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As scienti ¢ research becomes more data intensive, therean increasing need

for scalable, reliable, and high performance storage syste Such data reposi-
tories must provide both data archival services and rich matlata, and cleanly
integrate with large scale computing resources. ROARS is gbrid approach to
distributed storage that provides both large, robust, and calable storage and ef-
cient rich metadata queries for scienti ¢ applications. This dissertation presents
the design and implementation of ROARS, focusing primarilpn the challenge of
maintaining data integrity and achieving data scalability We evaluate the per-
formance of ROARS on a storage cluster compared to the Hadodistributed le
system. We observe that ROARS has read and write performantieat scales with
the number of storage nodes. We show the ability of ROARS toigtion correctly
through multiple system failures and recon gurations. We pove that ROARS is
reliable not only for daily data access but also for longtimdata preservation. We
also demonstrate how to integrate ROARS with existing distbuted frameworks
to drive large scale distributed scienti ¢ experiments. R@ARS has been in pro-
duction use for over three years as the primary data repositpfor a biometrics

research lab at the University of Notre Dame.
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CHAPTER 1

INTRODUCTION

The rst decade of the 2 century has witnessed a paradigm shift in scienti ¢
research. Powerful supercomputers and large-scale distried systems provide
scientists with a seemingly unlimited computational resage. Moreover, the foun-
dation of data collection from late 19' century paved the way for a new research
era, moving from data exploration to data explosion. Armed ith improved data
collection methods and advanced devices, scientists, in nya elds around the
world, have the ability to observe and collect an unheard anumt of data for their
research. This growth, however, poses new questions and lldrages to scientic
data management paradigm. As the scientists have changedethway they col-
lected new data, posed new hypothesises, and explored newdhes, the data
management process also needs to change.

Dealing with suddenly new found data is not easy. Scientistsre constantly
scrambling to nd storage space for the newly collected datarhere are questions
such as: Where should | put my data? Should | add new hard drisg¢o my storage
system? Do | need a whole new storage system to cope with thaadgsunami?
As newly data is collected every second, scientists simplymp everything to a
hard drive. When the hard drive is full, another one can be el added.

However, expanding capacity of the storage system is not tloaly challenge.

The huge growth in data and storage comes with the unwanted kien of managing



a large data archive. As an archive grows, it becomes signactly harder to nd
what data items are needed, to migrate the data from one techlogy to another,
to re-organize as the data and goals change, and to deal withugoment failures.
In other words, the complexity of the problem grows exponeiatly and can be
very overwhelming.

Another challenge is that scienti c data is hardly static, n fact it is very
active. If the data is kept in a shelf and rarely looked at, thesimple solution of
expanding storage system's capacity seems to make perfeehse. However, in
scienti ¢ research that scenario is very unlikely. Data is seless without being
shared, analyzed, processed, and fed into a computatioryalhtensive cycle to
conrm a new hypothesis or to evaluate new algorithms. If aldata is stored
in one location and is accessible to everyone, when more pledpy to access the
traditional storage system at the same time, it is possibleotbring the system down
to a crawl. Storage systems can become a bottleneck that skbodown everyone.
A quick solution is to replicate and store the data at multipe locations, thus
increasing the availability to users. However, keeping mtiple copies of the same
data increases the complexity of the storage system and bermbs scientists with
more tasks unrelated to their research. They need to keep tlaof the location of
each replica and to make sure to update every copy when chaagee made.

Scienti ¢ data usually contains associated metadata that elscribe various at-
tributes about the data. This usually includes traditional lesystem metadata such
as le size, ownership, and creation time, along with highdevel information such
as metadata regarding the measurements or the instrumentsed, information
about the subjects or objects being studied, and other dommaspeci ¢ knowledge

deemed useful to the researchers. A challenge arises when kave not tens or



hundreds but tens of thousands and millions of data object&/ou want to able to
store and share data with your colleagues. You want to queryath with certain
metadata constrains. However, as quickly as data grows, thask of nding the
right set of data becomes more dicult. If the dataset gets t@ big, it is not
feasible to search for needed data by scanning the whole repary. Clearly there
is a need for a storage system that supports both storing andigrying metadata.
Therefore, scienti ¢ repositories are not only a large cap#ly storage system, but
a facility for searching data quickly.

The two canonical models for data storage { the lesystem anthe database
{ are not well suited for long term data preservation. Both cacepts can be made
parallel and/or distributed for both capacity and performance. The relational
database is well suited for querying, sorting, and reducinghany discrete data
items, but requires a high degree of advanced schema desigwl aystem admin-
istration. A database can store large binary objects but isat highly optimized
for this task [60]. On the other hand, the lesystem has a muclower barrier
to entry, and is well suited for simply depositing large bingy objects as they are
created. Still, as a lesystem becomes larger, data quergnsorting, and search-
ing can only be done e ciently if they match the chosen para#l structure. As
a data repository grows, no single hierarchy is likely to meall needs. So while
end users prefer working with lesystems, current storageystems lack the query
capabilities necessary for e cient operation.

With all these challenges and demands, there is a clear need & comprehen-
sive solution to store and manage scienti ¢ data both e cietly and e ectively. To
allow a scientist to solely focus on their important task wtah is doing research and

to save them from the burden of mingling with data managementhis work will



propose a distributed storage solution that provides bothakge, robust, scalable
data storage with fast, reliable data query.

As a rst attempt to take on the challenges, we built a prototype repository
named BXGrid. BXGrid is a solution for a data repository that focuses on bio-
metrics data. The goal of BXGrid is to help biometrics reseahers at Notre Dame
manage and query data in an e cient and consistent manner. B&rid includes
three main components: a database, an active storage clustand a computing
grid. Users access BXGrid through a command line tool. Dungthe ingestion pro-
cess, BXGrid automatically replicates and store each datéem in three di erence
leservers. Users also use the command line tool to interaaiith the system using
options such as export, query, and audit/repair. Beside theommand line tool,
a web portal provides a facility for users to browse, validat share and manage
data. Since 2008, BXGrid has been used by Computer Vision Resch Labora-
tory (CVRL) at the University of Notre Dame to manage over tenterabytes of
biometrics data and has proved to be a reliable data reposiiofor daily usage.
However, BXGrid has its limitations. BXGrid is tailored speci cally to manage
biometrics data. BXGrid database schema has been manuallyoai ed several
times in order to accommodate changes in the initial metadatschema design.
Ideally, a multi-purpose repository would be able to adjusitself when new types
of metadata is ingested. BXGrid also needs improvement to ég track of meta-
data changes since metadata often changes throughout th&lcycle of scientic
data. BXGrid provides a very limited means of logging metada changes by only
recording changes which are made through the web-portal. &ts can also make
metadata changes using command line tool which are not reded.

To address BXGrid's limitations, this work presents ROARS Rich Object



ARchival System), a rich metadata lesystem for scienti ¢ cata. ROARS is in-
spired by BXGrid's design; it is a hybrid system that leverags the strengths
of both distributed lesystems and relational databases tgrovide fault-tolerant
scalable data storage and e cient rich metadata manipulatbn. ROARS consists
of a Metadata Server (MDS) running MySQL [44] and multiple Sirage Nodes
running Chirp [72]. Although there exist a number of design$or scalable stor-
age [6, 9, 27, 29, 31, 67, 80] ROARS occupies an unexploredgiepoint that
combines several unusual features and principles that tager provide a powerful,

scalable and manageable scienti ¢ data storage system:

1. Discrete object storage. Each data object is stored as a single, discrete
object on local storage, replicated multiple times for safgeand performance.
This allows for a compact statement of locality needed for ecient batch

computing.

2. Rich searchable metadata. @ Each data object is associated with a user
metadata record of arbitrary (name,type,value) tuples, &wing the system
to provide some search optimization without demanding elailvate schema

design.

3. Transactional metadata update. Metadata can be changed and updated
through the life cycle of each data objects. These change®ddo be handled
carefully in a transactional model. Because metadata is st at several
levels, any change made needs to be propagated from top to toon, and it

is not considered committed until all locations of metadatare updated.

4. Materialized lesystem views. Rather than impose a single lesystem

hierarchy from the beginning, fast queries may be used to gaate materi-



alized views that the user sees as a normal lesystem. In thigay, multiple
users may organize the same data as they see t and make temalosnap-

shots to ensure reproducibility of results.

5. Transparent, incremental management. ROARS does not need to be
taken oine, even briey, in order to perform an integrity ch eck, to add,
to decommission servers, or to migrate data to new resourcesll of these
tasks can be performed incrementally while the system is roimg, and even

be paused, rescheduled, or restarted without harm.

6. Fault Tolerance. Storage nodes operate independently. Each storage node
in the system can fail or even be destroyed without a ectingtte behavior or
performance of the other nodes. The metadata server is mongtical, but
it functions only as an (important) cache. If completely los the metadata

cache can be reconstructed by a parallel scan of the objecoistge.

The contribution of this work is the design, implementatiorand evaluation of a
scienti ¢ data repository, which would behave like a reguledistributed lesystem,
while providing the fast querying abilities of a database.

Chapter 2 discusses a literature review of previous workdagng to data stor-
age in general. The rst section of this chapter will comparand contrast between
traditional lesystems, network lesystems and databasesit also provides the key
properties of each system, which lead to the discussion okthadvantages as well
as their disadvantages. It then addresses the state of morarent distributed
storage systems with the emergence of NoSQL.

In Chapter 3, | describe the design and implementation of RORS. The rst

section details ROARS' architecture. Each part of ROARS' athitecture is equally



important and a ects ROARS' key attributes including: transactional database-
like features, searchable metadata, and data object stomag | also discuss the
key design decisions making process. While some decisiorsewtrivial to make,
others were carefully considered after many lengthy debate

Chapter 4 provides a set of experiments, which were used tcafate the per-
formance of ROARS. Experiments include fundamental actitres such as import,
export, query and delete data. Another set of experiments ar the correctness
of ROARS' properties such as failure transparency, incremtl data migration,
divide and conquer auditing. Chapter 4 also compares the germance of ROARS
to the Hadoop [29] lesystem, a widely popular distributed lesystem. Although
ROARS and Hadoop has their similarities, ROARS di erentiaes with Hadoop in
key areas such as the way ROARS replicates raw data and harglimetadata.

Chapter 5 discuses how ROARS is used in BXGrid to manage a milérabytes
repository of biometrics data. The rst section brie y intr oduces biometrics re-
search and biometrics data. Then we describe the data acqtien, archival pro-
cess, and common errors which can a ect data quality. The nesection em-
phasizes the importance of maintaining data integrity to improve the quality of
biometrics research. The chapter concludes with steps wevieaaken to maintain
data quality and data integrity.

Data is not very useful if it stays idle. ROARS was designed thi that principle
in mind. It is understandable that data would be moved aroundfed into a
scienti c work ow and used to produce interesting and impotant results. The
Cooperate Computing Lab at the University of Notre Dame prodes users an
array of tools that assist them with distributed work ows.

Chapter 6 will give an insight into how ROARS ts into the Cooperative



Computing Lab (CCL) distributed eco-system. In brief, Chagper 5 discusses the
integration of ROARS in work ows using abstractions and digibuted application
building tools including Weaver, All-Pairs, Work Queue andViake ow.

Chapter 7 summarizes the main contribution of this disserteon. Mainly, this
work provides frameworks for a distributed storage systeniat can accommodate
terabytes of data and can also support fast metadata query. HE ability to nd
what you want quickly is crucial to the productivity of the system as a whole. This
work takes in a number of dicult and important decisions during the design
process of a distributed storage system. Data replicationmetadata structure,
data provenance [61], and data integrity are the common quems faced by any
system architect. This work discusses some of the techniguend principles which
are used to make the system more reliable and more resiliergaanst hardware
failure. The last chapter also discusses interesting lessolearned through-out
the design and the implementation of ROARS so the system care bmproved in
future works. This work lays a distributed storage framewdx for researchers in
other elds and encourage them to use distributed systems tturther advance

their study.



CHAPTER 2

RELATED WORK

A storage system for scienti ¢ data needs to satisfy dual gt A scientic
data repository is required to provide both scalable faultelerant data storage and
e cient querying of the rich domain-speci ¢ metadata. Unfortunately, traditional
local lesystems, network lesystem distributed lesystans and databases fail to
meet both of these requirements simultaneously.

Decades ago, scientist often stored data in a local hard dehand share data
through oppy disc or simple remote access protocols suchld3TP[24] or FTP[51].
However, as data grows sharply and the demand for data collatation increases,
local lesystems become a bottleneck very quickly. To incese the storage and
sharing capability, scientists look to take advantage of mwork lesystem such as
NFS [56] and AFS [31]. Network lesystems make sharing datasy, still, they
also becomes a bottleneck when data is accessed repeateglynbltiple users si-
multaneously. Moreover, because of the lack of data repliean, when an AFS or
a NFS storage node goes down, the data is not accessible utiié node is back
online.

While most distributed lesystems such as the Hadoop lesyem provide ro-
bust scalable, and fault tolerant data archiving, they faito adequately provide for
e cient rich metadata operations. In contrast, database sgtems provide e cient

qguerying capabilities, but fail to match the work ow of scienti ¢ researchers. The



next sections exam several storage systems and their prajes and discuss why

they could not satisfy the dual-goals requirement for a saié c repository.

2.1 Local Filesystem

There are a wide variety of UNIX Local Filesystems such as: EX Ext3, Ext4,
XFS, JFS, ReiserFS, ZFS [16], [34], [39], [7], [10], [53].[Zhis subsection brie y
discusses Ext2, Ext3 and ZFS.

Ext2 or the Second Extended File System was developed to cect some of the
problems of the First Extended File System (Ext). Ext2 intraduced several new
lesystem features which have become the standard for manyttire Linux le
systems. Ext2 supports les with 255 characters in the le nene. The maximum
le system size is 4TB. The maximum le size is 2 GB. A le is assciated with
an inode. An inode contains attributes of the le such as typesize, access rights
and most important, pointers to data blocks. The block sizesichosen when the
lesystem is created, and can be 1024, 2048 or 4096 bytes. Peging on the
size of the le, an inode's pointers may point to direct block or indirect blocks,
which can point to other indirect blocks. Choosing a big bldcsize will reduce
the number of I/O requests but will increase the amount of wasd space due to
block fragmentation. Symbolic links are stored in the inodéself, thus a symbolic
link does not use any data blocks; the link operation is fastdzause it reads the
information directly from the inode.

An Ext2 le system is divided into a number of block groups. Oe of the
advantages of Ext2 is that it provides several redundant cags of critical le
system information. Each block group holds a copy of this iafmation (such

as superblock and le system descriptors), followed by a ik bitmap, inode

10



bitmap, inode table and data blocks. In case of the system a&taing, super block
and le system descriptors can easily be restored. Ext2 alsmplements some
performance optimization techniques, such as readaheadhem a block is read,
several contiguous blocks are also read. In addition, whermtd are written to a
block, up to 8 adjacent blocks will be pre-allocated.

