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Acceleration of an existing MPI-based, particle-laden turbulent flow simulation code is achieved using 

up to four NVIDIA GPU devices. The overall design is to transfer the entire flow velocity, temperature, 

and humidity fields to each device, and compute particle trajectories entirely on the GPU hardware. For 

one-way coupled turbulent flow simulations, accurate simulations can be achieved for less computational 

cost than the original CPU implementation for particle numbers above 10 6 . Above 10 7 particles, the GPU 

version is roughly 14 times faster than the original CPU implementation. The effects of interpolation 

order, precision of the transferred Eulerian fields, and sub-time-stepping for fast particle dynamics are 

discussed. 
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. Introduction 

Computational acceleration via Graphics Processing Units

GPUs) has increasingly become more common in recent years, as

verall hardware performance and knowledge base has increased.

otential gains in computational speed, overall power efficiency,

nd comparable hardware cost continue to make scientific com-

uting with GPUs an appealing option for many scientific fields. 

One such field of study is in computational fluid mechan-

cs, which centers around integrating the Navier–Stokes equations

o produce realizations of various fluid flows. Within this broad

mbrella, GPU acceleration typically takes one of three forms.

irst, the entire flow solver can be put onto one or more GPUs.

alvadore et al. (2013) for instance present accurate simulations

f a turbulent flow using a single NVIDIA GPU device, having

orted and optimized an existing Fortran computational code to

he NVIDIA CUDA (Compute Unified Device Architecture) language.

chalkwijk et al. (2012) and Schalkwijk et al. (2015) demonstrate

hat large eddy simulation (LES) of the planetary boundary layer

an be massively accelerated when porting existing codes to mul-

iple GPUs, enabling simulations previously thought inaccessible,

uch as the use of LES as a weather prediction tool. Many other

mplementations exist ( van Heerwaarden et al., 2017; Khajeh-Saeed

nd Perot, 2013; Manuel et al., 2014 ), and issues associated with

ptimization and porting continue to be studied ( Aissa et al., 2017 ).
∗ Corresponding author. 
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A second technique for accelerating flow solvers via GPU is

ithin the class of particle-based methods, including Lattice-

oltzmann methods (LBM) and smoothed particle hydrodynamics

SPH). Here, the implementation on GPU is arguably simpler than

orting Eulerian-based methods, since tracking large numbers of

articles is an operation which better exploits the GPU paralleliza-

ion. GPU-accelerated SPH and LBM methods are used for a variety

f applications ( Mokos et al., 2017; Obrecht et al., 2013; Winkler

t al., 2017 ), and are oftentimes a powerful means of solving com-

lex flows on simple desktop systems ( Gomez-Gesteira et al., 2012;

érault, 2010 ). The third class of GPU-based flow solvers focuses

n accelerating only certain expensive and parallelizable sections

f the overall solver. This can be quite specific, such as physics-

ased radiation schemes in weather prediction models ( Michalakes

nd Vachharajani, 2008; Mielikainen et al., 2012 ), or via acceler-

tion of linear algebra packages for solving large linear systems

 Minden et al., 2013; Tomov et al., 2010 ). 

The present work falls more into the latter category, as the type

f problem we aim to enhance with GPUs is particle-laden simu-

ations of turbulent flows. More specifically, we aim to accelerate

he particle calculation of the common Eulerian-Lagrangian repre-

entation of dispersed phase turbulent flows. In this approach, a

rid-based direct numerical simulation (DNS) or LES is coupled to

 point-particle treatment of the particle phase, where each par-

icle is integrated individually ( Balachandar and Eaton, 2010 ). It is

his individual treatment of the particles which allows for straight-

orward porting with significant speedup. 

https://doi.org/10.1016/j.ijmultiphaseflow.2017.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2017.11.010&domain=pdf
mailto:david.richter.26@nd.edu
https://doi.org/10.1016/j.ijmultiphaseflow.2017.11.010
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As detailed below, the overall strategy is to offload the entire

particle computation to one or more GPUs, which requires trans-

ferring gridded flow velocity, temperature, and humidity data from

the CPU cluster to the GPU devices. As such, we note that this

work is meant to target relatively modest flow calculations that

can benefit from many more particles than traditional MPI (Mes-

sage Passing Interface) implementations can provide, thereby en-

abling larger ensembles of particles for faster statistical conver-

gence or higher resolution of Lagrangian-based continuous fields.

