
A First Look at the JX Workflow Language
Tim Shaffer

University of Notre Dame
Notre Dame, Indiana 46556

tshaffe1@nd.edu

Kyle M.D. Sweeney
University of Notre Dame

Notre Dame, Indiana 46556
ksweene3@nd.edu

Nathaniel Kremer-Herman
University of Notre Dame

Notre Dame, Indiana 46556
nkremerh@nd.edu

Douglas Thain
University of Notre Dame

Notre Dame, Indiana 46556
dthain@nd.edu

Abstract—Scientific workflows are typically expressed as a
graph of logical tasks, each one representing a single program
along with its input and output files. This poster introduces
JX (JSON eXtended), a declarative language that can express
complex workloads as an assembly of sub-graphs that can be
partitioned in flexible ways. We present a case study of using JX
to represent complex workflows for the Lifemapper biodiversity
project. We evaluate partitioning approaches across several
computing environments, including ND-Condor, IU-Jetstream,
and SDSC-Comet, and show that a coarse partitioning results
in faster turnaround times, reduced data transfer, and lower
master utilization across all three systems.

I. INTRODUCTION

Workflows are a widely-used abstraction for representing
simulations, data analyses, and other scientific computations.
A workflow is commonly represented as a directed acyclic
graph (DAG) which provides a static description of a complex
pipeline of interdependent steps called tasks. A workflow
management system is used to parse this complex DAG to
submit each task to an execution engine once that task’s
dependencies are met. Workflow partitioning is the process
of splitting a workflow graph into sub-graphs, such that each
sub-graph will become a discrete batch job in the target
execution system. The most appropriate partitioning depends
on many properties of the workflow graph, such as the size
of data objects and the execution time of tasks, as well as the
performance properties of the execution system.

II. JX: JSON EXTENDED

We developed JX (JSON eXtended) as a language for
expressing workflows that allows for easy manipulations to
the structure and partitioning of a workflow. JX extends a
JSON [1] representation of the workflow by supporting a
subset of Python expressions, allowing for a concise interme-
diate representation that expands to a normal JSON document.
Templates in JX can expand to complicated nested workflow
structures based on parameters, allowing flexible changes to a
workflow’s partitioning scheme.

The following workflow “template”, when expanded, ex-
presses an entire map-reduce type workflow. The expanded
workflow includes a rule for each of the N input files, and a
reduce step that takes all N intermediate files and produces
the final output. This template exposes the structure of the
workflow as a parameter. These parametric templates are the
primary way JX allows for flexible changes in the organization
and partitioning scheme of a scientific workflow.

{"rules": [{
"inputs": ["split." + str(i)],
"outputs": ["out." + str(i)],
"command":
"./process.sh split." + str(i),

} for i in range(N)]
+ [{
"inputs": [
"out." + str(i) for i in range(N)

],
"outputs": ["result.dat"],
"command": "./reduce.sh out.*",

}]}

III. EVALUATION

We explored schemes for partitioning Lifemapper [2], a
distributed biodiversity modeling application. As a high-
throughput application, Lifemapper offers significant freedom
in organizing computation beyond simply following data de-
pendency relationships. We observed that the granularity at
which we distribute pieces of the workflow has a significant
impact on the overall behavior of the workflow.

We measured the behavior of Lifemapper under two dif-
ferent partitioning schemes and ran the application on the IU-
Jetstream [3], ND-Condor [4], and SDSC-Comet [5] execution
sites. We observed substantial differences in performance in
terms of execution time, node-local storage, and data transfer
between configurations when running on the same execution
site. Across all three computing sites, there were similar
trends in reduced data transfer and execution time with coarser
workflow partitioning.

IV. RELATED WORK

Galaxy [6]–[8] and Taverna [9], [10] operate on static
workflow “templates” with the runtime generating concrete
steps during execution. Pegasus [11]–[13] is a workflow
management system focused on fine-grained management
of communication and task scheduling that uses a static
XML [14] workflow representation. The Common Workflow
Language (CWL) [15] is a workflow specification standard for
describing command line tools and workflows in a portable
manner. Swift [16] is a custom dataflow language which rep-
resents a workflow as a tree of recursive function evaluations
such that jobs are the leaves of the evaluation tree.



REFERENCES

[1] T. Bray, “The javascript object notation (json) data interchange format,”
Internet Requests for Comments, RFC Editor, RFC 7159, March
2014, http://www.rfc-editor.org/rfc/rfc7159.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7159.txt

[2] [Online]. Available: http://lifemapper.org
[3] C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock, N. Merchant,

E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke, G. Turner,
M. Vaughn, and N. I. Gaffney, “Jetstream: A self-provisioned,
scalable science and engineering cloud environment,” in Proceedings
of the 2015 XSEDE Conference: Scientific Advancements Enabled
by Enhanced Cyberinfrastructure, ser. XSEDE ’15. New York,
NY, USA: ACM, 2015, pp. 29:1–29:8. [Online]. Available:
http://doi.acm.org/10.1145/2792745.2792774

[4] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in [1988] Proceedings. The 8th International Conference
on Distributed, Jun 1988, pp. 104–111.

[5] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, and N. Wilkins-Diehr, “Xsede: Accelerating scientific discovery,”
Computing in Science Engineering, vol. 16, no. 5, pp. 62–74, Sept 2014.

[6] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. C. Miller, W. J.
Kent, and A. Nekrutenko, “Galaxy: a platform for interactive large-scale
genome analysis,” Genome research, vol. 15, no. 10, pp. 1451–1455,
2005.

[7] D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda, R. Lazarus,
M. Mangan, A. Nekrutenko, and J. Taylor, “Galaxy: A web-based
genome analysis tool for experimentalists,” Current protocols in molec-
ular biology, pp. 19–10, 2010.

[8] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences,” Genome Biol,
vol. 11, no. 8, p. R86, 2010.

[9] D. Turi, P. Missier, C. Goble, D. D. Roure, and T. Oinn, “Taverna work-
flows: Syntax and semantics,” in Third IEEE International Conference
on e-Science and Grid Computing (e-Science 2007), Dec 2007, pp. 441–
448.

[10] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat,
K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P.
Balcazar Vargas, S. Sufi, and C. Goble, “The taverna workflow suite:
designing and executing workflows of web services on the desktop, web
or in the cloud,” Nucleic Acids Research, vol. 41, no. W1, p. W557,
2013. [Online]. Available: + http://dx.doi.org/10.1093/nar/gkt328

[11] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H.
Su, K. Vahi, and M. Livny, Pegasus: Mapping Scientific Workflows onto
the Grid. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
11–20. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-28642-
4 2

[12] W. Chen and E. Deelman, “Integration of workflow partitioning and
resource provisioning,” in The 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid 2012), 2012.

[13] ——, Partitioning and Scheduling Workflows across Multiple Sites with
Storage Constraints. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 11–20. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-31500-8 2

[14] “Extensible markup language (xml) 1.1 (second edition),”
http://www.w3.org/TR/2006/REC-xml11-20060816/, W3C - World
Wide Web Consortium, W3C Recommendation, September
2006. [Online]. Available: http://www.w3.org/TR/2006/REC-xml11-
20060816/

[15] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton,
M. Heuer, A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich,
M. Scales, S. Soiland-Reyes, and L. Stojanovic, “Common
Workflow Language, v1.0,” 7 2016. [Online]. Available:
https://figshare.com/articles/Common Workflow Language draft 3/3115156

[16] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633 – 652, 2011, emerging Programming
Paradigms for Large-Scale Scientific Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819111000524


