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D
elivering software across a worldwide dis-
tributed system is a major challenge in 
high-throughput scientific computing. 
While we often think of an application 

as a single executable that can be moved between 
machines, the reality is often much more complex: 
production applications are a complex assembly of 
scripts, configuration files, libraries, and multiple 
executables written in distinct languages with mu-
tual dependencies.

This problem is particularly acute in the high-
energy physics (HEP) community, which relies on 
a large and dynamic set of software developed over 
multiple decades by many authors in many differ-
ent languages and environments. In any scientific 
effort, reproducibility is essential, and so the HEP 
community has developed a discipline of carefully 
collecting all the software that composes a given ap-
plication—compilers, libraries, interpreters, and so 
on—into one place so that consistency is achieved 
across the community. A member of a particular 
experiment simply downloads the standard soft-
ware package in a certain version and proceeds 
with work. However, copying the entire software 
stack everywhere it’s needed isn’t practical—it can 
be very large, new versions of the software stack are 
produced on a regular basis, and any given job only 
needs a small fraction of the total software. In this 
way, scientific software differs from general-pur-
pose applications (such as Apache or Emacs) with  

stable releases and small footprints that can be easily 
packaged.

Within one computing center, deploying sci-
entific software isn’t usually a significant problem: 
the software distribution can be made available on a 
distributed filesystem mounted in a known location 
on all the system’s nodes. However, to address scien-
tific problems at the largest scale, it becomes neces-
sary to harness machines at locations all around the 
world. Distributed computing environments such 
as Condor1 and Globus2 have long enabled users 
to send jobs to other sites for execution, but users 
of those systems quickly discovered that their jobs 
couldn’t function without the necessary software 
installed, nor did they have privileges to install the 
software.

To address this problem, a distributed filesys-
tem designed specifically for distributing complex 
software stacks at a global scale is required. The 
solution must be efficient at distributing large 
amounts of content around the world, while main-
taining the structure and semantics of a Portable 
Operating System Interface (POSIX)-compatible 
filesystem, directory tree, and metadata. It must 
also be entirely user level, enabling it to be accessed 
from any machine and in any environment without 
requiring special privileges. The key observation is 
that the software is only modified at the point of 
publication—all other consumers are read-only 
with high availability. Consistency and integrity are 

The Evolution of Global Scale Filesystems for 
Scientific Software Distribution

Jakob Blomer, Predrag Buncic, René Meusel, and Gerardo Ganis | CERN

Igor Sfiligoi | University of California, San Diego

Douglas Thain | University of Notre Dame

Delivering complex software across a worldwide distributed system is a major challenge in high-throughput 
scientific computing. To address this problem in high-energy physics, a global scale filesystem delivers 
software to hundreds of thousands of machines around the world.



62  November/December 2015

DistributeD systems

Related Work in Global Data Distribution

The work described in this article combines concepts found 

in distributed filesystems, Web content distribution, and 

distributed version control.

Many distributed filesystems have aimed for global data 

sharing, with the Andrew Filesystem (AFS)1 coming the closest 

to realizing this vision as a production system. As widely used 

as AFS once was, the technical matter of deploying kernel 

modifications limited its use within the context of distributed 

systems. Moreover, the possibility to read and write from any 

client requires servers to maintain state information per client 

so that each server can typically serve no more than a few 

hundred clients. Performance comparisons between AFS and 

CernVM-FS for the use case of loading software show an order 

of magnitude less network traffic induced by CernVM-FS and 

thus greatly improved startup delays, despite the HTTP protocol 

overhead.2

Some research prototypes with global ambitions (such 

as OceanStore3 and Tahoe4) build on the idea of peer-to-peer 

overlay networks to distribute files on a global scale. These 

systems are designed for secure and reliable data sharing among 

nodes that both consume and produce files. But compared to a 

hierarchy of Web caches, geographically distributed peer-to-peer 

systems are difficult to set up across firewalls and institutional 

boundaries; they’re also technically difficult to tune for high 

speed and responsiveness for a workload involving many small 

files. As designed, these systems don’t deliver POSIX filesystem 

semantics, and for a variety of reasons, never saw deployment 

beyond research prototypes.