It is shown that for numbers of particles of order 10 8 , the use of

up to four NVIDIA GPU devices can produce significant speedup

and allow for multiresolution treatment of fast particle processes

that would otherwise be computationally expensive. 

2. Algorithm and code structure 

In this section, first the original implementation will be out-

lined, followed by a description of how GPU hardware is used to

accelerate the particle calculations. In describing the GPU imple-

mentation, we focus on three key factors which reflect tradeoffs

between performance and accuracy: interpolation of flow quanti-

ties to particle locations, single versus double precision consider-

ations, and introducing multiresolution sub-time-stepping for re-

solving particle time scales shorter than the flow time step. 

2.1. Existing code 

The original code is a modified version of the National Center

for Atmospheric Research (NCAR) LES model ( Moeng, 1984; Sulli-

van et al., 1994 ), extended to include Lagrangian particles (here re-

ferred to as the NTLP code — NCAR Turbulence with Lagrangian

Particles). The NTLP code has recently been used in numerous

DNS studies to investigate the dynamics of inertial, non-isothermal,

and/or evaporating particles in various settings ( Gonzalez et al.,

2017; Helgans and Richter, 2016; Peng and Richter, 2017; Richter

et al., 2016; Richter and Sullivan, 2013; 2014 ). For the Eulerian flow

calculation, the code solves the incompressible Navier-Stokes equa-

tions for the velocity, temperature, humidity, and pressure fields on

a fixed Cartesian mesh: 

∇ · u = 0 , (1)

∂u 

∂t 
+ u · ∇u = − 1 

ρ
∇p + ∇ · ( ν∇u ) , (2)

∂T 

∂t 
+ ∇ · ( u T ) = ∇ · ( α∇T ) , (3)

∂q 

∂t 
+ ∇ · ( u q ) = ∇ · ( �∇q ) , (4)

where u is the fluid velocity, p is the pressure, T is the fluid tem-

perature, q is the specific humidity of the fluid, ρ is the density,

ν is the kinematic viscosity, α is the thermal diffusivity, and � is

the diffusivity of water vapor. As presented, a numerical solution

to Eqs. (1) –(4) reflects DNS since the material constants ν , α, and

� are given as molecular quantities. Extension to LES is straightfor-

ward, in which case the field variables represent filtered quantities,

and the diffusivities are replaced by a subfilter model based on

Deardorff (1980) . The details of this model are not provided here

(see Moeng, 1984 for example); it is instead emphasized that the

equations being solved can be easily switched to LES mode with

no appreciable increase in cost. 

At the same time, the code is equipped to integrate the tra-

jectory of many individual Lagrangian point particles. The point

particle approximation is commonly made in settings where the

particles are smaller than the smallest scales of the turbulent flow
 Balachandar, 2009 ), and is commonly used as a tool for studying

ispersed phases in turbulence ( Balachandar and Eaton, 2010 ). If in

ddition to being small the particle density ρp is much larger than

he fluid velocity ρ , each particle’s position, velocity, temperature,

nd radius can be described as follows ( Maxey and Riley, 1983;

ruppacher and Klett, 1997 ): 

d x p 

dt 
= v p , (5)

d v p 

dt 
= 

1 

τp 
( u f − v p ) , (6)

dT p 

dt 
= 

1 

τT 

(
T f − T p 

)
+ 

γT 

r p 

dr p 

dt 
, (7)

dr p 

dt 
= γq 

r p 

τp 

(
q f − q ∗

)
. (8)

ere, v p refers to the velocity of a single particle, T p is the particle

emperature, and r p is the particle radius. Several parameters ap-

ear in these expressions: τ p is the inertial time constant of the

article and represents how quickly a particle can adjust to the

ocal fluid velocity, τ T is the thermal time constant of the parti-

le and represents how quickly the particle can adjust its temper-

ture through convective heat exchange, and γ T and γ q are coeffi-

ients which include quantities such as the fluid and particle spe-

ific heats, the particle density, the latent heat of the particle ma-

erial, and the mass and heat transfer convection coefficients. Since

he details of these expressions are not the focus of this work, and

ince the proposed GPU-accelerated algorithm is meant to apply to

ny point particle model under the broad structure of Eqs. (5) –(8)