Ext3 (Third Extended Filesystem) is the third interation of Ext. Ext3 was
introduced in 1999 [75] and soon became the default le systefor many popular
Linux distributions [74]. Being both forward and backward ompatible with Ext2
is one reason that led to the success and of de adoption of EX#@5]. An Ext2
le system can be mounted as Ext3 and vice versa. Ext3 inhead all the great
features from Ext2 and also added a journal to increase thevid of data consis-
tency. There are three levels of data integrity in Ext3. Joumal mode forces both
the metadata and the contents of data blocks to be written tohe journal before
changes are committed. This approach imposes a hit on pernitance because the
data are written twice, however, improves reliability trenendously. Ordered mode
is the default mode, which force data blocks to be written tolte disk before the
metadata are changed in the journal. Writeback mode only kps metadata in the
journal. This approach is fast but high risk because the metkata are committed
before actual data are written to disk.

ZFS was developed by Sun in 2002 to address shortcomings diest Unix
lesystems. The design of ZFS focuses on simplifying muliiisk management and
detecting data error [11]. ZFS allows multi disks to join togther in a virtual
storage pool. A ZFS lesystem is decoupled from physical stge disks and
can be expanded or shrunk on the y. ZFS can support storagespl up to 256

quadrillion zettabytes (ZB). In ZFS, data is stored in block and checksum of

11



each block is kept in a parent indirect block (pointer blockusing 64-bit Fletcher
checksum [25]. Pointer blocks are also checksummed and theaksum is store
in the next level pointer block. This checksum mechanism ppagates all the way
to the top of the lesystem. When data is written to a block, a rew checksum
is calculated and an update is made to the pointer block. Whewner a block is
read, the checksum is calculated, then compared with the atkesum on record to
detect data corruption. Although modern disk drives have hilt-in error detection

mechanisms, a fraction of errors is still gone undetected Wither by the disk
or the operating system. Checksum also allows ZFS to repaiorcupted data

automatically if ZFS is con gured with redundancy (mirrored or RAID). ZFS

provides a tool called scrub to check and repair corrupted tiablock. Unlike other

tools like fsck, system administrator can run scrub in the bekground. There is
no need to take a whole lesystem o ine to run integrity check Scrub can work
on a working lesystem.

Local lesystems can provide a safe storage space for rawesti ¢ data. Read
and write data to a local lesystem is convenient and fast beaise it does not have
to take in account of external factors such as network banddith and network
latency. Data can be read as fast a HDD can spin. Users can usAIR [48] to
to increase local lesystem storage capacity and add abiitto recover from data
corruption. However, to get good performance, users may grnprocess, analyze
and run scienti ¢ workloads using only local machines. In atition, sharing data

is naturally di cult without a network connection.
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2.2 Distributed Filesystem

In order to facilitate sharing of scienti c data, scienti ¢ researchers usually
employ various network lesystems such as NFS [56] or AFS [[3tb provide data
distribution and concurrent access.

NFS was developed by Sun Microsystems in 1983. It has gone onbiecome
the most common distributed lesystem in the Linux/UNIX world. It was devel-
oped with four primary goals in mind [57]. First of all, NFS ismachine and OS
independent. The protocols in NFS are simple so that they catheoretically be
implemented on any kind of machine, not just UNIX machines. &ondly, NFS
is stateless. The NFS server does not maintain any state beten Remote Pro-
cedure Calls (RPC). This way, if the client or server crashesio state needs to
be recovered. Thirdly, NFS is transparent. To applicationsan NFS lesystem
appears like a local hard drive mounted on VFS. Files can beasssed using reg-
ular pathnames, and no extra work is needed to retrieve dataser the network.
Lastly, NFS is designed for performance. The original ideaas to make an NFS
lesystem have comparable speed to a local disk on a SCSI irfece.

The NFS protocol is implemented using synchronous RPCs. Esially, the
client makes a request to the kernel using the standard OS APRWhich then sends
an RPC request to the server. The client then blocks until theserver processes
the request and sends back another RPC with the reply.

The server in the NFS protocol does not maintain any state regding its
interactions with the client. This means that the client mus send all contextual
information needed for a request each time it sends one. Theason for this is
to aid in trivial crash recovery. If the server crashes, thelient can simply repeat

requests until it receives the data it needs. If the client ashes, the server needs
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to do no work at all, and the client can be in charge of its own ash recovery

without having to interact with the server. In newer versionof NFS, statelessness
is not maintained as stringently as when it was originally iplemented in order

to implement things like better cache coherency protocolsd le locking [35].

To maintain consistency when multiple clients are using thsame le, the
NFS protocol requires clients to use a method called close-bpen consistency.
Basically, this means that the client must commit any changeto the le when it
closes, and that when a client opens a le it must always regve le attributes
from the server. By using this method, clients know that theidata will at least
be consistent between opening and closing.

The Andrew File System (AFS) is a network le system developkby Carnegie
Mellon University. AFS supports various popular operatingsystems such as
UNIX, Windows, and Mac OS. Like NFS, AFS allows users to accedes across
the network as if they are in a local storage device. One of atage AFS has
over NFS is security. By using Kerberos authentication, usg not only can access
their les, but can also share their les with other users or ther groups. There
are two components of AFS: Venus and Vice [62]. Venus runs dmetclient ma-
chine and makes requests to the AFS server on behalf of theedlis. Vice runs
on the server side, and serves requests from Venus. When aideopened, Venus
makes a request to fetch the whole le from the server. This ¢al copy is called
a snapshot. Any le operation such as a read or write is done dhe snapshot.

Network lesytems provides an easy and convenient way forisatists to share
data across the network. However they have drawbacks. Firstf all, network
communication does not scale very well in term of data throungput. Performance

of data access is bounded by the lesystem's data consistgnpolicy, physical
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network bandwidth and network latency. Users who request th same le or
dataset at the same times could put a strain on the le serversawell the network.
More importantly, systems like AFS and NFS do not provide anyneans to deal
with hardware failure. No matter how often the system is baakp, only one copy
of the data is available for all users. If a leserver goes dawall the les in the

server are not accessible until the leserver is restored.

To get scalable and fault tolerant data storage, scientistmay look into dis-
tributed storage systems such as Ceph [80] or Hadoop [29]. dflof the data in
these lesystems are organized into sets of directories arlds along with associ-
ated metadata. Since some of these lesystems perform autatic data replica-
tion, they not only provide fault-tolerant data access but &o the ability to scale
the system. Therefore, in regards to the need for scalablguft-tolerant data
storage, current distributed storage systems adequatelyemt this requirement.

Google developed GFS to handle an enormous amount of data. &ks de-
signed to store very large les, which are regularly generadl by the Google Search
Engine. Files are divided into chunks of 64MB, similar to clsters in a traditional
local lesystem. Chunks are replicated and stored in multile Chunkservers The
number of data replications varies. High demand data have m®replicated chunks
than low demand data. A single Masterserver manages the GFS namespace,
mapping les to chunks and enforcing le access control. Datmodi cation is ap-
pended at the end of le rather than being overwritten. Applcations issue a read
request through theMasterserver The Masterserverthen passes the location of
the chunk to the application. The application then accessethe chunk directly
from the Chunkserver

HDFS is an open source implementation of GFS by Apache SoftkgaFoun-
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dation. HDFS is a distributed lesystem written in Java. It is designed to run
on commodity hardware to store big les that traditional local lesystems do not
support. The HDFS architecture includes aNamenodeand multiple Datanodes

The role of theNamenodeis to manage the HDFS namespace while thgatanodes
are in charge of storing actual data. Namenodes can be in thanse Local Area
Network (LAN) or they can span in multiple data centers. In HOFS, les are

broken into chunks of a xed size. The default chunk size is 8B but it can be

manually changed. For fault tolerance, data les are replated at the chunk level.
Datanodescommunicate to theNamenodethrough a Heartbeat and BlockReport
in order to maintain load-balancing [13]. HDFS employs a latity awareness read
policy to improve data read performance. A read request for ehunk will be

served by the same rack of Namenodes where the request oag@s. If the chunk
is not stored in the same rack as the reader, the request wilklserved by the local
data center before trying any remote chunk.

Where lesystems such as GFS and HDFS still fail, however, ia providing
an e cient means of performing rich metadata queries. Sincdesystems do not
provide a direct means to perform these metadata operationexport processes
usually involve a complex set ofad hoc scripts, which tend to be error prone,
in exible, and unreliable. More importantly, these manualsearches through the
data repository are also time consuming since all of the metata in the repository
must be analyzed for each export. Although some distributedystems such as
Hadoop provide programming tools such as MapReduce [19] &xilitate searching
through large datasets in a reliable and scalable manner, @ke full repository
searches are still costly and time consuming since each exymental run will have

to scan the repository and extract the particular data les equired by the user.
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Moreover, even with the presence of these programming togtds still not possible
to dynamically organize and group subsets of the data reptsiy based on the
metadata in a persistent manner, making it di cult to export reusable snapshots

of particular datasets.

2.3 Databases

When you want to query a tremendous amount of structured datanaturally
you turn to a database management system (DBMS). Basic DBMSperations in-
clude inserting data, updating data, and querying for datalJsers interact with the
DBMS by issuing commands and expect to receive the result tashortly. Highly
active commercial systems like the NYSE stock exchange or Amon shopping
website can handle thousands to millions of queries per sedo A DBMS is also
used to analyze data. However, with such a high volume of ques, performing
analysis of tasks on a DBMS is not ideal. Data analysis can takhours or days
and thus can bring the DBMS system to a crawl. Therefore, in # 1990s, the
DBMS landscape saw an evolution from the local database to meouse. For
big database systems, data often is separated into two systs. The operational
database hosts live data and serves insert, update, and gyeequests. A larger
data warehouse [21] hosts archive data in snapshots. Datgpisriodically archived
from the operational database to the data warehouse.

With the explosion of social networks in late 2000's there lsabeen another
evolution from traditional DBMS to NoSQL [36]. Unlike DMBS, NoSQL does not
use SQL structure to perform queries. There is no xed schemdata is denoted
and stored in a key-value format instead of using a highly sictured table. Major

Internet companies like Google, Facebook and Twitter have drent challenges in
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managing their users' data. First of all, the data does not he a strong structure.
For example Facebook users' photos can be tagged and asdediavith any type
of imaginable metadata. It is not feasible to modify the dathase schema when a
new metadata is added.

Adding a new eld to the database schema will a ect every sirlg record,
which can take days to complete given the sheer amount of datlaese companies
deal with. Secondly there is a requirement for instant gratation. When users
update their status or post new photos, they expect to see thesult right the
way. Traditional DBMS could not maintain and provide real-ime information
out of large volumes of data update. A NoSQL system such as MpDB, BaseX,
SimpleDB, Apache CouchDB [26, 30, 50, 59] t this type of wolkad better than
a traditional relational DBMS. One of the drawbacks of NoSQLis that it has
limited support to store raw data les. For example, MongoDBimposes a limit
on le size of 4MB. In order to store large data objects, userwill need to use
GridFS [41] GridFS is system built on top of MongoDB. GridFS keaks up large
les into chunks of 4MB and stitches them back together per &ss' requests.

Another common approach to managing scienti ¢ data in a dataase is to go
the route of projects such as the Sloan Digital Sky Survey [6That is, rather
than opt for a \at le" data access pattern used in lesystems, the scientic
data is collected and organized directly in a large distrited database such as
MonetDB [32] or Vertica [78]. Besides providing e cient quey capabilities, such
systems also provide advanced data analysis tools to examiand probe the data.
However, these systems remain undesirable to many scietiresearchers.

The rst problem with database systems is that in order to useéhem the data

must be organized in a highly structured explicit schema. BmM our experience,
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it is rarely the case that the scienti c researchers know thexact nature of their
data a priori or what attributes are relevant or necessary. Because sdiendata
tends to be semi-structured rather than highly structuredthis requirement of a
full explicit schema imposes a barrier to the adoption of dabase systems and
explains why most research groups opt for lesystem basedsage systems which
t their organic and evolving method of data collection.

Most importantly, database systems are not ideal for scieint data repositories
because they do not t into the work ow commonly used by scietnc researchers.
In projects such as the Sloan Digital Sky Survey and Sequoi@@D [65], the scien-
ti c data is directly stored in database tables and the datalse system is used as
a data processing and analysis engine to query and searchaingh the data. For
scienti ¢ projects such as these, the recent work outlinedylStonebraker et. al [64]
IS a more suitable storage system for these high-structuredienti ¢ repositories.

In most elds of scienti c research, however, it is not feabie or realistic to
put the raw scienti c data directly into the database and usethe database as
an execution engine. Rather, in elds such as biological cgmting, for instance,
genome sequence data is generally stored in large at les @ranalyzed using
highly optimized tools such as BLAST [5] on distributed sygms such as Condor
[73]. Although it may be possible to stu the genome data in aigh-end database
and use the database engine to execute BLAST as a UDF (user ded function),
this goes against the common practices of most researchensl aiverts from their
normal work ow. Therefore, using a database as a scienti cata repository moves
the scientists away from their domains of expertise and thefamiliar tools to the
realm of database optimization and management, which is ndesirable for many

scienti ¢ researchers.
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Because of these limitations, traditional distributed lesystems and databases
are not desirable for scienti c data repositories which ragre both large scal-
able storage and e cient rich metadata operations. Althoud distributed systems
provide robust and scalable data storage, they do not prowddirect metadata
guerying capabilities. In contrast, databases do providehe necessary metadata
querying capabilities, but fail to t into the work ow of res earch scientists.

The purpose of ROARS is to address these shortcomings by cioasting a
hybrid system that leverages the strengths of both distribied lesystems and
relational databases to provide fault-tolerant scalable ata storage and e cient
rich metadata manipulation. This hybrid design is similar b SDM [46] which
also utilizes a database together with a le system. The degi of SDM highly
optimizes for n-dimensional arrays type data. Moreover, 3B uses multiple disks
support high throughput I/O for MPI [22], while ROARS uses a distributed active
storage cluster. Another example of a lesystem-databas®mbination is HEDC
[63]. HEDC is implemented on a single large enterprise-ctasachine rather than
an array of storage nodes. IRODS [79] and its predecessore tBtorage Resource
Broker [9], supports tagged searchable metadata implemexntas a vertical schema.
ROARS manages metadata with horizontal schema pointing toles and replicas
which allows for the full expressiveness of SQL to be applied

ROARS merges these two di erent storage concepts into a hyidrdistributed
storage system where the lesystem is augmented and enricheith database
capabilities. Next chapters will demonstrate that ROARS iscapable of handling
raw data storage, metadata query, and metadata provenanceagefully. ROARS is
also a stable system that provides a high level of data avdigity and data integrity

through data replication. ROARS is robust enough to tolera¢ system failures

20



and provide mechanisms for recovery, backup, and restorati. Because data is
replicated and distributed intelligently across Storage bides, ROARS naturally
ts into distributed framework such as All-Pairs [42], Makeow [82], and Weaver
[15]. Thus, ROARS enables scienti ¢ researchers to contiawsing their familiar

work ow and applications.
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CHAPTER 3

ARCHITECTURE AND IMPLEMENTATION

3.1 System Design

ROARS is designed to store millions to billions of individubobjects, each typ-
ically measured in megabytes or gigabytes. Each object caiis both binary data
and structured metadata that describes the binary data. Bewise ROARS is de-
signed for the long-term preservation of scienti ¢ data, da objects are write-once,
read-many (WORM), but the associated metadata can be updadeby logging.
The system can be accessed with an SQL-like interface andoalsy a lesystem-

like interface.

