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Abstract—Python has become a widely used programming
language for research, not only for small one-off analyses, but
also for complex application pipelines running at supercomputer-
scale. Modern parallel programming frameworks for Python
present users with a more granular unit of management than
traditional Unix processes and batch submissions: the Python
function. We review the challenges involved in running native
Python functions at scale, and present techniques for dynamically
determining a minimal set of dependencies and for assembling a
lightweight function monitor (LFM) that captures the software
environment and manages resources at the granularity of single
functions. We evaluate these techniques in a range of environ-
ments, from campus cluster to supercomputer, and show that our
advanced dependency management planning and dynamic re-
source management methods provide superior performance and
utilization relative to coarser-grained management approaches,
achieving several-fold decrease in execution time for several large
Python applications.

I. INTRODUCTION

As researchers increasingly structure scientific applications
based on fine-grained functions and reusable library com-
ponents, they are essentially decomposing what were previ-
ously monolithic applications into collections of small and
schedulable sub-components. Such decomposition is bene-
ficial for many reasons, including modularity, extensibility,
ease of development, and understanding. Furthermore, the
resulting small tasks can be executed essentially anywhere.
Thus, execution can be fluid: individual tasks may be routed
to specialized computing resources, to data, or to available
capacity. Additional resources may be provisioned rapidly to
meet short-term fluctuations in concurrency. However, while
many applications may benefit from such fluidity, we currently
lack the resource management systems to efficiently and
transparently map functions to available resources.

The need to support parallel and distributed programming in
productive languages like Python has led to the development
of libraries such as Dask [1], Parsl [2], and Ray [3]. In each,
Python function invocations are dispatched to workers for
execution. Workers, which are deployed at startup in one or
more processes, are responsible for managing local resources
on that physical node. Tasks are routed by the library to
workers and are subject to the worker’s environment and re-
source allocation. FaaS systems, such as Amazon Lambda [4]
and Google Cloud Functions [5], enable registration of pro-
gramming functions (including Python) alongside a list of
static dependencies and coarse resource requirements (e.g.,
memory). These static dependencies are used to generate

containers in which functions may be executed in isolation.
While these systems enable users to program in terms of
functions, their underlying resource management models are
inherently process-based.

Most resource management systems for scientific
computing—workflow managers, batch systems, file
systems—focus on the Unix process as the primary
unit of resource management, even when executing within
containers. A process requires a certain number of cores and
quantity of memory, and is associated with an executable
program, input files that it will consume, and output files
that it will produce. Consequently, resource managers focus
on dispatching a process to a node, executing a process to
completion, perhaps preempting or migrating a process to
another node, and then accounting for the resources consumed
by the whole process. From this perspective, the internal
structure of a program is irrelevant and can be implemented
in any language that can be compiled into or interpreted as
a single executable. In many systems, the granularity has
become even coarser, resulting in an entire virtual machine
or container becoming the atomic unit of management, often
to facilitate the capturing of complex software dependencies
attached to a process.

We consider here the barriers to making individual function
invocations the fundamental unit of resource management in a
distributed system. A function invocation bears some similarity
to a process invocation, in that it consists of a code fragment
that requires some cores and memory to run. However, its
data dependencies comprise formal arguments, return values,
and perhaps global variables. Instead of a complete executable
file, the invocation requires (at least) the code for the named
function, and perhaps named import dependencies from stan-
dard (or custom) libraries. This code must all be deployed
into a Python interpreter of the appropriate type and version.
If many function invocations are to be run concurrently, then
effective resource management requires that we measure the
resource consumption of invocations accurately, and use that
information to place invocations in the system.

These considerations apply to applications written in a
variety of high-level languages used in scientific computing,
such as Java, R, Julia, and Matlab. We focus here on Python, as
it is a widely used high-level language for executing programs
at scale and for composing programs from external libraries,
scripts, and applications written in other languages. As is well
noted, Python has a number of other technical limitations when

1



Fig. 1. Functions as first-class citizens. (Top) In a conventional FaaS
application, concurrent function invocations are intermixed in a worker process
managed by a container controlling resources and a file system at the operating
system level. (Bottom) In our model, each function invocation has its resources
and code independently measured and constrained in a LFM.

used in the high performance parallel and distributed systems
available for scientific computing [6]. While Python has some
native capability to use multiple threads on a single node, this
capability is limited by the internal Global Interpreter Lock
(GIL). Distributing Python programs to multiple nodes of a
distributed or parallel system is made more difficult by the fact
that a Python program is not a single executable. A scientific
Python program often has dependencies on a complex set of
Python libraries, as well as native C libraries that provide high
performance implementations of algorithmic kernels. These
dependencies present practical challenges to installation for
end users, as well as to automated distribution of programs
across multiple nodes.