e.g. Mashayek, 1998; Miller and Bellan, 1999; Russo et al., 2014 ),

e refer the reader to Helgans and Richter (2016) and Peng and

ichter (2017) for an explicit discussion of these terms in our par-

icular setup. We also note that other forms of the particle mo-

entum equation, including terms such as the added mass or lift

orces ( Maxey and Riley, 1983 ) for studying lighter-than-fluid par-

icles (e.g. bubbles), can be easily added as well. In these situa-

ions, we would anticipate even larger performance enhancements

ia GPU acceleration, since these extra calculations, namely for the

elocity derivatives and their interpolations, would be done on the

PU as well. 

Furthermore, other forms of the particle momentum equations,

ncluding terms such as the added mass or lift forces ( Maxey and

iley, 1983 ) for studying lighter-than-fluid particles (e.g. bubbles),

re ideal candidates for GPU acceleration since their calculation

an be entirely performed on the GPU device. 

The linking of Eqs. (5) –(8) to the Eulerian fields of velocity, tem-

erature, and humidity occurs through the u f , T f , and q f terms,

hich are Eulerian quantities interpolated to the particle location.

he code is configured such that the user can choose between

ixth-order Lagrange or trilinear interpolation. The particles there-

ore evolve primarily based on differences between their own ve-

ocity, temperature, and surface humidity ( q ∗ ) and the surround-

ng fluid. The particle temperature can also vary due to latent heat

xchange via evaporation/condensation (second term on the right

and side of Eq. (7) ). 

Numerically, Eqs. (1) –(4) are solved using a pseudospectral dis-

retization in the horizontal, periodic x and y directions, and sec-

nd order finite differences in the wall-normal z direction. Time

ntegration is performed for all particle and field quantities using

 third-order Runge–Kutta (RK) scheme. Incompressibility of the

uid velocity field is enforced via solving a pressure Poisson equa-

ion at each RK stage, and the advection operators in Eqs. (3) and

4) are solved in skew-symmetric form. A typical snapshot of the

uid and particle solution is shown in Fig. 1 , which shows instan-

aneous particle positions and streamwise velocity fluctuations for
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Fig. 1. Instantaneous snapshot of particle-laden turbulent channel flow simulated using the default configuration of the NTLP model. Particles in the lower half of the domain 

are shown as black dots, and colors represent normalized streamwise velocity fluctuations u ′ / U max , where U max is the maximum mean velocity at the channel centerline. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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b  
 particle-laden turbulent channel flow configured according to the

enchmark case of Marchioli et al. (2008) . 

The underlying CPU version of the code is written in Fortran

nd based on MPI for parallelization, and it has been shown to ex-

ibit favorable scaling up to 16,384 processors across multiple ar-

hitectures including Cray, SGI, and IBM (see e.g. Sullivan and Pat-

on, 2011 ). In its default configuration, the Cartesian domain is de-

omposed over two dimensions, however the Lagrangian particles

nd Eulerian grid points are treated differently. 

The Eulerian flow domain is decomposed over MPI processes

cross the y and z dimensions — see Fig. 2 (a). With this decom-

osition, each processor contains the entire solution array in the

 direction at each ( y, z ) point for ease in performing fast Fourier

ransformations (FFTs); MPI communication is required to perform

FTs in the y direction. Each processor contains a halo in the z di-

ection for use in computing vertical derivatives. 

The particles are instead decomposed over processors in the ( x,

 ) plane — see Fig. 2 (b). The reason for this difference in domain

ecomposition is that in wall-bounded turbulent flows, the dynam-

cs of inertial particles is such that they tend to drift and accumu-

ate near the top and/or bottom walls of the domain ( Sardina et al.,

012 ). Therefore for purposes of load balancing across MPI pro-

esses, the particles must reside within columns aligned normal

o the walls of the domain. As a result, MPI communication is

equired to “transpose” the field data distributed according to

ig. 2 (a) into a format aligned with Fig. 2 (b) so that interpolation

an be performed on each Lagrangian particle. For instance in the

chematic in Fig. 2 , processor 0 must communicate with processors

 and 4 in order to reconstruct the full velocity, temperature, and

umidity fields required for interpolation by the particles which

eside on processor 0. This nearly all-to-all communication step is

elatively expensive, accounting for around 20% of the overall par-

icle computation, and is replaced by transfer of data to the GPU

evice in the present implementation. 