3.1.1 Data Model

A ROARS system stores a number of nameebllections . Each collection con-
sists of a number of unorderedbjects . Each object consists of the two following

components:

1. Binary Data: Each data object corresponds to a single discrete binary le
that is stored on a lesystem. This object is usually an opacgi le such as a
TIFF(image), aAVI(video), a WAound) or PDdocument), meaning that
the system does not extract any information from the le othe than the

basic lesystem attributes such as lesize and creation dat
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2. Structured Metadata:  Associated with each data object is a set of meta-
data items that describes or annotates the raw data object Wi domain-
speci c properties and values. This information is storedni plain text as
rows of NAMETYPE VALUEOWNERIMB tuples as shown in the example

of a metadata record here:

NAME TYPE VALUE OWNER TIME
recordingid string nd3R22829 hbui 1253373461
filename string nd5M12.wav hbui 1253373461
format string wav hbui 1253373461
ingested date 08/03/2010 hbui 1253373461
subjectid  string nd1S04388 hbui 1253373461
comment text Spring Co. hbui 1253373461

state string problem dthain 1254049876
problemtype number 34 dthain 1254049876
state string fixed hbui 1254050851

In the above example, each tuple contains elds foNAMETYPEand VALUE
which de ne the name of the object's property, the type, andts value. Currently
supported types includestring , number date, and text , with no declared limits
on eld length. This data model is schema-free: the user doe®t declare any
property of a collection, and an object may have any number gfroperties. In
practice, a given collection is likely to have objects withisiilar metadata, so an
implementation of ROARS may reasonably optimize for that cse.

In addition to NAMETYPEand VALUEelds, each metadata entry also contains
elds for OWNERd TIME This is to provide provenance information and complete

history of the metadata. OWNHEiRnotes who changed the value of the metadata
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while TIMErepresents the time stamp (in UNIX epoch time) when the chamgy
took place. Rather than overwriting metadata entries when aeld is updated,
new values are simply appended to the end of the record. In texample above,
the state value was initially set to problem by one user and then later tdfixed
by another. By doing so, the latest value for a particular etl will always be
the last entry found in the record. This transactional metadta log is critical to
scienti ¢ researchers who often need to keep track of not gnthe metadata, but
how it is updated and transformed over time. These additionaelds enable the
users to track who made the updates, when the updates occufreand what the
new values are.

This data model ts in with the write-once-read-many natureof most scienti ¢
data. The discrete data les are rarely if ever updated and t#n contain data to
be processed by highly optimized domain-speci ¢ applicatns. The metadata,
however, may change or evolve over time and is used to organand query the

data sets.

3.1.2 User Interface

Users may interact with the system using either a commandnke tool or a
lesystem interface. The command line interface supportshe following opera-

tions:

SCREEN <coll> FROM <dir>

IMPORT <coll> FROM <dir>

QUERY  <coll> WHERE <expr>

EXPORT <coll> WHERE <expr> INTO <dir> [AS <pattern>]
VIEW <coll> WHERE <expr> AS <pattern>
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DELETE <coll> WHERE <expr>

Before data is ingested into ROARS. It is recommended that ess useSCREEN
to examine data and metadata for consistency purpose. THe&CREERNperation
scans a local directory containing objects and evaluates tadata beforeIMPORT
is called. The MPOR™ Dperation loads a local directory containing objects and
metadata into a speci ¢ collection in the repository. WithiIMPORTROARS creates
replicas sequentially. QUERYetrieves the metadata for each object matching a
given expression. EXPORIetrieves both the data and metadata for each object
and stores the result on the local disk.VIEWcreates a materialized view on the
local disk of all objects matching the given expression, ug the speci c pattern
for the path name. DELETHEnarks data objects and the corresponding metadata
as deleted. The system administrator may permanently deketthem if desired.

Because metadata schema can evolve overtime, it is importaim make sure
that the metadata IMPORTSs about to ingest into ROARS is consistent with the
current metadata schema. For each metadata attribute, th&CREEBhecks for its
name, type and length. SCREENen compares this information to information
from the internal metadata schema. IISCREE#ktects any discrepancy, it noti es
the user and gives an option to correct the schema. For exarepSCREE®&N warn
the user that an attribute does not exist in the current schem and ask the user
to expand the schema to accommodate the new attributeSCREEAISO examines
the actual data objects and alerts the user about missing radata.

Ordinary applications may also view ROARS as a read-only kystem, using
either FUSE [1] (a user/kernel lesystem driver) or Parrot [f0] (a ptrace-based
interposition agent). Individual objects and their correponding metadata can be

accessed via their unique le identi ers using absolute pats:
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Figure 3.1. Example Materialized View

[roars/mdsname/fileid/3417

[roars/mdsname/fileid/3417.meta

Of course, it would be impractical to list and navigate a at drectory consisting
of millions of les. Instead, most users nd it e ective to explore the repository
using the QUERdmMmand to retrieve metadata, then us¥IEWo deposit a smaller
materialized view for direct use. A materialized view consis of a directory tree
where the leaves are symbolic links pointing to absolute ga in the repository.

For example, Figure 3.1 shows a view generated by the follegi command:
VIEW faces WHERE true AS "gender/emotion/fileid.type"

Because the materialized view is stored in the normal localesystem, it can

be kept inde nitely, shared with other users, sent along wit batch jobs, or packed
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up into an archive le and emailed to other users. Authenticaon can be obtained
using a ticket system [23] that grants access to a dataset Wih a time period. The
creating user manages their own disk space and is resporsifidr cleanup at the
appropriate time. The ability to generate materialized vievs that provide third
party applications a robust and scalable lesystem interfee to the data objects
is a distinguishing feature of ROARS. Rather than force ussgrto integrate their
domain-speci ¢ tools into a database execution engine or ap it in a distributed
programming abstraction, ROARS enables scienti ¢ resedrers to continue using
their familiar scripts and tools. We will continue and expad on the discussion of

using ROARS' VIEWSn a large scale distributed application in a later chapter.

3.1.3 System Management

Management of a large storage cluster requires some care.dfd or removing
storage nodes may require movement of data, which itself mag a long-running
and fault-prone task. To this end, ROARS provides a managemeinterface which
separates the logical addition and removal of nodes from @atmigration, which
can be performed at leisure. Our current implementation of BARS includes the

following management operations:

LIST NODES

ADD NODE <nodename> <groupid>
REMOVE NODE <nodename>
ABANDON NODE <nodename>
MIGRATE DATA

AUDIT DATAI

REPAIR DATA
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LIST NODEG&ueries the MDS for the list of available storage nodes, shing
the current state, capacity, and usageADD NOD#Il add a storage node to the
system and make it available as a target for newly ingested @a REMOVE NODE
will put an existing storage node in the 'removing' state, btthas no immediate
e ect on the data on that node. A removed node is no longer a tget for IMPORT
and is not preferred for servicing reads. In the case where &ygical failure
renders migration impossible ABANDON NGP&sed to immediately remove the
corresponding node and replica records from the system. Blly, MIGRATE DATA
queries for nodes in theremoving state holding les with too few replicas. It
incrementally migrates or replicates the data to nodes wittavailable space as
needed. When a storage node in the removed state no longerteams replicas, it
is deleted from the MDS.

A major system recon guration { such as replacing one storagcluster with
another { can be achieved by callindADD NO@&con gure the new nodesREMOVE
NODb mark the old nodes as no longer needed, and thefiGRATE DAi#begin
the process of moving data. Note that becaustDD NODREBEJ REMOVE NQbEy
interact with the MDS, it does not matter whether the server $ online or o ine.

If MIGRATE DATAs a server o ine, it simply moves on to other available wok.

AUDIT DATMA used to check the data integrity of the entire system. This
command checks all servers for basic health and then quertee MDS to ensure
that every le has su cient replicas, that replicas are distributed across groups,
and that there are no replicas located on removed or abandahservers. Finally,
all data objects are checksummed and compared against theuain the MDS.
Checksumming is performed in parallel locally at each stoga node, making it

feasible to check the integrity of a very large archive in tim proportional to the
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Figure 3.2. State Machines for Storage Nodes and Replicas

size of the largest storage node. If problems exist, they areported to the MDS
and, where possible, repair is done by replicating good regas. In extreme cases
where no good replicas remain, repair is not possible, andndaged replicas are
left in place (and indicated as damaged) for manual examinan and recovery.
The time of the last good checksum for each replica is storadthe MDS. This
data has several uses: tools can focus on the oldest replioa$, management
operations can be done incrementally, and the physical weaf auditing on the

system can be throttled by specifying a minimum time betweenhecksums.

3.2 Implementation

Figure 3.3 shows the basic architecture of ROARS. To suppothe discrete
object data model and the data operations previously outled, ROARS utilizes a
hybrid approach to construct scienti ¢ data repositories. Multiple storage nodes
are used for storing both the dateand metadata in archival format. A metadata

server (MDS) indexes all of the metadata on the storage server, algrwith the
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Figure 3.3. ROARS Architecture

location of each replicated object. The MDS serves as the prary name and
entry point to an instance of ROARS.

The decision to employ both a database and a cluster of stomgervers comes
from the observation that while one type of system meets theequirements of
one of the components of a scienti ¢ data repository, it is noadequate at the
other type. For instance, while it is possible to record bothhe metadata and
raw data in a database, the performance would generally be goand di cult to
scale, especially to the level required for large scale dibtited experiments nor
would it t in with the work ow normally used by research scientists. Moreover,

the distinct advantage of using a database, its transacti@h nature, is hardly uti-
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lized in a scienti c repository because the data is mostly \ite-once-read-many,
and thus rarely needs atomic updating. From our experienceluring the life-
time of the repository, metadata may changed once or twice vl the raw data
stays untouched. Besides the scalability disadvantagesedping raw data in a
database poses bigger challenges on everyday maintenancd failure recovery.
So although, a database would provide good metadata quergircapabilities, it
would not be able to satisfy the requirement for large scaleath storage.

On the other hand, a distributed storage system, even with dever le naming
scheme, is also not adequate for scienti ¢ repositories. Gudistributed storage
systems provide scalable high performance 1/0O but providenhited support for
rich metadata operations. Metadata operations generallyadolve into full dataset
scans or searches using fragile aratl hoc scripts. Although there are possible
tricks and techniques for improving metadata availabilityin the lesystem, these
all fall short of the e ciency required for a scienti c repostory. For instance, while
it is possible to encode particular attributes in the le nane, it is still in exible
and ine cient, particularly for data that belong to many di erent categories.
Fast access to metadata remains nearly impossible, becapsesing thousands or
millions lenames is the same if not worse than writing a cumérsome script to
parse collections of metadata text les.

The hybrid design of ROARS takes the best aspects from both t#dbases and
distributed lesystems and combines them to provide rich ntadata capabilities
and robust scalable storage. To meet the storage requirenheROARS replicates
the data objects along with their associated metadata acresmultiple storage
nodes. Like in traditional distributed systems, this use oflata replications allows

for scalable streaming read access and fault tolerance. Irder to provide fast
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metadata query operations, the metadata information is psistently cached upon
importing the data objects into the repository in a traditional database server.
Queries and operations on the data objects access this cabhefast and e cient
storage operations and metadata operations.

Although, ROARS storage organization is similar to the onesed in the Google
Fileystem [27], and Hadoop [29], where simple Data Nodes taaw data and a
single Name Node maintains the metadata. ROARS architectardi ers in a few
important ways however. First, rather than striping the dat as blocks across
multiple storage nodes as done in Hadoop and the Google Fistem, ROARS
store discrete whole data les on the storage nodes. Whileighprevents us from
being able to support extremely large le sizes, this is notraimportant feature
since most scienti ¢ data collections tend to be many smallles, rather than a
few extremely large ones. Moreover, the use of whole dataslgreatly simpli es
recovery and enables failure independence. Likewise, theewf a database server
as the metadata cache enables us to provide sophisticateddamcient metadata
gueries. While Google Filesystem and Hadoop are restrictéd basic lesystem
type metadata, ROARS can handle queries that work on constireis on domain-
speci ¢ metadata information, allowing researchers to sezh and organize their

data in terms familiar to their research focus.

3.2.1 MDS Structure

We employ a relational database to implement the main funatnality of the
MDS. The database contains three primary tables: a metadatable, a le table
and a replica table. The metadata table stores the most recevalues for all items

in a collection, indexed for e cient lookup. Each entry in the metadata table
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Figure 3.4. MDS Structure

points to a uniquefileid in the le table. The le table plays the same role an
inode table in a traditional Unix le system does for ROARS ad holds the essen-
tial information about raw data les, such assize , checksum and create time .
ROARS utilizes this information not only to keep track of les but also to emulate
system calls such astat . For any givenfileid , there can be multiple replica
entries in the replica table, which tracks the location andtate of each replica of
a le. Figure 3.4 gives an example of the relationship betwadghe metadata, le,
and replica tables. In this con guration, each le is given auniquefileid in le
table. In the replica table, thefileid may occur multiple times, with each row
representing a separate replica location in the storage sher. Accessing a le then
involves looking up thefileid , nding the set of associated replica locations, and
then selecting a storage node.

As can be seen, this database organization provides both thbility to query

les based on domain speci ¢ metadata and the ability to proiwde scalable data
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distribution and fault-tolerant operation through the use of replicas. Some of
the additional elds such aslastcheck , state , and checksumare used by high
level data access operations provided by ROARS to maintaimé integrity of the
system. These operations will be discussed in later subsens.

A few complications regarding the metadata are worth noting First, the
ROARS abstract data model has no schema nor limits on eld lggth. ROARS
maps all metadata elds to a relational database table. ROAB supports new
elds by adding new columns or expanding eld widths as neede This could be
highly ine cient for very sparse data, but is adequate for the common case where
items in a collection share a number of properties.

