
Identity Boxing: Secure User-Level Containment for the Grid

Douglas Thain

University of Notre Dame - Department of Computer Science and Engineering

Today, a public key infrastructure allows grid
users to be identified with strong cryptographic
credentials and and a descriptive, globally-unique
name such as /O=UnivNowhere/CN=Fred. This
powerful security infrastructure allows users to per-
form a single login and then access a variety of re-
mote resources on the grid without further authen-
tication steps. [1] However, once connected to a spe-
cific system, a user’s grid credentials must somehow
be mapped to a local namespace. This creates a sig-
nificant burden upon the administrator of each site
to manage a continuously-changing user list. Large
systems have worked around this by employing the
old insecure standby of shared user accounts. [2]

Even worse, user identities are not employed con-
sistently across the grid. A single user may be
known by a different account name at every single
site that he or she accesses, in addition to a variety
of identity names given by certificate authorities.
In order to access a resource, the user may need to
have a local account generated. In order to share
resources, each user must know the local identities
of users that he/she wishes to share with. However,
local identities are often inconsistent or transient,
thus preventing any sort of sharing at all.

Ideally, a grid computing system would hide
these details from the end user. A user should sim-
ply be able to log in and be identified by his or her
grid identity without reference to local accounts. If
several users wish to share data or resources, they
ought to be able to identify each other via their
grid identities rather than by arbitrary local names.
This ideal is difficult to realize in today’s computing
systems because of the inflexible nature of the un-
derlying account scheme. Every new user of a grid
system must be entered by the administrator into
the local account database. Although it is a small
burden to do this for one user, it is a full-time job
for systems with many thousands of users.

To solve these problems, we introduce the tech-
nique of identity boxing. An identity box is a
well-defined execution space in which all processes
and resources are associated with an external iden-

tity that need not have any relationship to the set
of local accounts. That is, within an identity box,
a program runs with an explicit grid identity string
rather than with a simple integer UID. As a pro-
gram executes, all access controls are performed us-
ing the high level name rather than the low-level
account information. A single Unix account may be
used to securely manage several identity boxes si-
multaneously, thus eliminating the need to services
to run as root merely to change identities.
Ideally, identity boxing would be provided by

the operating system. However, practical grid com-
puting requires that we live with standard kernels.
Thus, we have implemented identity boxing by em-
ploying an interposition agent [3]. We have modified
Parrot [5] to perform identity boxing by intercept-
ing and modifying system calls through the ptrace
debugging interface. This allows us to provide iden-
tity boxing securely at user-level
on arbitrary unmodified programs.
Within an identity box, access control to files and

other objects is complicated because grid identities
are free-form strings. These do not fit into the exist-
ing data structures in the kernel and filesystem that
deal with integer UIDs. Our solution to this prob-
lem is to abandon the Unix protection scheme and
adopt access control lists (ACLs) instead. In each
directory, Parrot looks for a file named . acl that
describes what actions users can perform on files in
that directory. Any program run within an identity
box will respect these ACLs. Each entry of an ACL
lists an identity and the set of operations that can
be performed. Identities may contain wildcards in
order to match patterns. For example, this ACL al-
lows /O=UnivNowhere/CN=Fred to read, write, list,
execute and administer files in a directory. It also
allows any user at UnivNowhere to read and list:

/O=UnivNowhere/CN=Fred rwlax

/O=UnivNowhere/* rl

Visiting users are given a fresh home directory
with an appropriate ACL. Newly-created directories
inherit the parent ACL. Of course, Parrot cannot

1

tcsh

tcsh

vi

identity
box

syscalls
trapped

cat vi

secret

dthain
supervising user:

visiting user:
Freddy

mydata

ACL:

Freddy rwlax

parrot

access granted
by ACL

access denied
(no ACL)

by Unix
access granted

Figure 1. Example of Identity Boxing in an Interactive Session
An example of identity boxing shown as a schematic and as a shell transcript. The supervising user (dthain)
creates a file secret in his home directory. He then creates an identity box for the visiting user Freddy, who
is not allowed to access secret because there is no ACL present by default. However, Freddy can create a
file mydata in his new home directory, where the ACL has been initialized to give him complete access.

retroactively place ACLs throughout the file system.
When it encounters a directory without an ACL,
Parrot enforces Unix permissions as if the visiting
user was the Unix user nobody. This ensures that
the supervising user’s data is protected visitor.

An example of an interactive identity box is
shown in Figure 1. Here, the Unix user dthain has
created an identity box for Freddy. Note that Freddy
does not appear anywhere in the system account
list. Freddy attempts to access a file secret owned
by dthain, but is denied because that file is private
to dthain. However, Freddy is given a home direc-
tory in which he can work and is allowed to write
the file mydata. Freddy is also able to set ACLs and
share data with other visiting grid users.

A user-level implementation of identity boxing
has measurable but not unreasonable overhead.
Trapping system calls through the ptrace inter-
face increases the latency of system calls by an or-
der of magnitude, due to the increased number of
context switches between application, kernel, and
agent. Figure 2 shows the overhead of identity box-
ing on a selection of scientific applications described
in an earlier paper. [4] Theses are slowed down by
only 0.7 - 6.5 percent. (Although they are more data
intensive than other grid applications, they perform
primary large-block I/O.) An interactive applica-
tion such as make is slowed down by 35 percent be-
cause it make extensive use of small metadata op-
erations such as stat. Thus, identity boxing via
an interposition agent has overhead that is likely to
be acceptable for scientific applications, especially
if the technique simplifies security and results in a
larger number of resources available to the user.

 0

 200

 400

 600

 800

 1000

 1200

makeibishfcmsblastamanda
 0

 200

 400

 600

 800

 1000

 1200
R

un
tim

e
in

 S
ec

on
ds

+1.1%

+5.2% +2.1%

+6.5% +0.7%

+35.0%

unmodified
with identity box

Figure 2. Overhead of Identity Boxing
For a selection of scientific applications, identity
boxing imposes an overhead of only 0.7 to 6.5 per-
cent. A syscall intensive make is slowed by 35 %.

References

[1] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In ACM

Conference on Computer and Communications Security

Conference, 1998.
[2] R. Gardner and et al. The Grid2003 production grid:

Principles and practice. In IEEE Symposium on High

Performance Distributed Computing, 2004.
[3] M. Jones. Interposition agents: Transparently interpos-

ing user code at the system interface. In Proceedings of

the 14th ACM Symposium on Operating Systems Prin-

ciples, pages 80–93, 1993.
[4] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-

Dusseau, and M. Livny. Pipeline and batch sharing
in grid workloads. In Proceedings of the Twelfth IEEE

Symposium on High Performance Distributed Comput-

ing, Seattle, WA, June 2003.
[5] D. Thain and M. Livny. Parrot: Transparent user-level

middleware for data-intensive computing. In Proceedings

of the Workshop on Adaptive Grid Middleware, New Or-
leans, September 2003.

2