The overall structure of a given time step is that during each RK

tage, the flow is updated via Eqs. (1) –(4) , followed by the particle

uantities via Eqs. (5) –(8) . In previous studies we consider two-

ay coupling between the particles and the surrounding flow, but
n the current setup we restrict our focus to cases where the par-

icles do not feed back onto the flow. 

The model configuration which we intend to improve with GPU

cceleration is one where the Eulerian mesh is modest in size (on

he order of 128 3 or 256 3 grid points), but where very large num-

ers of particles are desired. In this work we utilize a standard

omputational cluster and use a fixed set of 64 processors (Intel

eon E5-2650 cores, Infiniband connectivity), focusing on the per-

ormance as the number of Lagrangian particles is increased. In

ts original configuration, the overall particle computation becomes

ore expensive than that of the flow computation around 10 6 par-

icles. 

.2. GPU acceleration 

In a wide range of applications, such as the numerical study

f cloud droplets ( Grabowski and Wang, 2012 ) or when us-

ng Lagrangian particles to represent reacting continuous phases

 Benson and Bolster, 2016 ), very large numbers of particles may be

esired while keeping the Eulerian grid fixed. Given the indepen-

ent nature of the Lagrangian particles, especially in the limit of

ne-way coupling, the point-particle method aligns well with the

dvantages of GPU architecture since many individual threads can

e operated upon simultaneously. Therefore to achieve our goal of

imulating tens to hundreds of millions of particles transported

y a turbulent flow, we recognize that under the circumstances

escribed in the previous section, it is far more cost effective to

xploit GPU parallelization rather than to simply increase CPU re-

ources. 

The basic strategy is therefore to offload the entire particle cal-

ulation to one or more GPUs, so that the particles themselves re-

ide entirely on the GPU hardware (see Fig. 3 ). To do this, the Eule-

ian velocity, temperature, and humidity fields must be transferred

t every RK stage, and therefore the GPU acceleration is deemed

orthwhile only if it outweighs the cost of sending data to the de-

ice. 

The present hardware configuration is such that four CUDA-

ased NVIDIA GPU devices are hosted by a single computational
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Fig. 2. (a) Schematic of the MPI domain decomposition for the Eulerian flow calcu- 

lations. Example here shown for 6 MPI processes. (b) Schematic of the MPI domain 

decomposition for the Lagrangian particles, shown for the same 6 MPI processes. 

Fig. 3. Schematic of basic code structure. Within each RK loop, Eulerian fields are 

assembled and transferred, and while the GPU interpolates the local fluid properties 

and computes the trajectories of all particles, the CPU continues asynchronously. 

Particle information is retrieved from the GPU for calculation of statistics at speci- 

fied times. 
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node. Once the flow variables have been updated at each RK stage,

they are sent via MPI to the host node, which then initiates the

transfer of the full velocity, temperature, and humidity fields to

each of the GPU devices (solid arrow in Fig. 3 ). Note that for very

large grid sizes, the current method may not be practical since a

single node must reconstruct the full Eulerian fields at each RK

stage. For the current hardware, this upper limit on grid size is
round 256 3 , since larger grids would both require more time for

ollection on the GPU host node (this scales nearly linearly with

rid size), as well as take too much memory on the GPU device

tself. A 512 3 flow field, for example, would take nearly half of the

n-board GPU memory (approximately 5GB of the total 12GB), lim-

ting the number of particles to only roughly 10 7 . For grids 512 3 

r larger, GPU acceleration would likely require each CPU node

osting its own GPU device, where each GPU only tracks parti-

les which live in the domain subregion solved by that CPU node.

nce a particle crosses from one region of the domain to another,

PU-to-GPU communication would be required, much like the MPI

ommunication required in the original CPU configuration. This

trategy is not discussed here. 

Once the transfer of field data to GPU has been initiated by

he host node, the CPU nodes continue the flow simulation asyn-

hronously while the GPU devices update the particles. Particle

ata is only ever recovered from the GPU devices when dispersed

hase statistics are computed, and this occurs at a user-specified

requency. At the onset of the simulation, the total requested num-

er of particles is divided among the available GPU devices, and

he total number of particles each device can track is limited only

y on-board memory (in this case 12GB per device). 