Several filesystem designs such as Ceph5 and Panache6 

have addressed metadata performance by distributing metadata 

across multiple servers, enabling parallel access to it. Although 

this increases overall system throughput, it doesn’t improve 

a single application’s metadata performance (it must request 

items one by one). In contrast, the approach shown in this 

article enables bulk delivery of metadata, which both accelerates 

individual applications as well as increases throughput.

In many ways, HTTP supplanted filesystems as a means of 

distributing data in the wide area, but it lacks any standardized 

form of metadata access, making it unsuitable for direct 

mounting from clients. The proposed WebDAV7 standard 

adds metadata access methods to HTTP for the purposes of 

collaborative authoring, but WebDAV isn’t designed for metadata-

intensive workloads, and important capabilities for software 

distribution such as data verification, bulk metadata handling, 

or consistent namespace updates aren’t part of the protocol. 

GROW-FS and CernVM-FS work around this by natively delivering 

metadata as HTTP objects.

The HTTP-Fuse8 filesystem delivered Linux operating 

system distributions (similar to the way the CernVM virtual 

appliance uses CernVM-FS) by using content-addressable 

storage and data transport through the Coral content distribution 

network.9 Content delivery networks (CDNs) such as Akamai and 

CloudFront are now widely used for distributing HTTP objects 

globally. Although CernVM-FS can use these technologies, 

the HEP-specific proxy cache network allows for the careful 

segregation, monitoring, and control of heavy network loads that 

might otherwise conflict with commodity network access at the 

institutions involved.

The Merkle tree is a widely used technique for the efficient 

incremental computation and verification of checksums. CernVM-

FS is similar to a distributed version control system such as Git, 

in that both use Merkle trees to name a given filesystem tree. 

In fact, you can use Git as a simple content distribution system 

for offline access. However, system objectives are very different: 

Git assumes that repositories are relatively small and can be 

duplicated in their entirety, whereas CernVM-FS is designed to 

handle large repositories whose contents must be distributed on 

demand to online filesystem operations.
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achieved via Merkle trees to checksum all content 
up to the filesystem’s root. This enables read access 
even during network outages.

Traditional filesystem technologies simply can’t 
meet these needs because they were never designed 
for unprivileged deployment or operation at large 
scale across wide area networks (see the “Related 
Work in Global Data Distribution” sidebar). Web 
content delivery systems are closer to the mark, but 
they don’t provide the filesystem tree structures or 
efficient metadata delivery required by these appli-
cations. This article describes the evolution of the 
global filesystem concept in the HEP computing 
community. An early prototype (called GROW) 
validated the basic idea but revealed limitations in 
design and implementation. CERN started a new 
implementation (CernVM-FS; http://cernvm.cern.
ch/portal/filesystem) with improved performance 
and scalability; it now serves the needs of many 
communities in HEP, astrophysics, and life scienc-
es, running on hundreds of thousands of machines 
around the world on a daily basis.

Design Objectives
A global-scale filesystem for scientific software dis-
tribution must meet the following needs:

•	 World-wide scalability. HEP applications must 
run at enormous scale to enable timely process-
ing of the data produced by the Large Hadron 
Collider (LHC). The filesystem should be able 
to scale to hundreds of thousands of machines 
spread across potentially thousands of sites 
around the world. A multilayer hierarchy is the 
only effective means of achieving global scale.

•	 Unprivileged deployment. Although a given user 
might be able to obtain administrator privileges 
on a few machines, or perhaps even an entire 
site, no one can possibly have such access at a 
global scale. Thus, the system must be usable 
by an ordinary user on the client side without 
requiring software installation, kernel mod-
ules, deployment of virtual machines, or similar 
techniques.

•	 Infrastructure compatibility. Large computing 
centers often operate in a restricted networking 
environment, with good reason. Firewalls and 
other network translating devices often make 
it difficult or impossible to employ nonstan-
dard ports or protocols, only allowing traffic via 
well-known channels such as HTTP or Secure 
Shell (SSH). Thus, our design relies heavily on 
the established Web caching infrastructure.

