
A First Look at the JX Workflow Language
Tim Shaffer, Kyle M.D. Sweeney, Nathaniel Kremer-Herman, and Douglas Thain

Workflow Partitioning
Workflow partitioning is the process of splitting a work-
flow graph into sub-graphs, such that each sub-graph will
become a discrete batch job in the target execution sys-
tem. The most appropriate partitioning depends on many
properties of the workflow graph, such as the size of data
objects and the execution time of tasks, as well as the
performance properties of the execution system.

A A A A

B B B B

AA

BB

AA

BB

On the left, a fine-grained scheme assigns each task to
its own partition. This is the most conservative approach,
and usually the default for workflow managers. On the
right, coarser partitions group multiple tasks together.

Evaluation
We explored schemes for partitioning Lifemapper, a dis-
tributed biodiversity modeling application. As a high-
throughput application, Lifemapper offers significant free-
dom in organizing computation beyond simply following
data dependency relationships. We observed that the
granularity at which we distribute pieces of the workflow
has a significant impact on its overall behavior.

We measured the behavior of Lifemapper under two dif-
ferent partitioning schemes and ran the application on
the IU-Jetstream, ND-Condor, and SDSC-Comet execu-
tion sites. We observed substantial differences in per-
formance in terms of execution time, node-local storage,
and data transfer between configurations when running
on the same execution site. Across all three computing
sites, there were similar trends in reduced data transfer
and execution time with coarser workflow partitioning.

Summary of Execution Sites

Cores/ Total Memory Peak
Worker Cores Network

ND-Condor 12 ∼1200 20 GB 1 GB/s
IU-Jetstream 10 110 30 GB 10 GB/s
SDSC-Comet 12 ∼1200 20GB InfiniBand

Lifemapper queries at three different scales
In each diagram, boxes represent files with arrows con-
necting to tasks, represented as ovals. Here Q denotes
query data, T denotes tools such as Python scripts and
Java JAR files, R denotes common reference data, and
D denotes output data. The upper left workflow shows a
small query against a single data layer for the Heuchera
data set. The next workflow to the right shows a larger
query against the Saxifragales data set with three data
layers. Below, we duplicated layers to create a twelve-
layered query against Saxifragales.

Project

D

Maxent

Pre

TT

T

T

T

Q

R

T

Project

D

Project

D

Project

D

Maxent

Pre

T

R

T

TR

T

T

Q

R

T

Partitioning Schemes for Lifemapper
These simplified workflows consist of four small taxa. The
labels have the same meaning as above. Unlabeled boxes
are intermediate files that are discarded after the workflow
completes. With the Fine-Grained configuration, There is
no additional structure within the workflow beyond data
dependencies. With the Coarse-Grained configuration,
The taxa are arranged into two partitions. Each parti-
tion becomes a task in the high level workflow.

Fine-Grained Model

Split

Q QQ Q

Maxent MaxentMaxent Maxent

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Database

Q

T

R R

Coarse-Grained Model

Split

QQ

Database

Q

T R R

Q Q

Maxent Maxent

Project

D

Project

D

Project

D

Project

D

Q Q

Maxent Maxent

Project

D

Project

D

Project

D

Project

D

JX: JSON eXtended
We developed JX (JSON eXtended) as a language for ex-
pressing workflows that allows for easy manipulations to
the structure and partitioning of a workflow. JX extends
a JSON representation of the workflow by supporting a
subset of Python expressions, allowing for a concise inter-
mediate representation that expands to a normal JSON
document. Templates in JX can expand to complicated
nested workflow structures based on parameters, allowing
flexible changes to a workflow’s partitioning scheme.
The following workflow “template”, when expanded, ex-
presses an entire map-reduce type workflow. The ex-
panded workflow includes a rule for each of the N input
files, and a reduce step that takes all N intermediate files
and produces the final output. This template exposes the
structure of the workflow as a parameter. These paramet-
ric templates are the primary way JX allows for flexible
changes in the organization and partitioning scheme of a
scientific workflow.

Complete JX Workflow
{

"rules": [{
"inputs":

["split." + str(i)],
"outputs":

["out." + str(i)],
"command":

"./process.sh split." + str(i),
} for i in range(N)] + [{

"inputs":
["out." + str(i) for i in range(N)],

"outputs":
["result.dat"],

"command":
"./reduce.sh out.*",

}]
}

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Project

D

Maxent

Pre

T

R R

T

T RR R RR

T

T

R

Q

R

R

RRR R R

T

Make Rule
proj/I_japonica.asc: I_japonica.csv

./project.sh I_japonica.csv proj
The GNU Make format is well-known, compact, and easy for
novices to write, but it has some syntactic limitations. It is
also difficult to add additional data or fields to a rule in a pro-
grammatic way, which is needed to handle partitioning and
other workflow transformations. A JSON representation is
easier to generate and parse via script, but still very verbose.
Single Task Expressed in JSON
{

"inputs": ["I_japonica.csv"],
"outputs": ["proj/I_japonica.asc"],
"command":

"./project.sh I_japonica.csv proj"
}

An entire workflow could be expressed as a sequence of plain
JSON records like the above. JX expands upon JSON to
allow compact patterns to expand into JSON rules. JX
supports variable substitutions when expanding a document,
multiple data types such as numbers and lists, and common
operators such as arithmetic and comparison. These opera-
tors function the same as in Python.
JX Rule with Variable Substitutions
{

"inputs": [s + ".csv"],
"outputs": ["proj/" + s + ".asc"],
"command":

"./project.sh " + s + ".csv proj",
}

To quickly generate a list of items (e.g. a range of out-
puts like file.1 . . . file.n), JX supports Python-style
list comprehensions. For SAMPLES = ["I japonica",
"A arboreum"], we can produce a pair of rules, one for
each sample.
JX List Comprehension for Rules
[{

"inputs": [s + ".csv"],
"outputs": ["proj/" + s + ".asc"],
"command":

"./project.sh " + s + ".csv proj",
} for s in SAMPLES]

Since the connections between tasks in a workflow (inputs
and outputs) are specified as lists, this gives substantial free-
dom in programmatically defining the structure of a work-
flow. In addition, the workflow itself is primarily a list of
rules, making it possible to expand a large number of rules
from a single template. As an example, consider a workflow
that takes an input file (INPUT), splits it into N pieces, and
runs a processing script on each.
JX Workflow Template
{

"rules": [{
"inputs": [INPUT],
"outputs":

["split." + str(i) for i in range(N)],
"command": "./split.sh " + INPUT,

}] + [{
"inputs": ["split." + str(i)],
"outputs": ["out." + str(i)],
"command":

"./process.sh split." + str(i),
} for i in range(N)]

}

Combining these features, JX allows us to treat a sub-
workflow as a job. A JX template serves to define the struc-
ture of the sub-workflow subject to some parameters. We
can reuse the same definition to programmatically produce
a large number of rules that fit the concrete arguments to
each invocation. We can pass the chosen partitioning into
the high-level workflow, which can then repeatedly expand
the partition template and produce each sub-workflow as it
is executed. The following shell command could be a rule in
the Makeflow workflow management system which expands
the previous example template and runs the resulting work-
flow as a task.
Invoking Makeflow Using a JX Template
makeflow --jx-define ’INPUT="heuchera"’ \

--jx-define N=100 \
template.jx

Acknowledgments
Visit http://ccl.cse.nd.edu/ to learn more!
This work was supported in part by National Science
Foundation grant OCI-1148330.

http://ccl.cse.nd.edu/