Within this algorithm, a few key choices can be made which

actor into the balance between accuracy and performance: 

1. Interpolation order for computing flow quantities at the particle

locations 

2. Precision of the Eulerian fields transferred to the GPU device 

3. Sub-time-stepping the particle equations to resolve faster pro-

cesses than the flow time step 

These points will be highlighted in the following section. 

. Performance 

For the overall computational algorithm outlined in the previ-

us section, we present in this section the performance enhance-

ents achieved by offloading particle calculations to the GPU de-

ices. It is demonstrated that GPU acceleration allows for very

arge numbers of particles to be integrated with significant com-

utational savings over the CPU cluster, while at the same time

nabling multiresolution time integration that can resolve parti-

le time scales which would otherwise be computationally expen-

ive. For the following results, all calculations have been made on

 cluster of Intel Xeon E5-2650 (Ivy Bridge) cores connected via

ellanox FDR non-blocking Infiniband. A specialized host node is

ncluded in the cluster which contains four NVIDIA Titan X Pascal

PUs, all of which can be used simultaneously. Each GPU contains

2GB of device memory, which results in a maximum of roughly

0 million particles that can be stored on each device in addition

o the Eulerian fields. Unless otherwise specified, results are shown

sing 64 CPU cores and Eulerian grids of size 128 3 . 

Fig. 4 shows the overall performance for varying number

f GPUs using trilinear interpolation and single-precision Eule-

ian fields. Here, several features are noteworthy. First, above a

rossover of roughly 2 × 10 6 particles, computing trajectories on

he GPU becomes significantly more cost effective. For 2.4 × 10 8 

articles across four GPU devices, a speedup of approximately 14 is

bserved compared to the CPU calculation. Also shown in Fig. 4 is

hat the transfer time required for the GPU to retrieve the full Eu-

erian fields takes a constant time of roughly 0.06 s per time step;

t low numbers of particles this transfer completely dominates the

otal GPU particle integration time — see Fig. 5 , which provides the

ercent of a single time step taken by (1) the CPU to GPU trans-

er, (2) the flow calculation, and (3) the particle calculation on the

PU. 
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Fig. 4. Time taken per time step as a function of particle number, comparing 64 

CPU cores to one, two, and four GPU devices. Also shown is the transfer time taken 

to send Eulerian field data to the GPU hardware, which is independent of particle 

number and number of GPU devices. Eulerian fields are transferred in single preci- 

sion, and the flow grid has a size of 128 3 . 

Fig. 5. Percentage breakdown of a single time step for the flow solver (CPU), parti- 

cle solver (GPU), and transfer time, as a function of particle number. 
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Fig. 6. Time taken per time step as a function of particle number, comparing cases 

where the Eulerian velocity, temperature, and humidity fields are represented in 

single versus double precision. 
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Finally, Fig. 4 also shows that this algorithm scales nearly per-

ectly with GPU number. Since each GPU device calculates its own

ortion of the overall particles independently, and since the trans-

er time from the CPU host node to the GPU devices occurs simul-

aneously (i.e. not sequentially), going from one to four GPU de-

ices reduces the particle integration time by GPU by a factor of

our (excluding transfer time). Conversely, going from one to four

PU devices increases the capacity from roughly 60 million parti-

les to 240 million particles with essentially zero overall increase

n particle calculation time. 

.1. Precision of the Eulerian fields 

The default configuration noted above consists of assembling

nd transferring the full Eulerian velocity, temperature, and hu-

idity fields in single precision. Doing so reduces the MPI com-

unication required to assemble the fields on the GPU host node,

nd reduces the transfer time from the host node to the GPU de-

ice. 

Fig. 6 compares the performance between treating these fields

s single versus double precision. The figure clearly shows that

he total transfer time (blue and yellow lines) is indeed roughly

oubled when going from single to double precision, and there-

ore makes the overall particle calculation on four GPU devices

ore expensive than those shown in Fig. 4 . It also indicates that

he change from single to double precision increases the crossover

oint where the GPU performs faster than the CPU — from roughly

 × 10 6 particles to 7 × 10 6 . While the advantage of using single

recision fields is to reduce data transfer costs, the potential disad-

antage is the loss of accuracy in the interpolated field quantities
t the particle locations, and therefore in the accuracy of the dis-

ersed phase statistics. 