•	 Application-level consistency. Many previous file-
system designs have struggled with the tradeoffs 
described by the CAP (consistency, availability, 
partition tolerance) theorem3 because they as-
sume that a client’s objective is always to read 
the most recent version of data available. In this 
case, software must remain consistent while the 
application runs, so a single snapshot of the 
filesystem must be delivered to the application 
throughout the run, greatly improving perfor-
mance, availability, and reproducibility.

•	 Efficient metadata access. HEP applications 
often have a period of intense metadata: the 
application startup involves running scripts, 
searching multiple directories, loading configu-
ration files, accessing libraries, and so forth. A 
large number of metadata lookups result in fail-
ure because the scripts are searching for entries 
that don’t exist. A suitable solution must be effi-
cient at supporting millions of metadata opera-
tions on a cold cache in a short period of time.

A first prototype of such a filesystem was conceived 
in the context of the (now concluded) Collider  
Detector at Fermilab (CDF) experiment.

Case Study: The CDF Experiment
CDF was typical of HEP experiments in that a 
computational model of the physical detector was 
created and then subjected to simulated particles to 
understand how the real device would respond to 
real particles. These simulations were run an enor-
mous number of times in different configurations 
to fully understand the detector’s behavior. Access 
to thousands of machines was necessary to generate 
results in a timely manner.

The CDF standard software distribution was 
composed of several hundred different software re-
lease versions, each composed of thousands of small 
files, plus a shared area. The files themselves in the 
software releases never changed; versioning was 
used extensively to allow long-term scientific repro-
ducibility. Files in the shared area were allowed to 
change, but this was heavily discouraged. A typical 
user job would access a fraction of files in the shared 
area (such as startup scripts) plus a subset of files 
in one of the software release directories. Although 
a given user was likely to only use 1 percent of the 
files in the repository, the precise set would differ be-
tween users and wasn’t easily determined in advance.

Until the early 2000s, CDF relied on using 
monolithic local clusters, in which the software 
was mounted on a single network filesystem (NFS) 
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server and accessed over a LAN. Researchers desired 
to access machines on the global computing grid, 
but NFS didn’t have the performance or security to 
be accessed over the WAN. AFS was more suited to 
global access, but it proved administratively impos-
sible to convince every site to install it, due to the 
challenges of deploying kernel modules and open-
ing up firewalls.

This experience convinced the CDF computing 
team that it needed a solution that didn’t require 
system privileges to work. The Parrot user-level 
filesystem (http://ccl.cse.nd.edu/software/parrot)4 
looked like a suitable technology for mounting a 
filesystem, but it didn’t (yet) support a protocol for 
caching software accessed over the WAN. The cach-
ing requirement led to consideration of the HTTP 
protocol because it had strong and mature support 
of distributed caching. The relatively small size of 
most CDF files also nicely fit the typical HTTP use 
case. The problem, however, was how to present 
these files in a filesystem-like manner.

The Prototype Filesystem: GROW-FS
To meet CDF’s needs, a prototype filesystem called 
GROW-FS (http://ccl.cse.nd.edu/software/parrot) 

was created. Figure 1 shows the system architec-
ture. On the server side, GROW-FS is simply an 
ordinary webserver that exports the desired soft-
ware. Using the HTTP protocol makes it easy to 
transit multiple networks because it’s rarely blocked 
by firewalls. However, HTTP has one significant 
drawback: it doesn’t offer access to filesystem meta-
data in any standard way. Here, metadata includes 
directory listings and file details such as size, owner, 
and permissions.

To enable efficient metadata access, GROW-FS 
requires the server operator to run a script that tra-
verses the filesystem and produces a metadata table 
listing all files along with their metadata and (option-
ally) a checksum of file contents. The filesystem tree 
as a whole is a Merkle tree, in which each directory’s 
checksum is computed from the checksum of the 
files it contains. As a result, the directory’s root has 
a checksum that represents the entire tree’s contents.

On the client side, the GROW-FS library im-
plements a read-only filesystem by combining the 
metadata table and file objects. When the filesystem 
is first accessed, the library downloads the entire 
metadata table and holds it in memory. This al-
lows all directory reads and metadata lookups to be  
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Figure 1. GROW-FS architecture. On the server side, GROW-FS is simply an ordinary webserver that exports the desired 
software. Using the HTTP protocol makes it easy to transit multiple networks because it’s rarely blocked by firewalls.
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satisfied from client memory. File accesses are im-
plemented by downloading the desired file from the 
server, caching it on local disk by name, and then 
accessing the file directly.