Second, the metadata table only contains the most recent vads for each tu-
ple in a record. The complete history including the OWNER and IME elements
described in section 2.1 is stored in a distinanetadata logtable. Additionally,
these information is written to the metadata le next to eachraw data object in
the storage nodes. This provides the complete history of thepository when it
IS necessary to audit for scienti ¢ integrity. Each metadaa change is written to
the database intermediately. However, the change may not lre ected at the
storage node simultaneously. ROARS could write changes t@th database and
storage servers atomically; however, because of the latgrdiscrepancy between
a database update transaction and a disk write transactionyriting changes to
both is lagged and bounded by slow disk speed. Especially whthere are mass
metadata changes during the enrollment process, writing tlusands of small trans-
actions to disk can take minutes to hours.

Third, any changes to metadata must be re ected in several ates: the meta-

data table, the metadata log, and each of the distributed medata les. This
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is accomplished by treating the metadata log as a roll-forwd recovery log. All
updates are applied to the log rst and marked as ‘'incompleteuntil they are

appended to each of the distributed metadata les.

3.2.2 Storage Nodes

ROARS uses the Chirp [72] user level lesystem to implementhe software
component of each storage node. A storage node is typicallg@nventional server
with large local disks, organized into a cluster. Storage des are divided into
di erent storage groups based on locality, and given groupid . This approach is
consistent with the structure principle that Maccormic et al. proposed with the
Kinesis system [37]. In such a system, storage servers areugred into di erent
segments which are likely to be failure-independent. Thuilure in one segment
would not catastrophically a ect the system as a whole. AHMPORTeliberately
places replicas in di erent storage groups to achieve botload balancing and
failure independence. This approach is similar teack awarenessn Hadoop. By
convention, if a data object was named.jpg , then the associated metadata le
would be namedX.meta and both of these les are replicated across the storage
nodes in each of the Storage Groups.

By replicating the raw data across the network, ROARS provids scalable,
high throughput data access for distributed applicationsMoreover, because each
storage group has at least one copy of the data le, distribed applications can
easily take advantage of data locality with ROARS. Applicaibns using the lesys-
tem interface are directed to the closest replica, prefeng one on the same node,

otherwise in the same storage group if possible.
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3.3 ROARS as a Storage System for Daily Use and Long Term DatagBervation

3.3.1 Robustness

The ROARS architecture is robust to a wide variety of failure in a number of
dimensions, including server or network outage, server §data corruption, and
interruption of write and administrative operations. The gstem design assumes
that errors are due to failures or accidents, but does not gmtthe expense of
protecting against Byzantine failures, as in in LOCKSS [55]

Data integrity is achieved by checksumming all le objects o storage nodes
and by recording this in the MDS. (Integrity of the MDS can be acomplished
via internal hierarchical checksums of the tables, as in ZFR2]. Data integrity
is veri ed by a periodic AUDITprocess as described above. Damaged replicas are
automatically deleted if a majority of replicas are in agraaent with the checksum
stored in the MDS. If a majority of replicas agree upon a chesim, but this does
not equal that stored in the MDS, ROARS assumes the MDS is canpted, and
with manual approval, will update the MDS to correspond to tle majority view.

Replication is the primary defense against server and netvikooutage. Files are
replicated three times by default. During a read operationypthe query client or
the lesystem client, if a replica is not reachable due to seer outage or hardware
failure, ROARS will randomly try other replicas until a userspeci ed timeout is
reached. As mentioned earlier, storage nodes are organizei groups based on
locality. By placing replicas in distinct groups, the likelhood of availability is
improved.

ROARS employs complete replicas of each data object and cesponding
metadata le to protect against server loss. In the event of mitiple simulta-

neous hardware failures from a re, ood, etc., any individal storage unit that

36



can be recovered contains a usable fragment of the data ang itorresponding
metadata. If the metadata server itself is lost, the entireantents of the metadata
table, metadata log, le table, and replica table can be reewstructed from the

metadata les on the distributed storage nodes, albeit at sne expense. From
this perspective, the MDS is an important cache of the metada but not the

authoritative copy.

All operations that write to the archive, including IMPORTMIGRATE DA®BAd
AUDIT DATAre carefully designed to move le servers and replicas thugh the
state transitions shown in Figure 3.2. The common concept ieat major actions
are accomplished via two phase commit: a state transition mies an intent to
execute and the intention is executed before completing theext action. If an
administrative command crashes or is forcibly killed, the ext invocation observes
the previously recorded intent, and continues. This makesdlaperations robust
to system failures or accidental cancellation. It also givime system operator ex-
ibility to spread out long-running operations. For exampleone might accomplish
a complex migration by running it incrementally for two hous every night during
a period of low usage. Additionally, both the command line Ent and the lesys-
tem client take server and replica states into account, so #t imports and reads

can continue while the system is in ux.

3.3.2 Reliability and Availability

ROARS must be able to preserve data and support data recovemhen disaster
strikes. First, it must be reliable: once imported, data in the system should survive
the expected rate of hardware failures and migrate automatlly as new hardware

is provisioned. Second, it must also bavailable Acquisition of data occurs on
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dozens of weekdays during the academic year. Students andulity interact with
the system to do research at all hours of the night and day. Datanalysis tasks
may take days or weeks. Good performance is also desirablet bot at the
expense of reliability and availability.

Figure 3.5 shows the expected probability of data loss due tlisk failure based
on the values observed by Google [49], which are signi caythigher than those
reported by manufacturers. For years one through ve in theifle of a disk, the
annualized failure ratef is the probability that the disk will fail in that particular
year. The probability of data loss of two disks is simply 2, three disksf 2, and so
forth. For three data copies, the probability of failure is éss than 0.001 percent
in the rst year, and less than 0.1 percent in years two throug ve. To sustain
the data beyond the conventional disk lifetime of ve yearsROARS should plan

to provision new equipment

38



4000 . —

File Timeout
3500 T Fast Check --==-==---- .
“ 3000 | Cached Check |

= Optimistic
e 2500 r |
[= i _
8 2000 ’0/' _“.-....-"‘“
:.3- 1500 I o'l" . _‘.“-“-“““\"..‘--‘-:“““"‘"“:‘::l:‘:‘ “““““““““ N
E 1000 "" ...--..-.;.'..:.‘..‘..‘.;;.‘..‘.-'--'--""' """"" |
500 le” mm‘“mﬂ“-“““"“"""‘NN‘ ‘‘‘‘‘ |

O e | | I |

0 10000 20000 30000 40000 50000
Number of Records Exported

Figure 3.6. Performance of Transparent Failover Technigse

3.3.3 Transparent Fail Over

Because the active storage cluster records each replica asedf-contained
whole, the failure of any device does not have any immediatenpact on the
others. Operations that read the repository retrieve the $eof available replicas,
then try each in random order until success is obtained. Opations that import
new data select any available le server at random: if the satted one does not
respond, another may be chosen. If no replicas (or le sergrare available, then
the request may either block or return an error, depending otine user's con gu-
ration. Given a su cient replication factor, even the failure of several servers at
once will only impact performance.

Sustaining acceptable performance during a failure reqes some care and

imposes a modest performance penalty on normal operationgach le server
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operation has an internal timeout and retry, which is desiged to hide transient
failures such as network outages, server reboots, and dreplpTCP connections.
Without any advance knowledge of the amount of data to be trasferred, this
timeout must be set very high { ve minutes { in order to acommalate les mea-
sured in gigabytes. If a le server is not available, then anpgeration will be retried
for up to ve minutes, holding up the entire workload. To avod this problem,
ROARS probes for server health using an inexpensive test be¢ downloading a
le: the client requests astat on the le with a short timeout of three seconds.
If this succeeds, then the client now has the le size and cam@ose a download
timeout proportional to the le size. If it fails, the client requests a dierent
replica and tries again with another service. Of course, thitest also has a cost of
three seconds on a failed server, so the client should cachestresult for a limited
time ( ve minutes) before attempting to contact the server gain.

Figure 3.6 demonstrates this by comparing the performancéd several varia-
tions of transparent failover while exporting 50,000 datalgjects, 300KB each. The
\Optimistic" case has all 16 servers operating and downloaay les without any
additional checks. The remaining cases have one le servesabled. \File Time-
out" relies solely on the failure of le downloads, and makesery little progress.
\Fast Check" does better but is still signi cantly slower because approximately
every 16th request is delayed by three seconds. \Cached Ckiedoes best be-
cause it only pays the three second penalty every ve minutesiowever, it is still
measurably worse than the optimistic case, because eachnsaction involves an

additional check.
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3.3.4 Three Phase Updates

Most updates on the repository require modifying both the dabase server and
one or more storage servers. Because this cannot be done atatty, there is the
danger of inconsistency between the two after a failure. Taldress this problem,
all changes to the repository require three phases: (1) redoan intention in the
database, (2) modify the le server(s), (3) complete the irgntion in the database.
For example, when adding a new le to the system, thtMPOR€ommand chooses
a location for the rst replica, writes that intention to the database and marks
its state ascreating . It then uploads the le into the desired location, and then
completes by updating the state took. Likewise, DELETEecords the intention
of deleting to the database, deletes a le, and then removes the recordtealy.
Other tools that read the database simply must take care to e&l data only in
the ok state. In the event of a failure, there may be records left béid in the
intermediate states, but theREPAIRool can complete or abort the action without

ambiguity.

3.3.5 Asynchronous Audit and Repair

An important aspect of preserving data for the long haul is mviding the end
user with an independent mean for checking the integrity ohie system. Although
the system can (and should) perform all manner of integrity leecks when data
are imported or exported, changes to the system, software; environment may
damage the repository in ways that may not be observed until ach later. Thus,
ROARS was bulit to allow the curator to check the integrity ofa set or to scan
the entire system on demand.

The AUDITcommand works as follows. For every le, the system locatedl a
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replicas, computes the size and checksum of each replicag aompares it to the
stored values. An error is reported if there is an insu cientnumber of replicas
in the ok state, inconsistencies in the checksums, and replicas fdes that no
longer exist. In addition, the auditing tool checks for refential integrity in the

metadata, ensuring that each recording refers to a valid emt in the ancillary

data tables. (We do not use the database to enforce referaitiintegrity when

inserting data because we do not wish to delay the presenai of digital data
simply because the paperwork representing the ancillary tdahas not yet been
processed.)

This is a very data intensive process that gains signi cant énet from the
capabilities of the active storage cluster. The serial taskf interrogating the
database can be accomplished in seconds, but the checksumgmiequires visiting
every byte stored, and it would be highly ine cient to move al of this data over
the network. Instead, we can perform the checksums on the a@ storage nodes in
parallel. To demonstrate this, we constructed three verans of the auditing code.
The rst uses the repository like a conventional le systemyeading all of the data
over the network into a checksum process at the database nodehe second uses
the active storage cluster to perform the checksums at themmte hosts, but only
performs them sequentially. The third dispatches all the a@tksum requests in
bulk parallel to all active storage units.

When the repository is scaled up to a million recordings, thparallel active
storage audit can be done in a few hours, while the conventalnmethod would
take days. For even larger sizes, the audit can be done incremtally by specifying
a maximum number of les to check in the given invocation. Ths would allow

the curator to spread checks across periods of low load. TREPAIRcheck for
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corrupted replicas, repairs the system by making new repéis and deleting bad

copies.

3.3.6 Active Storage

ROARS is also capable of executing programs internally, ¢oeating the com-
putation with the data that it requires. This technique is known asactive stor-
age [54]. In ROARS, an active storage job is dispatch to a speci de server
containing the input les where it is run in an identity box [68] to prevent it from
harming the archive.

Active storage is frequently used in ROARS to provide transing from one
data format to another. For example, a large MPEG format aniration might be
converted down to a 10-frame low resolution GIF animation tase as a preview
image on a web site. A given web page might show tens or hundseaf thumbnails
that must be transcoded and displayed simultaneously. Witlactive storage, we

can harness the parallelism of the cluster to deliver the nel¢ faster.

Table 3.3.6 shows the performance of transcoding variousnés of images
using the active storage facilites of ROARS. Each line showlse turnaround time
(in seconds) to convert 50 images of the given type. The "Ldchne shows the
time to complete the conversions sequentially using ROARS an ordinary le
system. The "'Remote’ lines show the turnaround time using ¢éhindicated number
of active storage servers. As can be seen the active storageility does not help
when applied to small still images, but o ers a signi cant sgedup when applied

to large videos with signi cant processing cost.
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TABLE 3.1

TRANSCODING IN ACTIVE STORAGE

Iris Face Iris Face

Still Still | Video | Video

Method | (300KB) | (IMB) | (5MB) | (50MB)
Local 10 18 106 187
Remote x2 80 45 150 134
Remote x4 23 26 57 79
Remote x8 22 16 58 70
Remote x16 12 12 18 33
Remote x32 12 17 16 17
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CHAPTER 4

SYSTEM EVALUATION

4.1 System Environment

To evaluate the performance and operational characteris8 of ROARS, we
ran a number of experiments on a testbed cluster consisting 22 data storage
nodes. They are servers with 32GB RAM, twelve 2TB SATA disksral two 8-core
Intel Xeon E5620 CPUs, all connected via a dedicated Gigahiithernet switch.
ROARS was deployed with 22 Chirp servers running on those 22daes, and an
MDS with the MySQL database on a head node. A number read and &
experiments were also ran on Hadoop lesystem and the ressifvere compare to
ROARS' performance results. Hadoop lesystem was deployesith 22 Hadoop
lesystem Datanodes running on the same 22 data storage nadand the Hadoop
lesystem Namenode running on the cluster head node. With Hiop lesystem,
we kept the usual Hadoop defaults such as employing a 64 MB clhusize and a
replication factor of three.

The following experimental results test the performance ®&#0ARS and demon-
strate its capabilities while performing a variety of storge system activities such
as importing data, exporting materialized views and migrang replicas. These
experiments also include micro-benchmarks of traditionalesystem operations to

determine the latency of common system calls, and concurteatcess benchmarks
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that demonstrate how well the system scales in read performee throughput. For
these latter performance tests, we compare ROARS's perfoamce to Hadoop,
which is an often cited as an alternative to distributed dataarchiving. At the

end, we include operational results that demonstrate the @pational robustness

of ROARS.

4.2 Basic Data Storage Operations

The purpose of these benchmark experiments is to measure RR& perfor-
mance on daily operations of a storage system. These opevas includeSCREEN
exam data and metadata before ingesting into the systemlIMPORTingest data
into ROARS, EXPORTget data and metadata out of ROARS,VIEWScreate a
materialized view with metadata, QUERYonly get metadata, andDELETEemove
data from ROARS. Of the six operations,IMPORTEXPOR®Nd DELETHnteract
directly with the storage nodes, whileSCREENIEW and QUERWYO0 not.

Figure 4.1 shows the runtime of each of the key operations 0,000 data
objects total of 17.4GB data, with triple replication. Most operations require
multiple transactions against the database and the storagduster. IMPORDper-
ates at the lowest speed because it has to create three repéidor each data le.
Moreover, the number of database queries is by far the mostmparing to other
operations. Table 4.2 shows the number of database queries éach operations
per data le.