To validate this change from double to single precision, Fig. 7 (a)

nd (b) compare the vertical profiles of mean particle streamwise

elocity V + x and streamwise root-mean-square (RMS) velocity v + x,rms 

gainst four participants of the international benchmark case of

archioli et al. (2008) , who each use a slightly different numer-

cal scheme. In this benchmark, turbulent pressure-driven channel

ow laden with one-way coupled solid particles is computed for

ultiple particle sizes; see Fig. 1 for a snapshot of this flow. For

revity we report only the case for St = 5 , where St is the particle

tokes number, a measure of its inertial response to the surround-

ng fluid. 

The figures show that there is virtually no difference in

he computed velocity statistics of the particles as a result of

sing single versus double precision Eulerian fields, and that

oth solutions lie directly among the benchmark solutions of

archioli et al. (2008) . We also note that the double precision GPU

ase is identical, within roundoff error, to a CPU solution with ex-

ctly the same configuration. Based on Fig. 7 (a) and (b), we there-

ore recommend the use of single precision Eulerian fields to be

ransferred to the GPU hardware. 

.2. Interpolation order 

In the original version of the code, a user specifies either sixth-

rder Lagrange interpolation or trilinear interpolation for obtaining

ow data at the particle location (other interpolation schemes have

een thoroughly evaluated and could similarly be implemented;

ee for example ( Yeung and Pope, 1988 ) or Balachandar and

axey (1989) ). Since the entire Eulerian velocity, temperature, and

umidity fields are transferred to the GPU device, the order of in-

erpolation has no effect on the data transfer cost; it does, how-

ver, affect memory access by the GPU device, and sixth-order

nterpolation requires more code branching than the trilinear (to

andle interpolation near walls). 

As shown in Fig. 8 , this results in a significant computational

ost for higher-order interpolation schemes. Beyond 5 × 10 6 parti-

les, the GPU outperforms the CPU regardless of interpolation or-

er, but a substantial price is paid for switching from second to

ixth order due to the random memory accesses required by a

arge interpolation stencil. At 240 million particles, the second or-

er interpolation is approximately six times faster than the sixth

rder interpolation. 

To assess the computational accuracy of switching the interpo-

ation order, the benchmark case of Marchioli et al. (2008) is again

sed. Fig. 9 (a) and (b) present the same particle statistics as in
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Fig. 7. For the benchmark particle-laden turbulent channel flow of 

Marchioli et al. (2008) , a comparison of the GPU-based mean particle veloc- 

ity against the four groups UUD, TUE, ASU , and HPU . The yellow line is the GPU 

calculation based on single precision Eulerian fields, and the blue line is the GPU 

calculation using double precision Eulerian fields. The superscripts “+” refer to 

normalizing the coordinate z and mean velocity V x using turbulent wall units. See 

Marchioli et al. (2008) for more details. Figure (b) is the same as figure (a), except 

comparing streamwise RMS velocities v x, rms against the benchmark solutions of 

Marchioli et al. (2008) . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 8. Time taken per time step as a function of particle number, comparing cases 

using sixth-order Lagrange interpolation versus trilinear interpolation. 

Fig. 9. Same as for Fig. 7 , except now comparing the GPU-calculated particle statis- 

tics for sixth versus second order interpolation. 
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ig. 7 (a) and (b), and compare the effects of using second versus

ixth order interpolation for flow properties. 

In general, the decrease of interpolation order from sixth to sec-

nd leaves the mean velocity statistics unchanged, while slightly

educing the peak of the RMS velocity which is located at z + ≈ 25 .

he deviation observed from switching between sixth and second

rder interpolation is within 5%. Depending on the specific ap-

lication, this filtering of second order particle statistics may be

eemed unacceptable, but trilinear interpolation is used frequently

n the particle-laden turbulence literature ( Bernardini, 2014; Park

t al., 2017 ) and we therefore use it for our baseline GPU configu-

ation, given its significant computational savings. 