Finally, Parrot attaches the application to the 
GROW-FS library. Parrot is a user-level tool for at-
taching standard Unix applications to a variety of 
remote data services such as HTTP, FTP, iRODS, 
and HDFS. It works by capturing all of an applica-
tion’s system calls via the ptrace debugging inter-
face. System calls that refer to files in the GROW-
FS namespace, such as /grow/www.cern.ch/
file, are converted into calls in the GROW-FS 
library, thus transparently attaching the application 
to the remote service.

For several years, GROW-FS enabled CDF sim-
ulations to run on several thousand CPUs simulta-
neously across the LHC Computing Grid (LCG), 
including IN2P3 in France, GridKA in Germany, 
and Fermilab in the US.5 The prototype was effi-
cient at running CDF codes and demonstrated that 
a user-level filesystem delivered over HTTP could 
be highly effective. In particular,

•	 GROW-FS did an excellent job of localizing 
I/O, particularly metadata access. Once a lo-
cal cache was warmed up, similar applications 
could run repeatedly with little or no contact 
with the server. Metadata access was handled 
entirely within client memory, which resulted 
in the application’s very fast initial configura-
tion. Only the data necessary for the given ap-
plication was moved over the network.

•	 Parrot’s overhead for accessing GROW-FS was 
acceptable for simulation codes. At a microlev-
el, Parrot slowed down individual system calls, 
sometimes by a factor of 10 compared to ac-
cessing a local filesystem. However, when con-
sidering I/O costs against simulation runtime 
measured in hours, the overall slowdown was 
less than 5 percent compared to a local run.

But there were also significant limitations:

•	 Constructing the metadata table at the server 
became an increasing cost as software sizes 
grew. It took approximately 30 minutes to 
build the 20 Mbytes of metadata for CDF soft-
ware distribution. This was acceptable for occa-
sional updates but became a burden as software 
updates increased in frequency.

•	 Cold client startup could be quite expensive. At 
the first reference to a filesystem, GROW-FS 

would require downloading the entire metadata 
table and unpacking it in memory. Again, this 
was acceptable for CDF but for a much larger 
filesystem, it resulted in traffic bursts as mul-
tiple clients began simultaneously.

•	 Proxy cache discovery was also much harder 
than expected. Many HEP sites deployed proxy 
caches near clusters to support a variety of ap-
plications, but there was no standard way for a 
running job to discover the nearest cache’s loca-
tion. If users couldn’t determine this, the file-
system would fall back to accessing the central 
repository directly, which didn’t scale.

•	 Although GROW-FS could detect (and pre-
vent) inconsistencies, it didn’t support multiple 
software versions simultaneously. The server 
could only be updated between runs of the 
analysis jobs.

Overall, GROW-FS demonstrated that software 
distribution via a global filesystem was feasible, but 
more work was needed to reach the next level of 
scalability.

The Production System: CernVM-FS
CernVM-FS derives its name from being part of 
CernVM, an R&D project established at CERN in 
2008 to investigate how virtualization technology 
could improve the daily interaction of physicists 
with experiment software frameworks.6 When the 
project started, the way in which computing re-
sources are provided to scientific experiments was 
changing. Along with the resources from managed  
computer centers within the grid, a substan-
tial amount of future resources would be unman-
aged and opportunistic. The cloud emerged as an 
interface to access resources, with commercial and 
academic infrastructure-as-a-service (IaaS) clouds, 
volunteers’ computers, or special-purpose comput-
ers used in data taking that remain unused when 
the detector undergoes maintenance and upgrades. 
Such resources required a virtual machine image. 
Due to the size and fast rate of changes of the LHC 
application stack, baking the application software 
into the virtual machine image wasn’t feasible; the 
only possibility was to deliver the application soft-
ware on demand via a network file system.

