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Abstract—Scientific workflows are typically expressed as a
graph of logical tasks, each one representing a single program
along with its input and output files. This poster introduces
JX (JSON eXtended), a declarative language that can express
complex workloads as an assembly of sub-graphs that can be
partitioned in flexible ways. We present a case study of using JX
to represent complex workflows for the Lifemapper biodiversity
project. We evaluate partitioning approaches across several
computing environments, including ND-Condor, IU-Jetstream,
and SDSC-Comet, and show that a coarse partitioning results
in faster turnaround times, reduced data transfer, and lower
master utilization across all three systems.

I. INTRODUCTION

Workflows are a widely-used abstraction for representing
simulations, data analyses, and other scientific computations.
A workflow is commonly represented as a directed acyclic
graph (DAG) which provides a static description of a complex
pipeline of interdependent steps called tasks. A workflow
management system is used to parse this complex DAG to
submit each task to an execution engine once that task’s
dependencies are met. Workflow partitioning is the process
of splitting a workflow graph into sub-graphs, such that each
sub-graph will become a discrete batch job in the target
execution system. The most appropriate partitioning depends
on many properties of the workflow graph, such as the size
of data objects and the execution time of tasks, as well as the
performance properties of the execution system.

II. JX: JSON EXTENDED

We developed JX (JSON eXtended) as a language for
expressing workflows that allows for easy manipulations to
the structure and partitioning of a workflow. JX extends a
JSON [1] representation of the workflow by supporting a
subset of Python expressions, allowing for a concise interme-
diate representation that expands to a normal JSON document.
Templates in JX can expand to complicated nested workflow
structures based on parameters, allowing flexible changes to a
workflow’s partitioning scheme.

The following workflow “template”, when expanded, ex-
presses an entire map-reduce type workflow. The expanded
workflow includes a rule for each of the N input files, and a
reduce step that takes all N intermediate files and produces
the final output. This template exposes the structure of the
workflow as a parameter. These parametric templates are the
primary way JX allows for flexible changes in the organization
and partitioning scheme of a scientific workflow.

{"rules": [{
"inputs": ["split." + str(i)],
"outputs": ["out." + str(i)],
"command":
"./process.sh split." + str(i),

} for i in range(N)]
+ [{
"inputs": [
"out." + str(i) for i in range(N)

],
"outputs": ["result.dat"],
"command": "./reduce.sh out.*",

}]}

III. EVALUATION

We explored schemes for partitioning Lifemapper [2], a
distributed biodiversity modeling application. As a high-
throughput application, Lifemapper offers significant freedom
in organizing computation beyond simply following data de-
pendency relationships. We observed that the granularity at
which we distribute pieces of the workflow has a significant
impact on the overall behavior of the workflow.

We measured the behavior of Lifemapper under two dif-
ferent partitioning schemes and ran the application on the IU-
Jetstream [3], ND-Condor [4], and SDSC-Comet [5] execution
sites. We observed substantial differences in performance in
terms of execution time, node-local storage, and data transfer
between configurations when running on the same execution
site. Across all three computing sites, there were similar
trends in reduced data transfer and execution time with coarser
workflow partitioning.

IV. RELATED WORK

Galaxy [6]–[8] and Taverna [9], [10] operate on static
workflow “templates” with the runtime generating concrete
steps during execution. Pegasus [11]–[13] is a workflow
management system focused on fine-grained management
of communication and task scheduling that uses a static
XML [14] workflow representation. The Common Workflow
Language (CWL) [15] is a workflow specification standard for
describing command line tools and workflows in a portable
manner. Swift [16] is a custom dataflow language which rep-
resents a workflow as a tree of recursive function evaluations
such that jobs are the leaves of the evaluation tree.
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