scalable and
robust architecture via fault-tolerant content distri-
bution. Because HTTP connections are stateless,
high availability is provided by the filesystem client
in the form of server failover, provided that Web
proxies and webservers are duplicated. A handful
of standard Apache webservers with a full read-only
data replica, the Stratum 1 servers, provide access
to filesystem content at different geographical loca-
tions around the world. The central webserver that

CVMFS client CVMFS server

Serve files
from CAS

Proxy cache
network

WWW
server

H
TT

P
 G

E
TTrapped

system calls

Unix
application

FUSE/Parrot

CVMFS library

Local access

Metadata 1

Metadata 2

d4b85

83f91

Local cache of CAS

Metadata 1

Metadata 2

d4b85

83f91

Content addressable store
Changes
trigger
updates
to CAS

a

b c

Original filesystem

Figure 2. CernVM-FS architecture. The problem of separating the application software from a virtual machine to
create a lighter virtual machine that’s easier to maintain slightly differs from the software distribution problem
GROW-FS addressed.

www.computer.org/cise 67

provides access to the read/write copy of the data,
the Stratum 0 server, is only used to feed Stratum 1
servers and is thus removed from the critical path.
Replication from Stratum 0 to Stratum 1 exploits
Merkle trees. Unlike rsync, which has to inspect
every file and every directory, Merkle trees provide
an efficient means to instantly detect where exactly
in the filesystem the tree changes are made. That
lets us synchronize replicas of frequently changing
filesystems with a hundred million objects within
less than an hour over standard, wide-area HTTP
connections.

Automatic configuration of HTTP proxies is
critical to both performance and usability, so Cern-
VM-FS clients use a combination of mechanisms
to find nearby servers. To select a Stratum 1 server
over the WAN, geolocation Web services and direct
measurement of round-trip times are performed.
To select a nearby proxy server on the LAN, clients
use the WPAD9 proxy discovery protocol or access
a central registry of Web proxies.10 Other mecha-
nisms of server discovery are conceivable, including
bootstrapping server addresses from CernVM-FS it-
self, which turned out to be much more a matter of
administrative agreement than a technical obstacle.

A fundamental change in CernVM-FS was the
introduction of content addressable storage (CAS).11
Instead of deriving a file’s URL from the path name,
the file’s URL is derived from a cryptographic hash
of its contents, which is stored in the metadata table.
The cryptographic hash provides a short yet globally
unique identifier for a file. Content-addressed files
are self-verifying in the sense that their integrity can
be verified without inspecting the metadata table.
They’re immutable, so maintaining cache consistency
is trivial because data never expires. Changes to a par-
ticular path name result in a new content-addressable
file that provides a building block for versioning in
the filesystem: it’s sufficient to remember the root
hash of the Merkle tree at various points in time to
go back to corresponding filesystem snapshots. The
same file under different paths is deduplicated and
mapped to the same content-addressable file. Indeed,
the deduplicated data doesn’t grow at the speed of the
sheer path names: as new software versions are in-
stalled, we see only 10 to 20 percent of the files with
new content. Combined with data compression, the
amount of transferred data is thus reduced to a level
where it becomes feasible to use even complex soft-
ware stacks over WANs with consumer-grade Inter-
net access. Yet, large multigigabyte files occasionally
end up in the filesystem together with software (such
as ISO images, tar archives, and SQLite indexes),

which can jam the caching infrastructure. CernVM-
FS cuts these files in smaller chunks of not more than
a few megabytes, using rolling checksums12,13 rather
than fixed-sized chunks. Like a diff on text files,
rolling checksums follow changes in binary files so
that small changes to a file result in only one or two
new chunks.

In a similar effort to avoid very large files, the
metadata table can be split along the filesystem tree,
but automatic splitting on every directory level was
dismissed as a step backward in exploiting metada-
ta locality. Instead, the splitting of the metadata is
user-guided through creation and deletion of magic
hidden files as markers for splitting and merging
the metadata table. Filesystem maintainers can eas-
ily identify filesystem subtrees that have a high lo-
cality such as root directories of particular software
package versions. Good experience was made with
metadata partitions that have at least 1,000 entries
but not more than a few hundred thousand entries.
Each of these is known as a subcatalog.