The scale of software distribution for LHC ex-
periments raised by one to two orders of magnitude 
in comparison to former HEP experiments. The 
ATLAS experiment, for instance, produces new ver-
sions of the experiment software almost on a daily 
basis. Any particular software version comprises 
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some 200,000 files and directories that sum up to 
10 Gbytes, comparable to the size of an office suite 
or an operating system. And while new versions 
keep being added, older versions need to remain 
available for the sake of reproducibility.7

Figure 2 shows CernVM-FS’s architecture. The 
problem of separating the application software from 
a virtual machine to create a lighter virtual machine 
that’s easier to maintain slightly differed from the 
software distribution problem GROW-FS addressed. 
Being in full control of the environment let us move 
from a pure user-level interface to a FUSE (http://
fuse.sourceforge.net) filesystem, which provides bet-
ter performance due to its use of kernel-level caches. 
One of the new challenges, however, was disconnect-
ed operation for virtual machines that run on physi-
cists’ or volunteers’ laptops.

These differences turned out to be not funda-
mental. A single infrastructure could serve soft-
ware distribution needs for grids as well as clouds, 
while slight variations to the filesystem client code  

offered different interfaces and modes of local cach-
es tailored to the environment at hand. For exam-
ple, Parrot could access CernVM-FS from restricted 
and opportunistic resources, and FUSE could be 
used inside virtual machines and cooperating grid 
sites, if necessary through an NFS interface. An-
other mode of operation lets CernVM-FS act as a 
Linux root filesystem, thereby loading both applica-
tion software and the operating system binaries on 
demand from the network.8

When building the CernVM-FS content deliv-
ery network, we extended GROW-FS’s scalable and 
robust architecture via fault-tolerant content distri-
bution. Because HTTP connections are stateless, 
high availability is provided by the filesystem client 
in the form of server failover, provided that Web 
proxies and webservers are duplicated. A handful 
of standard Apache webservers with a full read-only 
data replica, the Stratum 1 servers, provide access 
to filesystem content at different geographical loca-
tions around the world. The central webserver that 
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Figure 2. CernVM-FS architecture. The problem of separating the application software from a virtual machine to 
create a lighter virtual machine that’s easier to maintain slightly differs from the software distribution problem 
GROW-FS addressed.
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provides access to the read/write copy of the data, 
the Stratum 0 server, is only used to feed Stratum 1 
servers and is thus removed from the critical path. 
Replication from Stratum 0 to Stratum 1 exploits 
Merkle trees. Unlike rsync, which has to inspect 
every file and every directory, Merkle trees provide 
an efficient means to instantly detect where exactly 
in the filesystem the tree changes are made. That 
lets us synchronize replicas of frequently changing 
filesystems with a hundred million objects within 
less than an hour over standard, wide-area HTTP 
connections.

Automatic configuration of HTTP proxies is 
critical to both performance and usability, so Cern-
VM-FS clients use a combination of mechanisms 
to find nearby servers. To select a Stratum 1 server 
over the WAN, geolocation Web services and direct 
measurement of round-trip times are performed. 
To select a nearby proxy server on the LAN, clients 
use the WPAD9 proxy discovery protocol or access 
a central registry of Web proxies.10 Other mecha-
nisms of server discovery are conceivable, including 
bootstrapping server addresses from CernVM-FS it-
self, which turned out to be much more a matter of 
administrative agreement than a technical obstacle.

A fundamental change in CernVM-FS was the 
introduction of content addressable storage (CAS).11 
Instead of deriving a file’s URL from the path name, 
the file’s URL is derived from a cryptographic hash 
of its contents, which is stored in the metadata table. 
The cryptographic hash provides a short yet globally 
unique identifier for a file. Content-addressed files 
are self-verifying in the sense that their integrity can 
be verified without inspecting the metadata table. 
They’re immutable, so maintaining cache consistency 
is trivial because data never expires. Changes to a par-
ticular path name result in a new content-addressable 
file that provides a building block for versioning in 
the filesystem: it’s sufficient to remember the root 
hash of the Merkle tree at various points in time to 
go back to corresponding filesystem snapshots. The 
same file under different paths is deduplicated and 
mapped to the same content-addressable file. Indeed, 
the deduplicated data doesn’t grow at the speed of the 
sheer path names: as new software versions are in-
stalled, we see only 10 to 20 percent of the files with 
new content. Combined with data compression, the 
amount of transferred data is thus reduced to a level 
where it becomes feasible to use even complex soft-
ware stacks over WANs with consumer-grade Inter-
net access. Yet, large multigigabyte files occasionally 
end up in the filesystem together with software (such 
as ISO images, tar archives, and SQLite indexes), 

which can jam the caching infrastructure. CernVM-
FS cuts these files in smaller chunks of not more than 
a few megabytes, using rolling checksums12,13 rather 
than fixed-sized chunks. Like a diff on text files, 
rolling checksums follow changes in binary files so 
that small changes to a file result in only one or two 
new chunks.