.3. Multiresolution time stepping 

The use of the GPU device for the particle integration allows for

he straightforward implementation of multiresolution time step-

ing, where the particles take a specified number of substeps for

ach flow time step. As denoted in Fig. 3 , once the Eulerian field

ata is transferred to the GPU device, a time integration loop based

n the same RK3 scheme as the outer loop is performed on the

article equations while keeping the interpolated values frozen.

his strategy removes the need for additional interpolation cal-

ulations, and allows for particle integration at time steps lower

han the flow requires. This occurs when the timescales τ p or τ T 

f Eqs. (6) and (7) are small relative to the time step required by

he DNS. 
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Fig. 10. Time taken per timestep as a function of particle number, comparing the 

original CPU version of the code with the GPU accelerated code with varying num- 

ber of sub-integration timesteps for particle dynamics. 
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Fig. 11. (a) Mean particle radius 〈 r p 〉 normalized by initial radius r 0 as a function 

of normalized channel height z + . (b) Mean particle temperature difference (< T p > 

−T 0 ) /T 0 , where T 0 is the temperature of the top and bottom boundary. CPU refers 

to the original code simulating turbulent channel flow with evaporating droplets, 

using a timestep small enough to resolve fast particle response times. GPU refers 

to using the timestep provided by a CFL condition but using 10 substeps to resolve 

fast particle evolution. 

e  

t  

e  

d  

t  

d  

d  

p  

c  

t

 

a  

h  

n  

f  

F  

c

 

t  

n  

s  

n  

e  
Fig. 10 again shows the time taken per flow time step as a func-

ion of particle number, now comparing the CPU-based calculation

o the GPU accelerated code with varying numbers of particle inte-

ration substeps. It is shown that at high numbers of particles, the

PU code can compute 10 substeps for each particle for the same

riginal cost as a single time step on a cluster of 64 CPUs. Since at

igh particle numbers the GPU time is dominated by particle cal-

ulations (see Fig. 5 ), increasing the number of substeps from 10

o 100 increases the cost by slightly less than a factor of 10. 

While Fig. 10 does indeed show that the GPU acceleration can

rovide substepping essentially for free compared to the original

PU implementation, it can be somewhat better demonstrated us-

ng a specific example. Here, a slightly modified version of the

enchmark flow of Marchioli et al. (2008) is simulated where the

article timescales τ p and τ T are significantly smaller than the

ime step of the flow. Particle evaporation is also turned on, us-

ng the model described in detail in Helgans and Richter (2016) ,

nd we use 10 6 particles. The top and bottom boundaries are set

o the same temperature T 0 = 300 . 15 K, and the relative humidi-

ies of the top and bottom wall are held fixed at 95% and 100%,

espectively. 

Instead of using a particle Stokes number of 5 as in the above

omparisons to Marchioli et al. (2008) , we reduce the particle

ize so that the dimensionless Stokes number is St = 0 . 24 . For a

ourant-Friedrichs-Lewy (CFL) number of 0.4, the ratio of the nom-

nal flow time step to the particle acceleration timescale τ p would

hen be 	t/τp = 0 . 55 — too large to resolve the particle accelera-

ions accurately. This simply means that the time step 	t will in

his case be limited by particle processes (via τ p ) instead of the

FL condition. 

To demonstrate the advantage of the GPU, we perform two sim-

lations: one simulation using the CPU code with a time step

 times smaller than suggested by the CFL condition (so that

t/τp = 0 . 1 ), and one simulation using the same original time step

ssociated with a CFL number of 0.4, but using 10 substeps on the

PU. 

Fig. 11 presents the mean particle radius ( Fig. 11 (a)) and parti-

le temperature ( Fig. 11 (b)) for this flow as a function of channel

eight as computed by these two simulations, and shows that the

imulations produce nearly identical results. Of note, however, is

hat the CPU version of the code took 36 h of wall time to com-

lete the simulation, while the GPU version of the code took 5 h. 

We close this section by further highlighting the flow physics

hich can be uncovered by utilizing GPU acceleration, specifically

he multiresolution substepping. In particle-laden turbulent chan-

el flows, turbophoresis is one of the key processes which gov-
rns mean particle distributions, and for inertial particles this leads

o high concentrations near the walls ( Sardina et al., 2012 ). For

vaporating droplets, this processes still occurs, but changes in

roplet sizes can cause asymmetric distributions of particles, since

urbophoretic drift will be altered by the growth or reduction in

roplet mass due to evaporation and condensation. This effect is

escribed in detail in Russo et al. (2014) for instance, and in the

resent case we can extend this to very small particles, whose size

an change very rapidly, thus modifying their inertial response to

he turbulence. 