A surprisingly large amount of work went into
the efficient update management at the filesystem’s
central writable copy. Any given filesystem update
writes or modifies a potentially large number of files
(such as a new software version), which is still only
a small subset of all available files. Several unsatis-
fying approaches were implemented to identify the
changeset of filesystem modifications to publish a
new snapshot. Kernel-level filesystem tracers turn
out to be either difficult to maintain or unreliable
for large batches of small writes.14 Interposition
systems, such as a recording FUSE filesystem, have
a high-performance hit for batch writings of small
files, although this is constantly improving.

In the current version, CernVM-FS uses a ker-
nel-level union file system which has a performance
overhead of only a few percent. The filesystem’s
current read-only state is provided by CernVM-
FS itself, whereas the union filesystem redirects all
modifications into temporary local storage from
where they can be further processed (compressed,
checksummed) in a parallelized, batched fashion.
As scalable back-end storage beyond the local file-
system, CernVM-FS can upload data to S3-com-
patible storage, which in turn might directly serve
as an HTTP Stratum 0/1.

Performance
To demonstrate the effectiveness of caching on the cli-
ent side, we instrumented and configured an instance
of the CernVM-FS client to run with the production
software and archive. We ran a standard simulation

68 November/December 2015

DistributeD systems

and reconstruction code using the standard software
of the CMS experiment (CMSSW) release 6.2.5
twice, once with a cold cache and then the identical
code a second time to observe the warm cache’s ef-
fect. We did the same exercise to compare the Firefox
browser and LaTex binaries hosted on CernVM-FS.

Table 1 shows the instrumented applications’
behavior. The CMS application first configures itself
by using CernVM-FS and then processes 10 events;
the Firefox browser is just being opened, and the La-
Tex binaries compile a 70-page technical report. The
first column shows the total time for execution, with
the next three showing the total number of stat()
and open()system calls—and the amount of data
read—at the FUSE layer. (All system calls are sup-
ported, but these are the most numerous.) The next
three columns show the behavior of the CernVM-FS
client itself, measured in the number of HTTP re-
quests, data downloaded, and metadata downloaded

over the network. The applications ran once with
an empty cache to observe cold cache behavior and
then once again to observe warm cache behavior.

Several key observations can be made from this
table. First, loading large applications is extremely
metadata intensive—for LHC applications, it in-
volves issuing millions of stat() system calls. But
it isn’t enough for the cache to have a high hit rate:
it must also be efficient at filling the cold cache.
Millions of stat() operations are reduced into a
much smaller number of HTTP queries, each of
which fetches a large amount of directory metadata
a single time. Second, once the cache is warmed,
the applications are considerably accelerated, and
remote accesses are reduced to a single HTTP query
that verifies the filesystem’s root checksum. (The
difference between data read in each configuration
is due to the action of the OS buffer cache, which is
consulted before reaching the FUSE module.)

Table 2. Caching across versions.

Software version

FUSE syscalls CernVM-FS client ops

Stats
(×1,000)

Opens
(×1,000)

Reads
(Mbytes)

HTTP
requests

Downloaded
data (Mbytes)

Downloaded
metadata
(Mbytes)

CMSSW 6_2_5 2,477 12 859 4,906 854 147

CMSSW 6_2_6 2,461 12 827 D 1,751 D 78 D 6

CMSSW 6_2_7 2,461 12 823 D 1,874 D 94 D 6

CMSSW 6_2_8 2,470 12 825 D 1,761 D 41 D 6

CMSSW 5_3_1 2,332 11 741 D 2,688 D 284 D 6

CMSSW 5_3_12 2,340 11 711 D 1,828 D 81 D 6

Table 1. Cache effectiveness.