In a similar effort to avoid very large files, the 
metadata table can be split along the filesystem tree, 
but automatic splitting on every directory level was 
dismissed as a step backward in exploiting metada-
ta locality. Instead, the splitting of the metadata is 
user-guided through creation and deletion of magic 
hidden files as markers for splitting and merging 
the metadata table. Filesystem maintainers can eas-
ily identify filesystem subtrees that have a high lo-
cality such as root directories of particular software 
package versions. Good experience was made with 
metadata partitions that have at least 1,000 entries 
but not more than a few hundred thousand entries. 
Each of these is known as a subcatalog.

A surprisingly large amount of work went into 
the efficient update management at the filesystem’s 
central writable copy. Any given filesystem update 
writes or modifies a potentially large number of files 
(such as a new software version), which is still only 
a small subset of all available files. Several unsatis-
fying approaches were implemented to identify the 
changeset of filesystem modifications to publish a 
new snapshot. Kernel-level filesystem tracers turn 
out to be either difficult to maintain or unreliable 
for large batches of small writes.14 Interposition 
systems, such as a recording FUSE filesystem, have 
a high-performance hit for batch writings of small 
files, although this is constantly improving.

In the current version, CernVM-FS uses a ker-
nel-level union file system which has a performance 
overhead of only a few percent. The filesystem’s 
current read-only state is provided by CernVM-
FS  itself, whereas the union filesystem redirects all 
modifications into temporary local storage from 
where they can be further processed (compressed, 
checksummed) in a parallelized, batched fashion. 
As scalable back-end storage beyond the local file-
system, CernVM-FS can upload data to S3-com-
patible storage, which in turn might directly serve 
as an HTTP Stratum 0/1.

Performance
To demonstrate the effectiveness of caching on the cli-
ent side, we instrumented and configured an instance 
of the CernVM-FS client to run with the production 
software and archive. We ran a standard simulation 
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and reconstruction code using the standard software 
of the CMS experiment (CMSSW) release 6.2.5 
twice, once with a cold cache and then the identical 
code a second time to observe the warm cache’s ef-
fect. We did the same exercise to compare the Firefox 
browser and LaTex binaries hosted on CernVM-FS.

Table 1 shows the instrumented applications’ 
behavior. The CMS application first configures itself 
by using CernVM-FS and then processes 10 events; 
the Firefox browser is just being opened, and the La-
Tex binaries compile a 70-page technical report. The 
first column shows the total time for execution, with 
the next three showing the total number of stat() 
and open()system calls—and the amount of data 
read—at the FUSE layer. (All system calls are sup-
ported, but these are the most numerous.) The next 
three columns show the behavior of the CernVM-FS 
client itself, measured in the number of HTTP re-
quests, data downloaded, and metadata downloaded  

over the network. The applications ran once with 
an empty cache to observe cold cache behavior and 
then once again to observe warm cache behavior.

Several key observations can be made from this 
table. First, loading large applications is extremely 
metadata intensive—for LHC applications, it in-
volves issuing millions of stat() system calls. But 
it isn’t enough for the cache to have a high hit rate: 
it must also be efficient at filling the cold cache. 
Millions of stat() operations are reduced into a 
much smaller number of HTTP queries, each of 
which fetches a large amount of directory metadata 
a single time. Second, once the cache is warmed, 
the applications are considerably accelerated, and 
remote accesses are reduced to a single HTTP query 
that verifies the filesystem’s root checksum. (The 
difference between data read in each configuration 
is due to the action of the OS buffer cache, which is 
consulted before reaching the FUSE module.)

Table 2. Caching across versions.