The contributions of our work are: (1) An architecture that
performs automated resource management for complex Python
functions by extending and combining the Parsl parallel pro-
gramming library with the Work Queue distributed execution
framework. (2) Demonstrating how the direct deployment of
Python function invocations into a native Unix environment
results in serious inefficiencies. (3) Techniques for transparent
dependency detection and distribution, such that a suitable
execution environment for each function is loaded once and
made available at each execution node, making use of shared
file systems and local storage as needed. (4) Techniques for
resource management in lightweight function monitors. As
each function in a workflow is executed, we measure resources
(cores, memory, I/O) consumed, and then group and efficiently
pack functions into nodes. (5) Evaluation of these techniques
on production applications that are representative of next-
generation highly concurrent Python applications in physics
and bioinformatics, as well as in a FaaS system.

II. KEY IDEA

Figure 1 illustrates the key idea of this paper. A conventional
Function-as-a-Service (FaaS) application (top) is designed
from the bottom up, by first defining a small number of
well-characterized functions, and then designing an application
that uses only those functions in a relatively uniform way
across multiple data items. Each function’s dependencies are
determined by the user, packaged in advance, and deployed in
a worker capable of executing only that fixed function. While
the worker’s overall resources may be limited by a container,
individual function invocations are uncontrolled within the
worker, assuming that they have relatively uniform behavior.

In contrast (bottom), we consider how to decompose rich
Python applications that are composed of many existing
functions with non-uniform and potentially complex behavior.
Such functions may be long-running and have unpredictable
resource consumption and complex software dependencies not
easily determined by the end user. To make this possible,
remote function invocation must become a first-class citizen
such that resources (cores, memory, and software) are accu-
rately requested, allocated, and monitored for each invocation.
This allows the system to direct function invocations to the
appropriate node(s) and to pack many function invocations
into a node without exceeding the available resources.

To enable fine-grained management each invocation takes
place in a lightweight function monitor (LFM), which pro-
vides the precise Python-level dependencies, monitors resource
consumption, cancels functions that violate limits, and reports
resource consumption. While similar in spirit to an OS-level
container, the LFM uses Python-specific techniques to keep
overhead low enough that containment can be applied to
individual invocations.

III. ARCHITECTURE

Figure 2 shows the general architecture of the applications
considered in this paper, and the selection of specific tech-
nologies that implement that architecture. The application is
divided between a set of coordinator processes that run on
a suitable head node, and a set of workers that are deployed
upon the nodes of the cluster. Each element of the architecture
provides a step of the translation from high level user-facing
code to individual tasks running concurrently on worker nodes.

Front-end. The end user accesses an application via a
Python environment which allows for the entry of arbitrary
Python code, and displays the output of that code. Note
that, for consistency of experience, the user has no “side
channel” into the cluster to configure or deploy any additional
software or information relating to the underlying Unix cluster
environment. All information flows through the Python inter-
face, and the underlying components must infer any necessary
configuration from that interface alone.

Parallel framework. The Python code written by the end
user must be written in a framework that is capable of
expressing a high degree of concurrency among tasks. The
framework receives a specification of work to be done, divides
it into suitably sized tasks, and then carries out the orderly

2



Fig. 2. Scalable Python application architecture. End users interact with an HPC facility via an interactive front-end environment, such as Jupyter, writing
concurrent applications in Parsl. Parsl tracks the dependencies between function invocations and data items, passing discrete tasks to the Work Queue master
process. Work Queue schedules tasks to worker nodes, along with their data dependencies. Each function invocation takes place in an LFM. Because users
interact with the system entirely through the Python interface, all resource management is handled via the application without side-channel controls. For
example, Python code dependencies are analyzed at the beginning of workflow execution and deployed automatically to the worker LFMs.

execution of the workflow by executing each task in order
according to its dependencies, performing admission control
to the underlying system, and handling the data transformation
and management needed between each task. As each task
becomes ready to execute, it is passed along to the task
scheduler for placement in the cluster.

Task scheduler. The task scheduler maintains the list of
tasks whose dependencies have already been satisfied and
are ready for execution within the cluster. It is responsible
for matching tasks to available workers by considering the
resources needed by each task and available at each worker.
The scheduler is also aware of the data items needed by each
task, and may transfer (or direct the transfer of) those items.

Worker nodes. On each provisioned cluster node, a worker
receives tasks sent by the scheduler, executes them as directed,
and returns the results to the scheduler. A single task may
consume only a fraction of available node resources, and so
a worker must be able to execute multiple tasks simultane-
ously with appropriate isolation to prevent interference. Each
task executes within an LFM, which tracks actual resource
consumption, and reports observed behavior to the scheduler.

Cluster provisioning. The total number of worker nodes
needed will certainly vary between applications, and may
even vary at runtime if an application has highly dynamic
needs. As a result, worker nodes must be provisioned at
runtime by observing the workload (at the parallel framework)
and submitting requests to start new workers, typically by
submitting jobs to the native job scheduler on the cluster.

A. Implementation Technologies

We describe briefly the Parsl and Work Queue technologies
that we use to build the applications considered in this paper.
Users interact with these systems via a Python script or Jupyter
notebook, which provides a structured interface for managing
Python invocations and results without interacting with the
Unix environment.