Software Cache

FUSE syscalls CernVM-FS client ops

Time
Stats

(×1,000)
Opens

(×1,000)
Reads

(Mbytes)
HTTP

requests
Downloaded

data (Mbytes)

Downloaded
metadata
(Mbytes)

CMSSW Cold cache
Warm cache

12m, 05s
8m, 14s

2,429
2,429

11
11

840
772

4,536
1

895
0

147
0

Firefox Cold cache
Warm cache

16s
2s

17
17

1
1

186
186

268
1

71
0

1.5
0

LaTex Cold cache

Warm cache

23s

17s

150

150

2

2

85

85

351

1

19

0

12

0

www.computer.org/cise 69

Table 2 shows the effect of running multiple
versions of the CMS software sequentially at the
same client. Each line indicates another run of the
same simulation and reconstruction job, each with
a different release of the software. There is consider-
able overlap between versions, and CernVM-FS ef-
fectively reduces the total amount of data that must
be distributed whenever the software is updated.

Current Scale and Deployment
CernVM-FS is widely used today within the HEP
community. Most major experimental operations
maintain a CernVM-FS repository that’s made
available to grid sites, virtual machines in the cloud,
and sometimes to supercomputer resources around
the world. Although the HEP community—in par-
ticular, those running the LHC experiments—has
the largest CernVM-FS repositories, scientific col-
laborations from other fields have recently started
to operate CernVM-FS production services, too.
Scientific software is distributed, for instance, for
astrophysics researchers at the Pierre Auger Obser-
vatory and for researchers in bioscience and life sci-
ences within the BIOMED, WeNMR, and GenAP
projects. Somewhat in the slipstream of the infra-
structure for scientific software stacks, there are cur-
rently some 10,000 CernVM machines per month
that do a network boot of the operating system
from CernVM-FS.

To give a sense of the scale of deployment for
LHC experiments, Table 3 shows the top 10 reposi-
tories at CERN in December 2014 by size. Note
that while the total amount of data in each reposi-
tory is relatively modest (typically a few hundred

gigabytes) the number of metadata entries (mil-
lions) gives some sense of the complexity of these
software installations.

The number of end clients can’t be measured di-
rectly because they’re all hidden behind Web proxy
caches that, by design, hide large amounts of data
from the central repositories. However, some sense
of the scale can be obtained by looking at the cen-
tral servers’ activity logs. The Stratum 1 proxy server’s
cache log that covers all repositories at CERN was ex-
tracted for a one-week period in July, during which
the server responded to 64 million requests for a to-
tal of 10.2 Tbytes of data over the course of a week,
which is a modest 382 Kbytes/s sustained throughput.

To preserve system scalability, individual clients
aren’t permitted to connect to the Stratum 1 server—
only proxy caches representing an entire cluster are
admitted. During the instrumented week, proxy
servers from 70 sites made requests from the Stra-
tum 1 server, each representing a remote cluster of
clients. Each of these clusters can range in size from
a handful of machines in a closet to more than 3,800
machines in the CERN central datacenter. Given
the resource pledges of grid sites, our best estimate is
that those 70 sites host approximately 28,000 clients,
with CernVM-FS currently running in production
on some 64,000 nodes at 160 sites.

Future Opportunities
CernVM-FS has been successfully adopted by sci-
entific organizations with centrally coordinated soft-
ware stacks and a default attitude of openness toward
software and data. To expand the system’s scope will
require tackling several fundamental challenges.

Table 3. Top 10 repositories by size.*

Repository Files (M) Directories (K) Symlinks (K) Subcatalogs Data (Gbytes)

atlas.cern.ch 35.1 5,837 7,810 518 2,223

cms.cern.ch 31.4 3,570 1,757 789 967

lhcb.cern.ch 13.5 2,218 118 1,584 542

alice.cern.ch 6.5 533 15 487 571

sft.cern.ch 4.9 485 104 727 412

ams.cern.ch 3.0 130 618 69 1,997

geant4.cern.ch 2.6 122 2 126 115

belle.cern.ch 1.0 282 7 50 105

boss.cern.ch 0.96 106 22 9 42

* M and K stand for millions and thousands, respectively.

70 November/December 2015

DistributeD systems

Organizational Complexity and
Troubleshooting
The current design accommodates for the fact that
scientific collaborations often span organizational
boundaries such as multiple universities, research
institutes, and industrial partners in several coun-
tries. Similar to the Web itself, anyone can create a
globally accessible filesystem, anyone can mirror ex-
isting filesystems, and any filesystem client or Web
proxy can connect to existing filesystem mirrors. To
accommodate the independent evolution of each
component, there must be minimal dependencies
between the components and loose coupling be-
tween clients and servers and between independent
servers.