Software version

FUSE syscalls CernVM-FS client ops

Stats 
(×1,000)

Opens 
(×1,000)

Reads 
(Mbytes)

HTTP 
requests

Downloaded  
data (Mbytes)

Downloaded 
metadata 
(Mbytes)

CMSSW 6_2_5 2,477 12 859 4,906 854 147

CMSSW 6_2_6 2,461 12 827 D 1,751 D 78 D 6

CMSSW 6_2_7 2,461 12 823 D 1,874 D 94 D 6

CMSSW 6_2_8 2,470 12 825 D 1,761 D 41 D 6

CMSSW 5_3_1 2,332 11 741 D 2,688 D 284 D 6

CMSSW 5_3_12 2,340 11 711 D 1,828 D 81 D 6

Table 1. Cache effectiveness.

Software Cache

FUSE syscalls CernVM-FS client ops

Time
Stats 

(×1,000)
Opens 

(×1,000)
Reads 

(Mbytes)
HTTP 

requests
Downloaded  

data (Mbytes)

Downloaded 
metadata 
(Mbytes)

CMSSW Cold cache 
Warm cache

12m, 05s 
8m, 14s

2,429 
2,429

11 
11

840 
772

4,536 
1

895 
0

147 
0

Firefox Cold cache 
Warm cache

16s 
2s

17 
17

1 
1

186 
186

268 
1

71 
0

1.5 
0

LaTex Cold cache 

Warm cache

23s 

17s

150 

150

2 

2

85 

85

351 

1

19 

0

12 

0
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Table 2 shows the effect of running multiple 
versions of the CMS software sequentially at the 
same client. Each line indicates another run of the 
same simulation and reconstruction job, each with 
a different release of the software. There is consider-
able overlap between versions, and CernVM-FS ef-
fectively reduces the total amount of data that must 
be distributed whenever the software is updated.

Current Scale and Deployment
CernVM-FS is widely used today within the HEP 
community. Most major experimental operations 
maintain a CernVM-FS repository that’s made 
available to grid sites, virtual machines in the cloud, 
and sometimes to supercomputer resources around 
the world. Although the HEP community—in par-
ticular, those running the LHC experiments—has 
the largest CernVM-FS repositories, scientific col-
laborations from other fields have recently started 
to operate CernVM-FS production services, too. 
Scientific software is distributed, for instance, for 
astrophysics researchers at the Pierre Auger Obser-
vatory and for researchers in bioscience and life sci-
ences within the BIOMED, WeNMR, and GenAP 
projects. Somewhat in the slipstream of the infra-
structure for scientific software stacks, there are cur-
rently some 10,000 CernVM machines per month 
that do a network boot of the operating system 
from CernVM-FS.

To give a sense of the scale of deployment for 
LHC experiments, Table 3 shows the top 10 reposi-
tories at CERN in December 2014 by size. Note 
that while the total amount of data in each reposi-
tory is relatively modest (typically a few hundred  

gigabytes) the number of metadata entries (mil-
lions) gives some sense of the complexity of these 
software installations.

The number of end clients can’t be measured di-
rectly because they’re all hidden behind Web proxy 
caches that, by design, hide large amounts of data 
from the central repositories. However, some sense 
of the scale can be obtained by looking at the cen-
tral servers’ activity logs. The Stratum 1 proxy server’s 
cache log that covers all repositories at CERN was ex-
tracted for a one-week period in July, during which 
the server responded to 64 million requests for a to-
tal of 10.2 Tbytes of data over the course of a week, 
which is a modest 382 Kbytes/s sustained throughput.

To preserve system scalability, individual clients 
aren’t permitted to connect to the Stratum 1 server— 
only proxy caches representing an entire cluster are 
admitted. During the instrumented week, proxy 
servers from 70 sites made requests from the Stra-
tum 1 server, each representing a remote cluster of 
clients. Each of these clusters can range in size from 
a handful of machines in a closet to more than 3,800 
machines in the CERN central datacenter. Given 
the resource pledges of grid sites, our best estimate is 
that those 70 sites host approximately 28,000 clients, 
with CernVM-FS currently running in production 
on some 64,000 nodes at 160 sites.

Future Opportunities
CernVM-FS has been successfully adopted by sci-
entific organizations with centrally coordinated soft-
ware stacks and a default attitude of openness toward 
software and data. To expand the system’s scope will 
require tackling several fundamental challenges.