For the same turbulent channel flow used in Fig. 11 (i.e., top

nd bottom walls held fixed at T 0 and the bottom and top relative

umidities at 100% and 95%, respectively), Fig. 12 (a) presents the

ormalized particle number concentration near the bottom wall

or three different particle Stokes numbers: St = [ 0 . 06 , 0 . 24 , 0 . 96 ] .

or the Stokes numbers considered, a maximum near-wall number

oncentration is seen for particles of St ≈ 1. 

From Fig. 11 , it is clear that at steady-state, particles near the

op (relatively dry) wall are generally reduced in size, while those

ear the bottom (saturated) wall are larger in size. Due to the con-

equent differences in turbophoresis, this leads to a change in the

ear-wall number concentration when evaporation is turned off,

ven for the very small particle size of St = 0 . 06 . This is shown
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Fig. 12. Particle number concentration statistics for evaporating droplets in the same channel as in Fig. 11 . Solid lines denote evaporating droplets, while dashed lines denote 

nonevaporating particles of the same initial size. Line colors refer to the Stokes numbers given in the legend. (a) Normalized number concentration near the bottom wall, 

where C 0 is the bulk number concentration in the channel, (b) time evolution of normalized particle number concentration at the top wall for the three Stokes numbers, and 

(c) time evolution of particle number concentration at the bottom wall. C bot and C top refer to the horizontally averaged concentration in the grid node nearest the bottom 

and top walls, respectively. 
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in Fig. 12 as the difference between the solid (evaporating) and

dashed (nonevaporating) lines for each particle size. Fig. 12 (a)

shows the steady-state near-wall concentration for each evaporat-

ing/nonevaporating pair, while Fig. 12 (b) and (c) show the time

evolution of the normalized near-wall concentration at both the

top and bottom walls. In the latter two figures, it is clear that while

larger (here St = 0 . 96 ) particles take longer to approach steady

near-wall concentrations, condensation leads to a surplus of par-

ticles at the bottom wall while leading to a deficit of particles near

the top wall. Without evaporation, the average number of particles

at both walls are the same. 

4. Conclusions 

This work demonstrates the advantages of using GPUs to accel-

erate simulations of particle-laden turbulent flows by integrating

the particle equations of motion entirely on one or more NVIDIA

GPU devices. This method is based on the CPU sending the entire

Eulerian fields of velocity, temperature, and humidity to the GPU,

and asynchronously continuing its calculations while the GPU in-

tegrates the trajectories of hundreds of millions of particles. 

This method is designed to enhance simulations where mod-

est grid sizes (up to, say, 256 3 ) are used but while many parti-

cles (more than 10 6 ) are desired. The use of multiple GPU devices

scales nearly perfectly, since each computes the trajectories of its

portion of independent, one-way coupled particles. Speedup of up

to 14x is found at particle numbers above 10 7 . 

We consider three factors representing the tradeoff between

performance and accuracy. The use of single precision Eulerian

fields being transferred to the GPU device reduces the transfer

time by a factor of two, while showing essentially zero change in

typical particle statistics. The order of interpolation from the Eu-

lerian grid to the particle location significantly changes the com-

putational time due to memory access and code branching. While

this does modify second order statistics somewhat, for many ap-

plications this is likely an acceptable compromise. Finally, the use

of GPU acceleration can be used to efficiently integrate sub-time-

steps of the particle equation, in order to resolve fast particle dy-

namics which would otherwise require a smaller flow time step. It

is shown that for roughly 10 sub-steps, the overall cost for large

numbers of particles is essentially equal to the original CPU calcu-

lation. 
As noted above, this algorithm requires Eulerian grids that can

e assembled and transferred in their entirety to the GPU device.

t is this step which is the major bottleneck for further perfor-

ance enhancements. One future strategy to consider is to dis-

ribute GPUs to each computational node, but this adds the com-

lexity of now having to transfer particles from one GPU device

o another. Thus, the current setup is ideal for systems of mod-

st flow size but large particle numbers, and extension to two-way

oupling (feedback onto the flow field) is relatively straightforward.

urther extension to four-way coupling (particle-particle collisions)

s conceptually straightforward as well, but only when utilizing a

ingle GPU device; since particle collisions and neighbor searches

re typically expensive, however, this restriction to a single GPU

evice may still be worthwhile. 
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