The downside of this decoupling is that moni-
toring and troubleshooting the network of clients,
proxies, and servers is challenging but essential to
achieving good performance. Individual organiza-
tions perform monitoring within their boundaries,
but no one is charged with the performance of a
system as a whole. Such issues are addressed by con-
tent delivery networks (CDNs) that have carefully
managed networks of edge servers.15,16 However,
the underlying assumption of CDNs is that a large
number of geographically distributed servers are in-
terconnected and publicly reachable, which is diffi-
cult to achieve across organizations that employ fire-
walls liberally. More work is needed to understand
how to deploy, maintain, and troubleshoot complex
storage networks in this dynamic environment.

Cooperative Storage and Data Distribution
For reasons of simplicity, cooperative caching in the
local network isn’t supported. Provided that a few
gigabytes of local hard disk space are available for
a cache (an assumption that isn’t always true), in-
dependent local hard disk caches are easy to main-
tain, and software or hardware failures on one node
can’t affect another node. The working sets of the
nodes within a cluster, however, tend to be almost
identical and could be reduced considerably by
peer-to-peer data access. So the simplicity in cache
management comes at the cost of a large number of
duplicated caches and network transfers.

This is an interesting problem to tackle in light
of a growing interest to not only distribute software
but also scientific datasets using the same infrastruc-
ture and filesystem clients. The high level of POSIX
compliance of the filesystem client is clearly ap-
pealing. At the same time, larger datasets typically
require high data throughput and tight constraints
on the effective replication factor. Neither of these

were original design goals. Slight adjustments in
the implementation can possibly stretch the current
limitations in a way not yet known.

Confidentiality
For datasets even more so than for software, data
confidentiality can be an issue. To confidentially dis-
tribute data over wide-area links, the transfer must
be encrypted for a closed user group. Two important
properties for any such end-to-end encryption are the
timely support for group membership changes (in
particular, timely revocation of user access) and main-
taining the ability to easily cache files on intermediate
proxies (in encrypted form). Despite early ideas on
an extension to the data distribution scheme and key
management,17 much work remains to be done to
support confidential data in the current system.

Access to scientific software often plays a key
role in the ability to reproduce scientific re-

sults. Conventional software distribution is based
on the assumption that, once installed, applica-
tions are used many times and that users want to
receive updates to the newest version as soon as pos-
sible. In contrast, users of scientific software usu-
ally want access to a very specific version to ensure
that the same input yields the same results. Most
scientific software is only a vehicle for processing a
specific dataset whereupon the software serves no
purpose anymore and can be purged from a com-
puting node. Instead of package managers and
(lightweight) virtual machine images, the approach
presented in this article uses a Web-based, global,
and versioning filesystem. This approach combines
the ease of administration of software as a service,
the scalability of local installations, and the trace-
ability of a version-control system.

Acknowledgments
This work was supported in part by the US National
Science Foundation grant CNS-0643229. Blomer was
supported by a Marie-Curie fellowship of the European
Union.

References
1. D. Thain, T. Tannenbaum, and M. Livny, “Distributed

Computing in Practice: The Condor Experience,”
Concurrency and Computation: Practice and Experience,
vol. 17, nos. 2–4, 2005, pp. 323–356.

2. I. Foster, “Globus Toolkit Version 4: Software for Ser-
vice-Oriented Systems,” Network and Parallel Comput-
ing, Springer, 2005, pp. 2–13.

www.computer.org/cise 71

3. E. Brewer, “CAP Twelve Years Later: How the ‘Rules’
Have Changed,” Computer, vol. 45, no. 2, 2012,
pp. 23–29.

4. D. Thain and M. Livny, “Parrot: An Application
Environment for Data Intensive Computing,” Scal-
able Computing: Practice and Experience, vol. 6, no.
3, 2005, pp. 9–18.

5. G. Compostella et al., “CDF Software Distribution
on the Grid Using Parrot,” J. Physics: Conf. Series, vol.
219, no. 6, 2010, article no. 062009.

6. P. Buncic et al., “A Practical Approach to Virtualiza-
tion in HEP,” European Physical J. Plus, vol. 126, no.
1, 2011, pp. 1–8.