UPDATE queries are extra expensive comparing to other typesf query be-
cause of ROARS' metadata logging mechanism described in @ber 2. Each
update essentially means another insert into the log table ich decreases the

performance oiMPOR&nd DELETBperations. SCREENN signi cantly faster than
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Figure 4.1. Screen, Import, Export, View, Query, Delete Péormance
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all other commands because it has the least number of datalbagquery and its
merely stat data les on local storage instead of transfemg data les across the
network multiple times sequentially likckEXPORTQUERI$ also fast because it only
needs to query the metadata from the database and it does nottaally fetch
any data le. VIEWs very similar to QUERNecause it does not interact with the
storage nodes. HoweveYIEWSreates symbolic link les on local hard drive for
each object, thus the performance di ers fronQUERFigure 4.2 shows the runtime
of the same set of operations, this time with 10,000 small dabbjects of about
300KB each. As expected, the performance SCREENQUERYand DELETEoes
not depend on the total size of the data, their performance gndepends on the
number of objects. QUER¥O0K longer in this experiment because the number of

metadata for this dataset is almost double the number of metkata for the rst
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experiment. The runtime of SCREE&hd DELETHRAre almost identical for both ex-
periments. The experiment results show that ROARS achieveogd performance

for daily use of data ingestion and data export.

4.3 ROARS vs. Hadoop: Data Import and Metadata Query

These set of experiments were designed to measure the perfance of data
import and metadata query for both ROARS and Hadoop. Since RERS and
Hadoop lesystem replicate data di erently, the data impott performance are not
expected to be identical. As described in Chapter 2, ROARS pkcate data in
a sequential manner while Haddop replicates data in a paralltree structure.
On another hand, ROARS supports for metadata query through atabase, and

Haddop does not have any built-in support for metadata thus sers usually rely
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TABLE 4.1

NUMBER OF DATABASE QUERIES PER OPERATION

QUERY | SCREEN | IMPORT EXPORT | VIEW | QUERY | DELETE

SELECT

INSERT

UPDATE

o | O | O |k

1 1
0 0
0 0
0 0

o (N |01 | P

1
0
0
DELETE 0

o | o1 | O |k

on Map Reduce for any type of metadata query.

4.3.1 Data Import

The following test measured the performance of importing tge datasets into
both Hadoop and ROARS. For this data import experiment, the ¢€st were divided
into several sets of data objects. Each set consists of humlé xed size les,
ranging from 1KB to 1GB. To perform the experiment, we impontd the data from
a local disk to the distributed systems. In the case of Hadodhis simply involved
copying the data from the local machine to Hadoop lesystemFor ROARS, we
used theIMPORDperation.

Figure 4.3 shows the data import performance for Hadoop andJARS for
several sets of data. The graph shows the throughput as thee kizes increase. The
maximum theoretical throughput on a gigabit link is 128MB/s and the maximum
achievable by a TCP connection is closer to 100MB/s, depemdj on the variant
used. Both ROARS and Hadoop lesystem achieve signi cantliess than that, due

to the overheads of interacting with the central metadata sger, and the creation
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Figure 4.3. Import Performance for ROARS and Hadoop lesysim

of multiple le replicas. The overhead of interacting with the MDS is higher in
ROARS, due to the multiple state transitions shown in Figure8.2. The overhead of
creating replicas is higher in ROARS, because it transfersid veri es each replica
separately, whereas Hadoop lesystem sets up a data forward pipeline, and
only communicates with the primary replica. In both systemshigher throughput
is achieved with larger les. For the purposes of long term da preservation with
a write-once, read-many model, this is an acceptable trade-to achieve high

integrity transactions.

4.3.2 Metadata Query

In this benchmark, we studied the cost of performing a metada query. As

previously noted, one of the advantages of ROARS over didttited systems such

50



120 _' | | HDFS—Grep '457'
HDFS-MapReduce —=—
100 | ROARS-MDS —6—

80
60
40
20

Run-Time (Seconds)

10 100 1000 10000
Number of records (x1000)

Figure 4.4. Query Performance

as Hadoop is that it provides a means of quickly searching amdanipulating the
metadata in the repository. For this experiment, we creatednultiple metadata
databases of increasing size and performed a query that Igofor objects of a
particular type.

As a baseline reference, we performed a custarep of the database records
on a single node accessing Hadoop lesystem, which is noripathat happens in
rudimentary scienti ¢ data collections. For Hadoop, we stred all the metadata
in a single le in NAMETYPEVALUEuple format we described in Section 2.1. For
each object, the metadata takes up approximately 1.3KB in stage. We started
with We queried the metadata by executing the custom script sing MapReduce
[19]. For ROARS, we queried the metadata usinQUERWhich internally uses the
MySQL execution engine.

Figure 4.4 clearly shows that ROARS takes full advantage ohé database
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query capabilities properly and is much faster than either lsjpReduce or standard
grepping Evidently, as the metadata database increases in size, thesp perfor-
mance degrades quickly. The same is true for tt@UER¥peration. Hadoop, how-
ever, at rst retains a steady running time, regardless of ta size of the database
(up to 2.7M rows or 3.6 GB). After that, Hadoop Map Reduce rurinme only
increases linearly. This is because the MapReduce versioasvable to take advan-
tage of multiple compute nodes and thus scale up its performee. Unfortunately,
due to the overhead incurred in setting up the computation ah organizing the
MapReduce execution, the Hadoop query had a high startup ¢osnd thus was
slower than the MDS. Futhermore, the standardyrepand MDS queries were per-
formed on a single node, and thus did not benet from scalingThat said, the
ROARS query was still faster than Hadoop, even when the datake reached 345M
data objects(427 GB of data).

4.4 ROARS Data Read Performance

4.4.1 Filesystem Access

ROARS provides a read-only lesystem interface for conveittnal applications,
consisting primarily of the system callsstat , open read, and close. Hadoop
lesystem provides similar functionality through the library libhdfs . To evaluate
these side by side, we implemented equivalent modules in Rarfor a single Chirp
server, ROARS, and Hadoop lesystem. In addition, we provigl a variant of the
ROARS module which caches recently used lesystem data andetadata. To
test the latency of these common lesystem functions, we cstiucted a simple
benchmark which performs repeatedtat s, opers, reads, andclose s on a single

le.
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Figure 4.5 shows the latency of each operations on a centzald server, Hadoop
lesystem, and ROARS. As can be seen, ROARS provides comphla latency to
the centralized server, and in the case dftat , open and read, lower latency
than Hadoop lesystem. Since all le access also pass thrdudParrot, there is
some interposition overhead for each system call. Howevsince all of the storage
systems were accessed though the same Parrot adapter, thiliéional overhead
is same for all of the systems and thus does not a ect the relaeé latencies.

These results show that there is overhead to communicatingtivthe MDS for
metadata, the latencies provided by the ROARS system remaicomparable to
Hadoop lesystem. Moreover, because of the write-once natuof the data, these
queries can be cached for signi cant performance gains. Withis small optimiza-
tion, operations such astat and openare signi cantly faster with ROARS than

with Hadoop lesystem.
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4.4.2 ROARS Concurrent Access

To determine the scalability of ROARS in comparison to a cenalized network
server (running Chirp) and Hadoop lesystem, we exported tev di erent datasets
to each of the systems and performed a test that read all of thdata in each set.
In the case of ROARS, we used a materialized view with symboliinks to take
advantage of the data replication features of the system, wa for the centralized
network server and Hadoop lesystem, we exported the data rdictory to each of
those systems. We ran our test program using the Condor [73kttibuted batch
system running on the same cluster with 1 - 32 concurrent jolmsading data from
each system.

We set up the experiment using a 32 storage nodes with the fadling setup.
Nodes are commodity servers with dual-core Intel 2.4 GHz CRU4GB of RAM,
and 750GB SATA-II disks, all connected via a dedicated GigalEthernet switch.
ROARS was deployed with 32 Chirp servers running on the 32 slier data nodes,
and an MDS with the MySQL database on the cluster head node. Haop lesys-
tem was deployed with 32 Hadoop lesystem Datanodes runnir@n the 32 cluster
data nodes, and the Hadoop lesystem Namenode running on theuster head
node.

Figure 4.6 and Figure 6.2.2 show the performance results dif three systems
for both datasets. In Figure 4.6, the clients read 10,000 3B les, while in
Figure 6.2.2 1,000 5MB les were read. In both graphs, the onal aggregate
throughput for both Hadoop lesystem and ROARS increases Wi an increasing
number of concurrent clients, while the traditional le sewer levels o after around
8 clients. This is because the central le server is limitedat a maximum upload

rate of about 120MB/s, which it reaches after 8 concurrent sxlers. ROARS
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and Hadoop lesystem, however, use replicas to enable reaglifrom multiple
machines, and thus scale with the number of readers. As withé case of importing
data, these read tests also show that accessing larger lesmuch more e cient
in both ROARS and Hadoop lesystem than working on smaller és.

While both ROARS and Hadoop lesystem achieve improved agggate per-
formance over the traditional le server, ROARS outperforns Hadoop lesystem
by a factor of 2. In the case of the small les, ROARS was able tachieve an ag-
gregate throughput of 526.66 MB/s, while Hadoop lesystemmly reached 245.23
MB/s. For the larger test, ROARS reached 1030.94 MBS/s and Hiop lesystem
581.88 MB/s. There are several reasons for this di erence.irbt, ROARS has less
overhead in setting up the data transfers than Hadoop lesyeam as indicated in

the micro-operations benchmarks. Such overhead limits theimber of concurrent
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Figure 4.7. Concurrent Access Performance (1K x 5MB)

data transfers and thus aggregate throughput. Another caedor the performance
di erence is the behavior of the storage nodes. In Hadoop $ystem, each block
is checksummed and there is some additional overhead to ntain data integrity,
while in ROARS, data integrity is only enforced during high ével operations such
as IMPORTMIGRATEand AUDIT Since the storage nodes in ROARS are simple
network le servers, no checksumming is performed during @ad operation, while

in Hadoop lesystem data integrity is enforced throughout,even during reads.

4.5 Integrity Check & Recovery

In ROARS, the AUDITcommand is used to perform an integrity check. As we
have mentioned, the le table keeps records of a data le's =, checksum, and

the last checked date AUDITuses this information to detect suspect replicas and
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Figure 4.8. Cost of Calculating Checksums

replace them. At the lowest level AUDITchecks the size of the replicas to make
sure it is the same as the le table entries indicate. This typ of check is not
expensive to perform, but it is also not reliable. A replicaauld have a nhumber
of bytes modi ed, but remains the same size. A better way to @tk a replica’s
integrity is to compute the checksum of the replica, and congpe it to the value
in le table. This is expensive because the process will neéalread in the whole
replica to compute the checksum.

Figure 4.8 shows the cost of computing checksums in both ROSRand Hadoop
lesystem. As le size increases, the time required to perf;m a checksum also
increases for both systems. However, when the le size is ¢y than a Hadoop
lesystem block size (64MB), ROARS begins to outperform Hambp lesystem
because the latter incurs additional overhead in selectirgnew block and setting

up a new transaction. Moreover, ROARS lets storage nodes fmm checksum

57



remotely where the data le is stored while for Hadoop lesytem this data must
be streamed locally before an operation can be performed.

Verifying data integrity is an essential component of mairgining a long-term
archive with many stakeholders. If veri cation requires muing all data to an
external party, then it can only be done in time proportionalto the sum of the
archive. To make this process feasible on a regular basis, RRS uses the active
storage facility to run the checksums directly on each stoge node, then runs each
storage node in parallel. In this way, a complete system audian be performed
in time proportional to the capacity of the largest node.

To start, we measure the performance of each audit method 00,800 images
object of about 300KB each. Table 5.4 show the initial result

We also compared the performance of an external sequentialdit against a
parallel/active-storage audit on a production ROARS deplgment of 90,000 les
totalling 497GB. The sequential implementation completeéh 4.2 hours , averag-
ing 32.5MB of data veri ed per second. The parallel implemeation completed in
19.6 min, for a speedup of 13x, which is imperfect due to the Amdahl avesad
of the MDS operations, but still signi cantly faster. If we consider much larger
storage systems, say 100 storage nodes of 1 TB each, a sedgleintegrity check
would take months and be practically infeasible, while a coptete parallel check
could be scheduled into system downtime and completed in hsu

We measure the performance of each audit method on 50,000 gea object of

about 300KB each:
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TABLE 4.2

AUDIT RUNTIME FOR 50,000 DATA OBJECTS, 300KB EACH

Audit Method Execution Time Speedup
Conventional File System 5:43:12 1X
Sequential Active Storage 1:39:22 3.4X
Parallel Active Storage 0:08:21 41.1X

4.6 Metadata Logging

Metadata can be modi ed through out the life cycle of a data oject, starts
with data import, continues with data update and ends with déa delete. At
each phase, metadata change is written to the database inteediately. However,
those changes have not been re ected at the storage level y&OARS could write
changes to both database and storage servers at the same tirel®wever, because
of the time discrepancy between a database update transamti and a disk write
transaction, writing changes to both is lagged and boundedylslow disk speed.
Especially when there are mass metadata changes during the@lment process,
writing thousands of small transactions to disk can take miurtes to hours.

In order to maintain data consistency, ROARS logs all metada changes in
a log table. The log table keeps track of what has been changesho made
the change, and when the change was made. However, loggingrdes come
with a cost. Figure 4.9 graphs shows the average performaniceport,update
and delete operations on 100,000 metadata records with andthvout metadata
logging. Obviously, metadata logging feature does a ect iport, update and delete

metadata performance. Each update of metadata will resulbtat least one insert
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Figure 4.9. Metadata Logging

into a metadata log table. The performance penalty is about®percent. While

import and delete result in multiple inserts into the log tabe.

4.7 Dynamic Data Migration

In early section, | showed that hardware failure is unavoidde in a distributed
environment. Hard drive goes bad all the time. New storage de is added to
the systems to either increase the storage capability or t@place a failing node.
Either way, when a new storage node is added, data need to beved to a new
node, new replicas will be created to replace the damage orret@ maintain the
load balancing among group.

To demonstrate the data migration and fault tolerance feattes of ROARS,

we set up a migration experiment as follows. We added 16 newosige nodes
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to our current system, and we started dMIGRATRrocess to spawn new replicas.
Starting with 30 active storage nodes, we intentionally tured o a number of
storage nodes duringMIGRATIRrocess. After some time, we turn some storage
nodes back on, leaving the others inactive.

By dropping storage nodes from the system, we wanted to denstrate that
ROARS still could be functional even when hardware failureazurs. Figure 4.10
demonstrates that ROARS remained operational during th#1IGRATRrocess. As
expected, the performance throughput takes a dip as numbef active Storage
Nodes decreases. The decrease in performance is because WRRARS contacts
an inactive storage node, it would fail to obtain the necessareplica for copying.
Within a global timeout, ROARS will retry to connect to the same storage node
and then move on to the next available Node. Because storagedes remain
inactive, the ROARS continues to endure more and more timet That leads
to the decrease of system throughput. While the experimentas progressing, we
added a number of storage nodes back to the system. As soon asiber of nodes
came back online, we see the increase in system throughput.