Table 3. Top 10 repositories by size.*

Repository Files (M) Directories (K) Symlinks (K) Subcatalogs Data (Gbytes)

atlas.cern.ch 35.1 5,837 7,810 518 2,223

cms.cern.ch 31.4 3,570 1,757 789 967

lhcb.cern.ch 13.5 2,218 118 1,584 542

alice.cern.ch 6.5 533 15 487 571

sft.cern.ch 4.9 485 104 727 412

ams.cern.ch 3.0 130 618 69 1,997

geant4.cern.ch 2.6 122 2 126 115

belle.cern.ch 1.0 282 7 50 105

boss.cern.ch 0.96 106 22 9 42

* M and K stand for millions and thousands, respectively.
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Organizational Complexity and 
Troubleshooting
The current design accommodates for the fact that 
scientific collaborations often span organizational 
boundaries such as multiple universities, research 
institutes, and industrial partners in several coun-
tries. Similar to the Web itself, anyone can create a 
globally accessible filesystem, anyone can mirror ex-
isting filesystems, and any filesystem client or Web 
proxy can connect to existing filesystem mirrors. To 
accommodate the independent evolution of each 
component, there must be minimal dependencies 
between the components and loose coupling be-
tween clients and servers and between independent 
servers.

The downside of this decoupling is that moni-
toring and troubleshooting the network of clients, 
proxies, and servers is challenging but essential to 
achieving good performance. Individual organiza-
tions perform monitoring within their boundaries, 
but no one is charged with the performance of a 
system as a whole. Such issues are addressed by con-
tent delivery networks (CDNs) that have carefully 
managed networks of edge servers.15,16 However, 
the underlying assumption of CDNs is that a large 
number of geographically distributed servers are in-
terconnected and publicly reachable, which is diffi-
cult to achieve across organizations that employ fire-
walls liberally. More work is needed to understand 
how to deploy, maintain, and troubleshoot complex 
storage networks in this dynamic environment.

Cooperative Storage and Data Distribution
For reasons of simplicity, cooperative caching in the 
local network isn’t supported. Provided that a few 
gigabytes of local hard disk space are available for 
a cache (an assumption that isn’t always true), in-
dependent local hard disk caches are easy to main-
tain, and software or hardware failures on one node 
can’t affect another node. The working sets of the 
nodes within a cluster, however, tend to be almost 
identical and could be reduced considerably by 
peer-to-peer data access. So the simplicity in cache 
management comes at the cost of a large number of 
duplicated caches and network transfers.

This is an interesting problem to tackle in light 
of a growing interest to not only distribute software 
but also scientific datasets using the same infrastruc-
ture and filesystem clients. The high level of POSIX 
compliance of the filesystem client is clearly ap-
pealing. At the same time, larger datasets typically 
require high data throughput and tight constraints 
on the effective replication factor. Neither of these 

were original design goals. Slight adjustments in 
the implementation can possibly stretch the current 
limitations in a way not yet known.

Confidentiality
For datasets even more so than for software, data 
confidentiality can be an issue. To confidentially dis-
tribute data over wide-area links, the transfer must 
be encrypted for a closed user group. Two important 
properties for any such end-to-end encryption are the 
timely support for group membership changes (in 
particular, timely revocation of user access) and main-
taining the ability to easily cache files on intermediate 
proxies (in encrypted form). Despite early ideas on 
an extension to the data distribution scheme and key 
management,17 much work remains to be done to 
support confidential data in the current system.

Access to scientific software often plays a key 
role in the ability to reproduce scientific re-

sults. Conventional software distribution is based 
on the assumption that, once installed, applica-
tions are used many times and that users want to 
receive updates to the newest version as soon as pos-
sible. In contrast, users of scientific software usu-
ally want access to a very specific version to ensure 
that the same input yields the same results. Most 
scientific software is only a vehicle for processing a 
specific dataset whereupon the software serves no 
purpose anymore and can be purged from a com-
puting node. Instead of package managers and 
(lightweight) virtual machine images, the approach 
presented in this article uses a Web-based, global, 
and versioning filesystem. This approach combines 
the ease of administration of software as a service, 
the scalability of local installations, and the trace-
ability of a version-control system. 
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