7. J. Blomer, “Decentralized Data Storage and Pro-
cessing in the Context of the LHC Experiments at
CERN,” PhD thesis, Dept. Computer Science, Tech-
nische Universitat Munchen, 2012.

8. J. Blomer et al., “Micro-CernVM: Slashing the Cost
of Building and Deploying Virtual Machines,” J.
Physics: Conf. Series, vol. 513, no. 3, 2014, article no.
032009.

9. P. Gauthier et al., “Web Proxy Auto Discovery
Protocol,” IETF Internet Draft Working Docu-
ment, 1999; https://tools.ietf.org/html/draft-ietf-
wrec-wpad-01.

10. I. Gable et al., “Dynamic Web Cache Publishing for
IaaS Clouds Using Shoal,” J. Physics: Conf. Series, vol.
513, no. 3, 2014, article no. 032035.

11. N. Tolia et al., “Opportunistic Use of Content Ad-
dressable Storage for Distributed File Systems,” Use-
nix Ann. Tech. Conf., General Track, vol. 3, 2003,
pp. 127–140.

12. R.M. Karp and M.O. Rabin, “Efficient Randomized
Pattern-Matching Algorithms,” IBM J. Research and
Development, vol. 31, no. 2, 1987, pp. 249–260.

13. K. Kutzner, “The Decentralized File System Igor-FS
as an Application for Overlay-Networks,” PhD the-
sis, Dept. Computer Science, University of Karlsruhe,
2008.

14. F. Hrbata, “Callback Framework for VFS Layer,” MS
thesis, Dept. Information Tech., Brno University of
Technology, 2005.

15. M.J. Freedman, E. Freudenthal, and D. Mazieres,
“Democratizing Content Publication with Coral,”
Proc. Usenix Symp. Network Systems Design and Imple-
mentation (NSDI), vol. 4, 2004, p. 8.

16. E. Nygren, R.K. Sitaraman, and J. Sun, “The Akamai
Network: A Platform for High-Performance Internet
Applications,” ACM SIGOPS Operating Systems Rev.,
vol. 44, no. 3, 2010, pp. 2–19.

17. H. Harney and C. Muckenhirn, “Group Key Manage-
ment Protocol (GKMP) Specification,” IETF RFC
2094, 1997; https://tools.ietf.org/html/rfc2094.

Jakob Blomer is a computer scientist in the scientific
software group at CERN. His research interests in-
clude distributed storage systems and cloud comput-
ing. Blomer received a PhD in computer science from
the Technical University of Munich. Contact him at
jblomer@cern.ch.

Predrag Buncic is a senior applied physicist at CERN.
His research interests include software and computing
architecture and data management. Buncic received an
MS in physics from the University of Belgrade, Serbia.
Contact him at predrag.buncic@cern.ch.

René Meusel is a software developer at CERN. His re-
search interests lie both in system software architecture
and human-computer interaction. Meusel received an MS
in IT systems engineering from the Hasso Plattner Insti-
tute in Potsdam. Contact him at rene.meusel@cern.ch.

Gerardo Ganis is a senior applied physicist at CERN.
He contributed to the ROOT and XRootD projects,
in particular in the areas of remote file access, distrib-
uted parallel analysis, authentication, and authorization.
Ganis received an MS in physics from the University of
Trieste, Italy. Contact him at gerardo.ganis@cern.ch.

Igor Sfiligoi was a senior research software developer
at the University of California, San Diego, at the time
of writing; he’s currently a senior software engineer at
Teradata. His research interests include distributed com-
puting and big data. Sfiligoi received an MS in comput-
er science from Universita Degli Studi di Udine and an
MS in security science from the EC Council University.
Contact him at igor.sfiligoi@gmail.com.

Douglas Thain is an associate professor in the Depart-
ment of Computer Science and Engineering at the Uni-
versity of Notre Dame. His research team creates and
publishes open source software that’s used around the
world to harness large-scale computing systems such
as clusters, clouds, and grids. Thain received a PhD in
computer science from the University of Wisconsin–
Madison, where he contributed to the Condor distribut-
ed computing system. Contact him at dthain@nd.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