Although, throughput performance decreases slightly whethere are only two
inactive storage nodes, throughput takes a more signi cartit when there is a
larger number of inactive storage nodes. There are ways toduee this negative
e ect on performance. First, ROARS can dynamically shortetthe global timeout,
e ectively cutting down retry time. Or better yet, ROARS can detect inactive
storage nodes after a number of failed attempts, and blacklithem, thus avoiding

picking replicas from inactive Nodes in the future.
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CHAPTER 5

ROARS AND BIOMETRICS DATA

The last chapter shows that ROARS provides scalable, fauttlerant data
storage with metadata support for scienti ¢ data. Users canutilize ROARS to
store, manage, update, and query for data easily using a usedet of tools. IMPORT
and EXPORperformance are adequate for daily data ingestion and datauery
from a number of concurrent users. ROARS can not only manageienti c data,
but also present data to users in a more e ective way which pveously was not
possible.

ROARS has been used to manage a large biometrics data reposjt(BXGrid)
at Notre Dame. We have developed a step by step model to capgyringest,
validate, and prepare data for biometrics research. Durintpe life-time of biomet-
rics data, there are many hidden errors which can be introded into the data.
Those errors can aect the overall quality of data, and thus @& skew the re-
sults of biometrics research. ROARS helps researchers immpe data quality and
sub-sequentially the quality of their research. ROARS prages data replication,
automated data validation, and metadata provenance whichra necessary and

crucial to improve the quality and reliability of biometrics data.
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5.1 Biometrics Research

Biometrics researchers study human body characteristias the context of iden-
ti cation. Scientists develop algorithms to identify and @n rm a human identity
by comparing those characteristics with a known set and ugira measurement of
a physical trait. There have been a number of studies detailj the e ectiveness
of using human body characteristics such as ngerprint [52hand [33], iris [18],
and face [83] to identify or to verify an identity claim. Howeer, questions remain
about how to improve speed and reliability of the identi caion process. Nowa-
days, with the popularity of cloud computing [71], biometrcs researchers have a
very powerful tool to study the correctness and e ectivenasof their biometrics
recognition algorithms.

The Computer Vision Research Lab (CVRL) at the University ofNotre Dame
collects hundreds of gigabytes of biometrics data every sester from students,
sta s, and faculties. Data is ingested and maintained in thd8XGrid system for
internal use to study newly developed algorithms. Data is sb exported and
shipped to the National Institute of Standards and Technolgy (NIST) to enter
into a national research database. Examples of biometricaic are iris, face (still
images and movies), and 3D face scans. Every image, movied anan collected is
considered aecording . There are a number of metadata attributes attached to
a recording. The metadata is gathered during the acquisitoof each recording.
Figure 5.1 shows an example of a face recording.

BXGrid is tailored from ROARS to support storage of biometrcs data and
metadata and to facilitate large scale experiments usingsiributed tools available
from the Cooporate Computing Lab. Most end users interact Wi the system

through the web portal, which allows for interactive browsig, data export in
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id numeric 64427

recordingid string nd4R91445

shotid string 2009-084-004-neutral. NEF
sequenceid string 05432d373

date string 2009-03-25 00:00:00
format string nef

subjectid string nd1S05432

glasses string No

sourcel string Retrospectively
emotion string BlankStare

source2 string Given

stageid string nd4T00014

weather string Inside

collectionid string nd1C00031
environmentid string nd1E00069

sensorid string nd1NO0012
illuminantidl string nd1100010

state string enrolled

leid numeric 430941

by _user string slagree

lastcheck string 2009-04-09 09:49:11
date_added string 2009-03-31 10:00:40
added.by string dwright2
temp_collectionid  string 1238508120

YOB numeric 1982

gender string Male

race string Asian

Figure 5.1. Sample Face Image and Metadata
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Figure 5.2: Examples of the Web Portal Interface
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various forms, dataset management, and system administrah. Figure 5.2 shows

examples of BXGrid's portal pages.

5.2 Overview of Acquisition

The CVRL collects data bi-weekly during Fall and Spring sensters. Each
acquisition involves several lab technicians and employsraimber of biometrics
sensors. Acquisition needs to be carried out as quickly asgstble according
to a plan to ensure the quality of data collected and the corotness of derived
metadata. Acquisition usually includes a number of statiog Each station requires
one or more lab technicians to monitor and capture data as sjgtts proceed
through. A station uses one or multiple sensors with di erenlighting conditions.
A sensor can produce more than one recording. A recording cha a picture, a

movie, or a 3D scan.

5.2.1 Acquisition Setup

The rst step of any acquisition session is to set up the stabths based on an
acquisition speci cation. The job of the setup techniciang to follow the speci ca-
tion in order to determine the placement of sensors (camereamcorder, scanner)
and illuminant sources. In addition, the speci cation provdes the position of sub-
jects and number of recordings captured per subject per sens After setting up
the station according to the speci cation, technicians péorm a mock acquisition
to make sure the equipment functions properly, and then elimate any remaining

problems observed.
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5.2.2 Data Acquisition

As subjects start an acquisition session, each of them is givasession id.
This session id is used to synchronize each captured recording and its metdd,
such as subjectid, stageid, eye color, etc. Subjects go thgh a number of sta-
tions, recordings are captured at each station, and metadais recorded. During
the acquisition, technicians capture these data and act abe rst quality screen-
ing gate. They make sure that eyes are open during iris acqien, faces are
unobstructed during face acquisition, and so on. They wilhitiate re-acquisition
if deemed necessary.

During acquisition, metadata is captured along with each eording. Metadata
includes lighting conditions, sensor speci cations, refave position of subject to
sensor and lighting (e.g. subject 6' away from camera anduthinant 8' above
ground, 6' directly in front of subject). Other metadata conains personal infor-
mation regarding the subject, such as eye color, race, andeagAnother set of
metadata is a recording of speci cations such as format, r@sition, and length

(for video).

5.2.3 Pre-ingestion Assembly of Data

After acquisition, there are several types of recordings & need to be pro-
cessed before ingesting. HD video needs to be clipped by sabj renamed, then
transcoded to MPEG format. BMP images need to be converted fBlIFF format.
Iris videos need to be clipped by subject and eye (leftrightthen transcoded
to MPEG format and renamed. Data and metadata need to be gathed and
synchronized before ingesting into a distributed storageystem. While computer

controlled sensors have the session id built into the recong's lename, manu-
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ally operated sensor recordings need to be renamed. The nelename includes
session id, date, description of a recording (regarding leér quality { high, low {
or activity classi cation { still, movement, etc.)

The next step is to collate metadata from various sources imta spreadsheet
that links it to the correct recording. Some data comes fromubject registration,
e.g., eye color, glasses, age; some is environment-depeindeay., sensor id (sensor
information), illuminant id (lighting information). Meta data is then converted to
name value pair format and is ready to be ingested. The nameiue-pair format
is similar to the metadata shown in Figure 5.1. Metadata nameype (numeric
or string), and value are separated by tabs, while recordisgare separated by an

empty line.

5.2.4 Data Ingestion and Data Storage

After being prepared, data is ingested into BXGrid by invokag an IMPORT
command. BXGrid automatically replicates data and assodied metadata across
multiple storage servers. BXGrid provides data redundancip assure data quality
and data integrity. Data information such as size of le and kkecksum are kept

internally inside BXGrid.

5.2.5 Data Validation

The acquisition process clearly leaves a lot of room for errowith so many
people working with such a large number of images, mistake®anot only probable
but inevitable. In order to nd these errors and combat theirpermanent entry into
the repository, all image records have state attribute. A newly imported record

is initially in the unvalidated state. For an image to be validated, a technician
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must review the image and metadata via the web portal. The ptal displays the
unvalidated image side by side with images taken of the samabgect from several
previous acquisition sessions. If the technician identisan error in the metadata,
such as an incorrect subject, or a left eye labelled as a righye, they can ag it
as aproblem, which will require manual repair by a domain expert. Othenise,
the image may be marked asalidated . By exposing this task through the web
portal, the very labor intensive activity can be \crowdsouced" by sharing the
task among multiple workers.

A second level of approval is required before an image is gueel into the
repository. The curator supervising the validation proces may view a web in-
terface that gives an overview of the number of records in dastate, and who
has validated them. The quality of work may be reviewed by satting validated
records at random, or by searching for the work of any one tegician. At this
point, decisions may still be reversed, and individual prdbms xed by editing
the metadata directly. In the case of a completely ubbed aagsition, the entire

dataset can be backed out by invokindDELETBN the batch number.

5.2.6 Data Enrollment

The nal step in processing a recording is to enroll it. Once aecord is en-
rolled, it should not be edited or changed in any way. Duringhte enrollment
process, a record is associated withamllectionid and given arecordingid that
is used to identify the image in any subsequent research andseing publication.
Another unique metadata namedsequenceid is assigned to each recording. The
sequenceid is used internally at Notre Dame by the CVRL. Additional metalata

that must be kept internally for bookkeeping purposes arshotid : original le-
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Figure 5.3. Data Life Cycle. Metadata changes during validi&n
process. New metadata is assigned when data is enrolled.

name, andbatchid : unique number for a collection session. BXGrid supplies ¢h
structure for creating a collection in a format that is constent with a US gov-
ernment Document Type De nition Reference Document. It preides a template
for naming the collection and allows the user to specify the/pe of data and the
acquisition dates to be included with a few simple buttons. e the user veri es
her choices, BXGrid generates theecordingid for each of the included images
and adds the collection to the collections table. Figure 5.8hows the life cycle of

a recording.
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5.3 Improve Biometrics Data Quality

Biometrics, like many modern science and engineering resga elds, is data-
driven. Data enters the research enterprise through sensoand is processed,
yielding derivative data sets, some of which feed compariso that are used to
evaluate the sensing technology, the steps in the procegspipelines leading to the
comparisons, and the comparison techniques. Such evaloas must be performed
with statistical rigor, which drives the collection of datato support the conclusions
reached. Management of this data is a demanding task and thatd sets' integrity
must be assured through appropriate management and validah techniques. The
use of ROARS to store and maintain the integrity of data, couled with web
services and portals that allow crowdsourced evaluation woand data access, is

an ideal management strategy for large data sets such as teassed in biometrics.

5.3.1 Issues That Can A ect Data Quality

Creating and maintaining a large repository of biometrics ata can be chal-
lenging in many ways. One hundred thousand data les can addpuo terabytes
of data. Because of the size of the repository and the faultgme nature of both
humans and computers, data quality can be a ected throughdtthe life cycle of
data. Error can be introduced into data at any time during preacquisition, during
acquisition, during ingestion and after ingestion. Deperidg on the nature of the
errors, solutions to correct errors can be recapturing datanodifying metadata,
or removing data completely.

During acquisition, equipment can malfunction (e.g. a cama does not take
a picture, the ash does not trigger). Other errors can be du¢o carelessness

of lab technicians (e.g. camera has a wrong zoom setting, wticed blinking
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(a) Wrong camera position. (b) Blinking eye. (c) Out of focus camera.

Figure 5.4. Example of problem recordings.

eyes at the time of data capture). Another error occurs wherubjects get out
of order during acquisition. Figure 5.4 shows some of the folem recordings.
Because each acquisition usually includes a number of stats, a subject jumping
the station line will cause a string of mislabeled data. Thiproves to be costly
when data is enrolled and used in experiments because it caadvertently a ect
experiment results. Mistakes during acquisition can be abscorrected if the lab
technician pays attention during operation and identi es he mistakes. Once a
mistake is identi ed, steps are carried out to correct the nsitake, ranging from
logging the discrepancy to retaking a picture or a movie.

After acquisition, the lab technician uses various tools tprepare the data for
the ingestion process. Data collected during acquisitios copied into local storage
for pre-processing purposes. A script is used to rename thefault lename to a
more meaningful one. Data, such as video, will be edited. Rrems may arise

when the renaming script does not perform as intended or whesndeo cutting
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fails. Mistakes during this stage can be eliminated by candfy processing data
and also by maintaining a stable, working set of tools.

When data is ready to ingest, the lab technician invokes 8 CREEbMhen an
IMPORTommand to ingest data into the repositories. Each ingestiois assigned
a batchid . The batchid is very useful for keeping track of each data aacgition,
and also for correcting mistakes when mistakes are made. ésgjon can fail un-
expectedly due to malfunctioning hardware or power outagé/Vhen ingestion is
interrupted, the lab technician can invoke the saméMPORTommand to resume
the ingestion. IMPORTommand will automatically start where the lastiMPORT
command left o. IMPOR@Iso has built-in redundancy detection. When a batch
is ingested twice IMPORWill ignore already ingested data. When a batch needs to
be deleted due to error, the lab technician can identify baked and invoke DELETE
to erase the batch from the repository.

The last step to assure data quality before enrollment is thealidation process.
Lab technicians validate data using a web portal. The web ptal allows the
technician to identify poor quality data by displaying dataand comparing data
from the same subject. Common metadata mistakes are mislding, such as
left eye to right eye and vice versa, subject wrongly markedsavearing glasses,
and data assigned to the wrong subject. By providing a compaon view between
unvalidated data and already validated data from the same $ject, lab technicians
have a better chance of detecting these types of mistakes aaodrrecting them
accordingly. Figure 6.9 shows an example of a validation pag

Data quality plays a very important role in the success of anxperiment. Data
and metadata have to match correctly. Wrongly matched datarad metadata can

alter the result of an experiment. BXGrid employs a number ofnechanisms
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TABLE 5.1: SUMMARY OF PROBLEMS AND SOLUTIONS

| Stage || Problem | Solution
Acquisition || Equipment malfunctions Discard image/movie, reset, or replace equipment
Acquisition || Subject jumps out of order || Lab technicians detect and correct the order
Ingestion | Ingestion is interrupted Re-run ingestion command
Validation || Incorrect metadata Lab technicians correct metadata using web portal
Validation || Length of validation process|| Automated Data Validation
Validation | Metadata inconsistency Two phases of metadata update, database then ush to storag
Archival Hardware failure Replicate and store metadata in three storage servers
Archival Data inconsistency Audit and Repair process
Archival Validate/Enroll errors Revert using metadata log
Archival Loss of database Recover by scanning metadata from leservers
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to assure the correctness, consistency, and availability data. Table 5.3.1 lists
the problems we have identi ed and steps we take to minimizer @liminate data

quality problems.

5.4 Recent Data on Failure Rates and Recovery Mechanisms

Hardware failure is not uncommon, especially hard drive flare. A hard drive
can fail because it is exposed to extreme conditions, suchtesat, humidity, water,
shock, etc. It also can fail due to use or aging [49], [58]. Gyle [49] published
a study on commodity hard drive failure rate in 2007. Althouf the annualized
failure rates are higher than those reported by hard drive nmufacturers, given
the scope and size of a Google disk farm, the number provided bard drive
failure rate is deemed to be accurate. According to Google p2rcent of disks fail
within a year, but the annualized failure rate jumps to 8 perent over two years
and 9 percent in the rst three years. The study shows that in mler to sustain
data through hard disk failure, we should plan to backup, rdcate and audit data
more often, and we should plan to provision new hard drives teplace old ones
that are prone to failure.

Hardware failure is unavoidable for a production system l&BXGrid. BXGrid
employs as many as 41 le servers, and after a year of operatjcsome of them
have already su ered hardware failure. Most common failuseare bad hard drives
and bad SATA controller boards. In the case of a bad hard driva new hard drive
is added to replace the bad one, and all data on the drive is togn the case of a
bad SATA controller board, data is intact and recoverable wh a new controller
board. As recent studies on hard drive failure show, systendm@inistrators need

to run data audit and repair frequently. However, as the amau of data grows,

76



TABLE 5.2

AUDIT AND REPAIR TIMELINE

Period | Elapsed Time | Files Checked | Suspect
1 24 hours 80,000 16,244
2 24 hours 80,000 15,153
3 48 hours 160,000 1,227
4 16 hours 60,000 9,381
5 32 hours 160,000 0
6 28 hours 160,000 0

it is not feasible to perform auditing on the whole system ewg day. Thus we
have been running audit and repair only during night time whie BXGrid usage
is minimal. In order to test BXGrid's ability to recover from hard drive failure,
we intentionally removed several hard drives from the stogge cluster. We ran

BXGrid audit and repair incrementally to detect and replacemissing replicas.

Table 5.4 shows the length of each audit and repair run, the mber of audited
les and the number of repaired replicas when hardware faila was deliberately
introduced into BXGrid. During the recovery process, BXGril remained in oper-
ational mode, and was accessible by multiple users perfongiregular tasks, such
as import, export, validate, enroll, etc.

During December 2009, four storage servers su ered from ldadrive failures.
After identifying problem servers, REPAIRwas invoked to spawn new replicas.
These replicas replaced those from problem servers and képe number of repli-

cas for each le at three. The repair process took just over & hours to replace
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an estimated 26,000 missing replicas, a total 250GB of datalhe repair pro-
cess took signi cantly less time than the audit process beagse auditing involves
expensive checksum calculations. Repair process throughjs mainly bounded
by the speed of network links between storage servers, a mis¢ of gigabit and

100Mbps network.

5.5 Current status of BXGrid

At the time of writing, BXGRIid has been in use as the archival ervice for a
biometrics research group at the University of Notre Dame faover three years.
BXGrid is used to curate data which is transmitted to the Natonal Institute of
Standards and Technology for evaluation of biometric teclulogies by the fed-
eral government. Approximately 60GB of new data is acquiredh the lab on a
bi-weekly basis, while collections on legacy storage deagcare gradually being
imported into the system.

Figure 5.5 shows the growth of BXGrid over time from 2008 to 2®. The
system began production operations in July 2008, and ingest a terabyte of data
from previous years by September 2008. Through Fall 2008, dbllected daily
acquisitions of iris images. Starting in January 2009, BXGa began accepting
video acquisitions.

BXGrid currently contains 853,004 recordings totalling 14 TB of data, spread
across 40 storage nodes. Figure 5.6 shows that the lesizetdbution in BXGrid.
The repository is dominated by small and medium size les baase the majority
of the les are iris and face images. Only a small portion of B&rid consists of
bigger video and 3D les.

The data model ts ROARS perfectly because the raw data nevechanges
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Figure 5.5. System Growth Jul 2008 - Jan 2009

after its initial ingestion. However the metadata can chang or more precisely
will change throughout the biometrics team's validation ad veri cation process.
When arecording is rst ingested, it is marked asunvalidated The state, which is
a part of recording metadata, can be changed tealidated or problemduring a val-
idation process. Arecording is deemed to beroblemif its metadata is mislabeled
or the recording itself is unusable. In the case where its metadata is misladbd
(e.g. right iris is agged as left iris), the metadata can be radi ed and the state
of the recording is set tovalidated At the end of this whole process, the state of
the recording changes toenrolled and a collectionid is assigned.collectionid
di ers from batchid because itis a unique number usually representing a semeste
worth of data.

In the last 6 months, there has been 1,685,509 entries insattinto the log

table. So far, 48 users has modi ed 21 types of metadata. Motlean half of the
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total metadata changes were related to state changes, andethwere made during
validation and enorliment process. The rest of metadata chges concentrated
on a few metadata: lighting condition, weather condition ad yaw angle of face
images.

In May of 2011. We upgraded the storage cluster for BXGrid. We2moved 32
aging storage nodes from the storage pool and we added 32 néwvage nodes.
Each storage node consists of 32GB RAM, twelve 2TB SATA disksd two 8-core
Intel Xeon E5620 CPUs. All of them are equipped with Gigabit Ehernet. We
safely removed the old nodes from the system and migrated tkhlata to the new
nodes. Figure 5.7 shows the entire migration process. It to@d0 hours to move

approximate 5TB to the new nodes.
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CHAPTER 6

ROARS INTEGRATION WITH WORKFLOWS

Chapter 5 demonstrates ROARS' usefulness as a biometricstaaepository.
In addition to provididing safe storage for biometrics data ROARS also helps
researchers speedup their research by taking advantage lod tdistributed nature of
ROARS. In order to demonstrate the ability of ROARS to integate with a number
of abstractions and scienti ¢ work ows [77], this chapter wll give a number of
examples of abstractions and work ows which take advantagef ROARS in the

context of biometrics research.

6.1 Distributed Computing Tools

The Cooperative Computing Lab at the University of Notre Dane provides a
number of tools to help users from other disciplines to hares the power of large
distributed systems.

Work Queue [82] is a scalable and robust master/worker frawerk, which
provides an API for users to write their own distributed appication. Users can
de ne and submit tasks to a worker queue. Tasks are sent to amkecuted on any
available worker machines. After nishing the assigned t&s the worker reports
the result to a master and asks for another task. The role of ghmaster is to

distribute tasks and manage the results.
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All-Pairs [42] is an abstraction which takes in two sets of gbcts, A and B,
and performs a function F on any pair of objects (a,b) such thaa belongs to
set A and b belongs to set B. Users provide set A, set B and fumm F. The
All-Pairs abstraction executes the work load in a distribued manner and handles
automatically other details such as fault tolerance, data wvement, etc Users do
not have to be a distributed system expert to run All-Pairs wdkloads.

Make ow [4] is a work ow engine that assists users with exet¢mg large and
complex scienti ¢ work ows in number of distributed environments such as cluster,
clouds, and grids. Users can use Make ow to execute their dmation using
supported distributed frameworks such as Work Queue or ARairs.

Weaver [15] is a Python-based work ow compiler for distribted applications.
Weaver supports several common distributed computing pattns. The result of

an application compiled by Weaver is work ow described in Miee ow format.

6.2 Abstractions for Biometrics Research

Motivated by the advice of Gray [28], who suggests that the nsb e ective
way to design a new database is to ask the potential users tog®oseveral hard
questions that they would like answered, temporarily ignang the technical di -
culties involved. In working with the biometrics group, we tcovered that almost
all of the proposed questions involved combining four simghbstractions shown

in Figure 6.1:

Select(R) : Select a set of images and metadata from the repository bdse

on requirements R, such as eye color, gender, camera, or tana

Transform(S, C) : Apply convert function C to all members of set S,

yielding the output of C attached to the same metadata as thenput. This
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Figure 6.1: Work ow Abstractions for Biometrics

abstraction is typically used to convert le types, or to redice an image into

a feature space such as an iris template, an iris code or a fg@ometry.

All-Pairs(S, F) : Compare all elements in set S using function, producing
a matrix M where each element M[x][y] = F(S[x],S[y]). This abtraction is
used to create asimilarity matrix that represents the action of a biometric

matcher on a large body of data.

Analyze(M, D) = Reduce matrix M into a metric D that represents the

overall quality of the match. This could be a single value sthcas the rank

one recognition rate, or a graph such as a histogram or an ROQrge.

6.2.1 Select Abstraction

The rst step in experimentation is to select a dataset. Set# abstraction is

equivalent to a EXPORequest for both data and metadata. Because most users

are not SQL experts, the primary method of selecting data isotcompose entire

collections of data with labels such as \Spring 2008 IndooraEes". These results

can be viewed graphically and then successively re ned witsimple expressions

such as \eye = Left". Those with SQL expertise can perform marcomplex queries
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through a text interface, view the results graphically, andhen save the results
for other users.

As described in Chapter 3, there are multiple ways for user® fget data out
of BXGrid. They can useEXPORIDb download actual data objects with metadata
to local storage. Then they can choose to process data logallThey also can
have data distributed and analyzed remotely. If users cho@go run experiments
on data in a distributed work ow, data has to move twice thus i is not optimal.
First, data is moved from BXGrid to local storage, and then oce again from local
storage to remote nodes.

In order to be more e cient, users can use/IEWo create a materialized view
of the dataset on local storage. They can run experiments ohé data using either
FUSE or Parrot. If they choose to run their experiment remotly in a distributed

manner, they can send a Chirp ticket along with the materiaied view. The
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remote jobs will use the Chirp ticket [23] to gain the acces® tthe actual data on
BXGrid's storage nodes. Instead of sending actual data wiicould be Gigabytes
in total, users only need to send a set of symbolic links whigioint to the location
of the data in BXGrid's storage nodes. By usingVIEW the data only needs to
be moved once from BXGrid to the remote job's location. Figw 6.2 shows the
cost of EXPORANd VIEWSor various datasets. As the datasets get biggeEXPORT
performance grows linearly with dataset's size whil&IEWS runtime stays at
constant. It is becauseEXPORI(fansfers data from BXGrid's storage node to local

storage whileVIEWSnly creates symbolic links to the data.

6.2.2 Transform Abstraction

Most raw data must be reduced into a feature space or other farmore suit-
able for processing. To facilitate this, the user may sele@tom a library of stan-
dard transformations or upload their own binary code that pdorms exactly one
transformation. After selecting the function and the selded dataset, the trans-
formation is performed on the local storage or on a distribetd system, resulting in
a new dataset that may be further selected or transformed. Enew transformed
dataset is considered to be derived from a parent dataset. @tefore, it retains
most of the metadata which comes from the parent set. For exgoe, a function
transforms an iris image to an iris code, or a function convisrimages and videos
to thumbnails for web pages. The result will inherit informa&on such as: left eye,

subjectid, environmentid, etc. from the original iris imag.
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6.2.3 All-Pairs Abstraction

All-Pairs abstraction helps users perform a large-scaleroparison. The user
uploads or chooses an existing comparison function and a sdwlata set. This
task is very computation intensive and requires dispatch ta computational grid.
Details of the implementation of All-Pairs is described in a earlier paper [43] and
brie y works as follows. First, the system measures the sizd the input data and
the sample runtime of the function to build a model of the sysim. It then chooses
a suitable number of hosts to harness, distributes the inputata to the grid using
a spanning tree. The workload is partitioned, and the functin is dispatched to
the data using Condor [73]. Figure 6.3 shows a timeline of agigal All-Pairs job,
comparing all 4466 images to each other, harnessing up to 35BUs over eight
hours, varying due to competition from other users. As can bgeen, the scale of

the problem is such that it would be impractical to run solelyin the database or
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even on a active storage cluster.

6.2.4 Analyze Abstraction

The result of an All-Pairs run is a large matrix where each detepresents the
result of a single comparison. Because some of the matrices potentially very
large (the 60K X 60K result is 28.8 GB), they are stored in a ctsm matrix
library that partitions the results across the active storge cluster, keeping only
an \index record" on the database server. Because there arerelatively small
number of standardized ways to present data in this eld, thesystem can auto-
matically generate publication-ready outputs in a number oforms. For example,
a histogram can be used to show the distribution of compariscscores between
matching and non-matching subjects. Or, an ROC curve can regsent the accept
and reject rates at various levels of sensitivity.

Given Select, Transform, All-Pairs, and Analyze abstractins as an interface
to the repository, new workloads can be constructed to solweteresting problems

and answer research questions in biometrics.

6.3 Biometrics Work ow

A work ow is a series of tasks that are executed in order to agktve a nal
result. In science experiments, a work ow is important beasse it de nes the
speci cation of the experiment. In other words, work ows cavey the blueprint
of the whole experiment and include all necessary steps tochave the nal goal.
A work ow usually is represented by a directed acyclic graph(DAG). Figure 6.4
shows a simple biometrics work ow.

This work ow compares two iris images using a function F. Na that before
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‘templatel ‘ ‘compare F‘ ‘templatez ‘

result

Figure 6.4: DAG Work ow for comparing two irises

itemplatel: irisl.tiff convertC /IRule #1
2 JconvertC irisl.tiff templatel

3

stemplate2: iris2.tiff convertC /IRule #2
5 JconvertC iris2.tiff template2

6

7result: templatel template2 compareF /IRule #3
8 .JcompareF templatel template2 > result

Figure 6.5. Make ow code that creates two iris template andampare
the templates

executing function F, the two iris images need to be transfored into a template
format. For simplicity, let us assume that all steps, 1, 2 and, take 1 second
to complete. If the work ow is executed sequentially, it wold take 3 seconds to
complete all tasks (2 seconds for running convert function twice and 1 second for
running compare function F once). Itis possible to nish thevork ow in 2 seconds

if the images are converted to templates concurrently. Witla more complicated
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work ows, for example a work ow that compares thousands or illions of irises,
if tasks can be executed in parallel, the runtime of the wholexperiment will
decrease signi cantly.

There are a number of work ow management systems [84], [320], [40], [47]
have been developed to assist scientists with running digiuted work ows. At
Notre Dame, the Cooperative Computing Lab has developed Malow, a work ow
management system that uses the traditional Make languagergax to express
tasks and their dependencies. The advantage of Make ow isahit is simple and
portable. Make ow's work ow can be executed across multig execution engines
including Condor, SGE, HDFS, and more. Figure 6.6 shows thechitecture of
Make ow [4]. In this chapter, example work ows are executedby Make ow on
Local, Condor and WorkQueue. Figure 6.5 is an example of theale ow code
representing the work ow in gure 6.4. Since there is no depelency between the
rst two rules, they can be executed concurrently. The lastule needs the output

of the rst two rules to complete.

6.3.1 BXGrid Transcode

BXGrid website helps users visualized biometrics data moeasily. Images and
videos are transcoded into smaller thumbnail size still ingees or animated GIFs
before they are displayed on the website for users' viewingigure 6.7 shows an
example of a browser page for iris images. Each page can hapetas 100 images.
If all 100 images need to be transcoded, the browser page walke a long time to
load, which is unacceptable for users to wait. Moreover, wheisers validate data,
there may be up to 600 images to transcode per page. Althoughettranscoded

results are only generated once and kept in a cache, newly ésted images will
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Figure 6.6: Make ow Architecture[4]
have no thumbnail. Browsing new data without already genetad thumbnails will

hinder users' overall experience.
In order to provide users with a more positive browsing expience, a transcode

work ow was created to pre-generate the thumbnails for allnnages and videos.

The work ow can be summarized as follow:

How to select all new data from the last work ow execution andranscode

Question:
them, and store the result in the cache?
1S = Select (D)
PT = Transform(S,F)

Figure 6.8 shows a Weaver program that compiles to Make ow hes represent-
ing the transcode work ow to query and generate missing thubmails for BXGrid
website. The work ow then are executed using WorkQueue. Thaitial run, BX-

Grid transcode completed transcode 85.72 GB of biometricath in 3.81 Hours
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Figure 6.7. BXGrid's Browser Page

1for

o N o g A~ W N

10
11
12

file_type, command, query, cache_path in file_types:
missing = [find_missing_thumbnails(f, cache_path, force =False)
for f in query(bxgrid)]

missing = filter( lambda x: x, missing)

if len(missing) > CHUNK_SIZE:

with SubNest(file_type, local=True):
for i, chunk in enumerate(Chunk(missing, CHUNK_SIZE)):
with SubNest( %s.%04X % (file_type, i),local=True)

GenerateThumbnails(file_type, command, chunk,
cache_path)
else :
with SubNest(file_type, local=True):
GenerateThumbnails(file_type, command, missing,
cache_path)

Figure 6.8. Weaver code that compiles to Make ow rules thatenerates
missing thumbnails
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at the average of 22.5 GB/hour. Since then, the transcode malkw runs auto-

matically at midnight to nd and generate thumbnails for newly ingested data.

6.3.2 BXGrid Auto Validation

The data collected through the CVRL acquisitions are used faesearch into
biometric recognition algorithms by institutions throughout the world. Therefore,
it is of the utmost importance that it is tagged correctly. The validation function of
BXGrid allows for an e cient visual comparison of a newly acgired image against
similar images of the same subject while also displaying thelevant metadata tags
in a concise format. Records that have no problems are valigd. If an error in
the metadata or a problem with the image quality is discoverk the record is
designated as a "problem" record which can be either elimited from the data
set, or corrected and validated at a later date. The problemsncountered fall into
two categories: image quality and incorrect metadata. Imagquality problems
might include blurriness of an image or intended feature naotisible (eye closed,
part of face cut o, image too dark/light, etc.), which make the image unt for
use in research. The more di cult problems to ferret out and esolve are those
that involve incorrect metadata. This can range from an imag being tagged
as a subject wearing glasses when he/she is not, to an imagengeiagged with
the wrong subject number. The rst problem is fairly easy to pot and correct,
however when a recording is tagged with a wrong subject, it imore di cult to
identify the error, especially with iris images.

During the iris image validation process, lab techniciansswally look for mis-
takes such as closed eye, incorrect subject, etc. Figure 8f8ws an example of

an iris image validation page. An iris image is displayed nexo ve "good" iris
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Figure 6.9. Iris Images Validation Page

images from the same subject. A good iris is an iris that has &e validated and
veri ed to be correctly linked to that subject. Although there are attributes of
a person's eye that could change over time [8], the eyes udyaktain their sim-
ilarities, such as shape and size of the iris. By looking atisrimages from the
same subject, lab technicians can easily spot an iris that de not belong to the
assigned subject. The same process applies to the face \alwh process.

In order to speed up the iris validation process, a BXGrid awtvalidation

work ow has been created to take on these challenges. This fkk@w mimics a
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technician's actions by comparing the unvalidated image &jery) to ve already

validated and veri ed images from the same subject (probe).

Question: Select all new irises, for everyone of them, answer the quest "Does this

iris belong to the person as the metadata claims?"

1S = Select (D)

PFor each s in S

3 X = Select(subject=x.subject)
4 s' = Transform(s',F)

5 X' = Transform (X' ,F)

5 All Pairs(s',X"',C)

Figure 6.10 shows the work ow for auto validation workload Based on com-
parison scores between the gallery image and the probe imagene can deicide
to accept the iris identity claim and mark the image asalidated , or reject the
claim and mark it asproblem . If the system cannot decide, it will be left for the
technician to decide later.

To determine the threshold numbers for accepting or rejecty an iris identity
claim, the matching algorithm needs to be test against a laggset of data. This

leads to another biometrics work ow that is used to study mathing algorithms.

6.3.3 BXGrid All-Pairs

A typical All-Pairs work ow includes selecting a set of iris, transforming all
irises into template format, then applying a comparison fuetion to any pair of
templates. Figure 6.11 represents an All-Pairs work ow.

Figure 6.12 show an example of an All-Pairs result matrix. Aglying All-Pairs

using function F returns Matrix M. Each comparison usually &kes a fraction of a
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Figure 6.10. Auto Validation Work ow
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Figure 6.11. All-Pairs Work ow
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Figure 6.12: All-Pairs Result Matrix M

second to complete. However, applying All-Pairs to datasetf 100 or 1,000 irises
needs 10,000 or 1,000,000 comparison respectively. The hemof comparisons
can grow out of hand very quickly and a single CPU will take has, even days to
nish the workload sequentially.

The CCL has developed two applications to help with running A& Pairs work-
loads: All-Pairs Multicore [81] and All-Pairs Master [43].All-Pairs Multicore runs
All-Pairs workload locally but uses multiple processes toxecute a number of com-
parisons in parallel. The number of processes running comantly is usually the
number of cores available in the system. All-Pairs Master pgtions the result
matrix in to a number of sub-matrices, each sub-matrix repments a task. Tasks
then can be sent and executed remotely using a number of syate Work Queue,
Condor, and SGE.

Figure 6.13 shows the runtime of an All-Pairs comparison far All-Pairs Local,
All-Pairs Multicore and All-Pairs Master. All-Pairs Local quickly became unfea-
sible to run because of a long runtime. All-Pairs Multicore erformed slightly

better. All-Pairs Master did best and nished a 10,000 X 10,00 All-Pairs work-
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Figure 6.13: All-Pairs runtime(only comparison stage)

load in hours instead of days. The largest All-Pairs experiemt was run for 100,000
X 100,000 irises and it took almost 3 days to nish. Figure 64 was generated
by Condor Log Analyzer [69]. It shows the progress of the 1000 All-Pairs ex-
periment. Although we requested 500 workers for this worlkdal, the maximum
number of jobs running at once was around 300. The number ofming jobs
uctuated during the experiment. This is because in a campugrid environment,
the resource is allocated based on priority and availabijit The total CPU time
is 501 hours with 461 hours of Goodput and 40 hours of Badput. 08dput is
the time allocation when a remote job spends executing andqaucing output.
Badput is the time remote job spends executing but not prodileg any output

due to application error or early termination.
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Figure 6.15: Score distribution of 10Kx10K All-Pairs expement using irisSBEE
function

With the result matrix from All-Pairs experiments, we can aply Analyze

abstraction and draw the conclusion about the threshold nubers.

Question: Given a matcher, how do | pick a threshold for accepting and jecting

identity claim?

1S Select (D)

PS’

Transform(S,C)
M = All  Pairs(S',F)
4V = Analyze (M)

Figure 6.15 shows a histogram after analyzing the result ohaAll-Pairs run

on 10,000 irises. A match is a comparison between two imagdsttee same iris
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Figure 6.16: Score distribution of 58Kx58K All-Pairs expement using Hamming
distance function[43]

from the same person while a non-match is a comparison betweto images of
di erent irises. If there was a perfect matching algorithm,the score of a match
comparison would be lesser than the score of a non-match caripon. This
particular All-Pairs experiment used irisBEE baseline fuation [38]. From Figure
6.15, one would conclude that 0.4 is the threshold number taceept a match.
However, because there are a number of scores from matcheat thre greater
than the score for non-matches, it is not safe to pick a threshd for rejecting a
match.

Figure 6.16 shows a histogram after analyzing the result ohaAll-Pairs run

on 58,639 irises [43] from the ICE 2006 [45]. Iris images wens transformed to
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iris codes [14]. Then, the Hamming distance function [17] waused to compare
two iris codes. From Figure 6.16, one would pick 0.4 and 0.4&S the accept and
reject threshold number respectively. Thus for the auto-vValation workload using
Hamming distance function, any score between 0 and 0.4 woultkld an accept,
any score greater than 0.475 would result in a reject. Any seobetween 0.4 and
0.475 would be left alone for the technician to decide later.

Beside evaluating comparison algorithm to pick thresholdcsres, the All-Pairs
abstraction and work ow can also explore more interesting ibmetrics research

questions.

Question: Does matching function M have a demographic bias? To answerig, com-

pute the quality of its matches across several di erent dengvaphics:

Lforeach demographic Df

P S = Select(D)

3 Q[D] = Analyze(All Pairs(Transform(S,F) ,M))
49

Figure 6.17(a) and Figure 6.17(b) show the result of All-Pas experiments
for Asian subjects and White subjects respectively. The cgmarison function is
the irisBEE baseline. The curves for non-match comparisorresimilar for both
experiments. The score for match irises tilts more to the kefHowever, there are

more matches with a bigger score comparing to hon-matchesoses.
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Figure 6.17: Histogram of All-Pairs experiments
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CHAPTER 7

CONCLUSION

We have showed that ROARS is capable of storing hundreds ofadhsands
of data objects with attached metadata. ROARS provides scalble data access
and fast metadata query abilities. ROARS is also robust, fdutolerant and can
handle frequent hardware failure gracefully. Additionall, ROARS can facilitate

large scale experiments using abstractions and distribudevork ows.

7.1 Impact

The impact of BXGrid on biometrics research activity at Note Dame has been
signi cant and positive. It has enabled the development of ark ows for ingestion,
validation, and enrollment that did not exist before BXGrid (all earlier data set
constructions were done by hand, by di erent people, and yiged unstructured
piles of customized scripts with variable quality and accuacy). Biometrics group
members are not forced to fret about the nuts and bolts of datemanagement as
frequently, and can access and use data with the assurancattguality checks

have been performed.
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7.2 Lessons Learned

Like many engineering projects, ROARS is a collaboration beeen two re-
search groups: one building the system, and the other usirngo conduct research.
Each group brought to the project di erent experience, ternmology, and expec-
tations. In this section, We will revisit some of the challeges we faced during the
development process given the dynamics of distributed enehment. The lessons
we learned may become useful insights for future projects.

Lesson 1: Get a prototype running right away. It is essential to have
working system even if it is only partially working. Having aworking system is
helpful in many ways. First of all, it takes the system out ofts conception to real
hardware, real software, and real data. The system is no losgjust a blueprint
on paper. In the initial stages of the project, we spent a faiamount of energy
elaborating the design and speci cations of the system. Weén constructed a
prototype with the basic functions of the system, only to disover that a signi cant
number of design decisions were just plain wrong. The proigie system helped
us discover our mistakes, pointed us to a right direction befe it was too late.
Simply having an operational prototype in place forced theabkign team to confront
technical issues that would not have otherwise been appatetf we had spent a
year designing the \perfect" system without the benet of pactical experience,
the project might have failed.

Lesson 2: Ingest provisional data, not just archival data. In our initial
design for the system, we assumed that BXGrid would only ingedata of archival
quality for permanent storage and experimental study. Hower, once we ingested
BXGrid with daily collected data, the system became more thajust a archival.

We understand that other people depend on BXGrid and use BX@t in their
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daily research activities. Although the system was still utler experimental, we
knew that users come to BXGrid with certain expectations. Thy expect BXGrid
to work. Because of that we worked hard and diligently to keephe system
operating as smoothly as possible. Working with real sciemt data also gets us
to understand the data better. This kind of valuable knowlede helps with making
the right design decision later on.

Lesson 3: Work closely with your users. Each group brought to the
project di erent experience, terminology, and expectatins. By talking to each
other, we not only minimize confusion but also re-enforce \ahwe have learned.
Users' input is very important, because after all, we buildhe system for the users,
not for us. Although what users want is not always what we cancaomplish,
healthy discussion is very essential to the success of a gaij Users also play a
very important role in identifying and reporting bugs. Thee are bugs that we did
not anticipate during the design, implementation, and tesprocess which the users
did nd and report. Users' contribution to the project does rot stop there, their
encouragement and thoughtfulness proves to be unmeasuealb the progress of
the project.

Lesson 4: Embed deliberate failures to achieve fault tolera nce. While
the system design considered fault tolerance from the beging, the actual im-
plementation lagged behind, because the underlying hardmeawas quite reliable.
Programmers implementing new portions of the system wouldh&turally) imple-
ment the basic functionality, leave the fault tolerance unit later, and then forget
to complete it. We found that the most e ective way to ensure hat fault toler-
ance was actually achieved was to deliberately increase tfalure rate. In the

production system, we began taking servers o ine randomlyrad corrupting some
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replicas of the underlying objects which should be detectdny checksums. As a
result, fault tolerance was forced to become a higher prityiin development.
Lesson 5: Expect events that should \never" happen. In our initial
design discussions, we deliberately searched for invat®that could simplify the
design of the system. For example, we agreed early on that amatter of scienti ¢
integrity, ingested data would never be deleted, and enrelll data would never be
modi ed. While these may be desirable properties for a scige repository in
the abstract, they ignore the very real costs of making miskes. A user could
accidentally ingest a terabyte of incorrect data; if it mustbe maintained forever,
this will severely degrade the capacity and the performanad the system. With
some operational experience, it became clear that both dites and modi cations
would be necessary. To maintain the integrity of the systemye simply require
that such operations require a higher level of privilege, arlogged in a distinct

area of the system, and do not re-use unique identi ers.

7.3 Future Work

The power of ROARS is not only about managing, exporting databut also
about driving large scale experiments using current sciemt abstractions and
distributed work ows. The next step is to help researchers ralyze and share
results in a collaborative environments. Experiments shddi be re-run easily to
con rm the results. Results should be rendered and presentdack to the user
for visualization. Share is the abstraction that takes ROARS to that direction.

Share: ROARS should store results at every intermediate step of thdata
lifecycle, users can draw on one another's results. The syst records every newly

created dataset as a child of an existing dataset via one ofeliour abstract opera-
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Figure 7.1. Sharing Datasets for Cooperative Discovery

tions (Select, Transform, All-Pairs, and Analyze). Figure/.1 shows an example of
this. User A Selects data from the archive of face images, trsforms it via a func-
tion, computes the similarity matrix via AllPairs, and produces a histogram graph
of the result. If User B wishes to improve upon User A's matchg algorithm, B
may simply select the same dataset, apply a new transform fetion, repeat the
experiment, and compare the output graphs. A year later, useC could repeat
the same experiment on a larger dataset by issuing the sameegy against the
(larger) archive, but apply the same function and produce me results. In this

way, experiments can be precisely reproduced and compared.
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