Applications are designed and executed using the Parsl [2]
parallel programming library, which implements a dataflow-
style programming model and a modular runtime model for
executing concurrent tasks in Python. (Other popular parallel
Python libraries could be used instead.) The Parsl model
requires that developers annotate Python programs with func-
tion decorators representing which functions may be executed
concurrently. Parsl supports annotation of Python functions
and external applications invoked via the shell. Tasks execute
asynchronously, with results returned as futures conforming
to Python’s concurrent.futures module. Evaluation of
a future either yields the result or blocks until the result is
available. Parsl establishes a dynamic dependency graph (as
a DAG) as a program is executed by tracking the futures
passed between functions. The Parsl library manages the DAG
and determines which tasks can be executed. These tasks are
passed to a pre-configured task scheduler.

For task scheduling, we use Work Queue [7], a master-
worker framework for building large applications spanning
thousands of nodes drawn from clusters, clouds, or grids.
Work Queue accepts tasks in the form of Unix command
lines, with explicit input and output files used to construct
the namespace of the task. Here we developed a new Parsl-
Work Queue executor module to map pending Python func-
tions to Work Queue tasks, such that each task consists
of an invocation of the appropriate Python interpreter with
function inputs “pickled” (serialized) into transferable files
(i.e., executed in an LFM). As tasks complete, their outputs
are pickled for transfer back to the scheduler, where they are
converted back into native Python data structures, and used to
satisfy pending futures. Frequently used files are cached at the
worker to facilitate re-use, and the master prefers to schedule
tasks where needed data is cached.
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B. Applications Used for Evaluation

For our evaluation, we selected several Parsl-based scientific
applications that are currently in use across a variety of
computing environments, and that significantly differ in their
organization and behavior (see Figure 3).

HEP. Traditional High Energy Physics (HEP) analyses rely
on successive processing steps to reduce an initial dataset
(typically, 100s of PB) to a size that permits real-time analysis.
To improve the flexibility of analysis and enable real-time
analysis, researchers are adapting the traditional model to
support native operations on hierarchically nested, columnar
data. Coffea [8] is a new analysis framework which provides
tools for histogramming, plotting, and performing data trans-
formations and corrections. Coffea’s use of columnar analysis
is markedly different from the traditional HEP paradigm of
event loop analysis, which operates row-by-row instead of
column-by-column within a given dataset. Each row of input
data corresponds to a single particle collision event, consisting
of multiple properties (e.g. number of electrons or muons). A
column therefore contains the values produced by all events
for a specific property. By using columnar analysis, summary
statistics for each field can be calculated individually and
greater parallel processing of large datasets is possible.

Drug Screening Pipeline. The molecular search space for
potential drug candidates that may be used to inhibit diseases
is enormous. Computational approaches can provide a first
level screen of potential candidates before being synthesized
and used in lab and clinical trials. For some time, the compu-
tational modeling process has relied on expensive molecular
dynamics simulations to predict the likelihood of protein-
protein docking. To further expedite screening, researchers use
machine learning models to predict candidates that are likely
to produce high docking scores. An example workflow that is
used to screen billions of small molecules for potential can-
didates to inhibit docking to COVID-19 proteins [9] proceeds
as follows. The workflow first converts the SMILEs repre-
sentation [10] for each molecule to a canonical form. It then
creates three features for each: 1) a molecular descriptor; 2) a
molecular fingerprint that encode the structure of molecules;
and 3) a 2D image of the molecular structure. These features
are used as input to two TensorFlow-based machine learning
models that are trained on protein docking simulations to
predict docking scores for candidate molecules. This process
combines several independent functions and consumes mil-
lions of core hours to process billions of molecules.

Genomic Analysis. The GDC DNA-Seq analysis
pipeline [11], which aims to identify variants between
normal and tumor genomes, can take days or weeks to run on
a single processor. The pipeline includes genome alignment,
alignment co-cleaning, variant calling, variant annotation,
and mutation aggregation tasks, each of which may rely on
specific biology tools and have resource requirements that are
hard to predict before the pipeline executes. For example, the
pipeline uses a tool called Ensembl Variant Effect Predictor
(VEP) [12] to annotate the effect of variants. However,

Fig. 3. Dependency graphs for HEP (top left), Drug Screening Pipeline (top
right), and Genomic Analysis (bottom). Note that funcX operates under the
Bag of Tasks model, so no workflow is given.

VEP resource usage (e.g., memory usage, number of cores)
depends on the number of variants in the data.

IV. CHALLENGES

We sketch the problems that can occur when users deploy
Python applications in the conventional way.

A typical installation places software in the user’s home
directory, relying on a shared file system to ensure that
a common Python environment is accessible across nodes.
Parallel execution is accomplished by submitting work to a
batch scheduler. Since general-purpose batch systems must be
language and application agnostic, units of work are necessar-
ily coarse; depending on the site and queue configuration, jobs
often occupy entire nodes. It is left to the application developer
to determine how nodes and work should be subdivided to
accommodate the granularity of the batch job.

While the above process may work in some situations, it
is laborious, error-prone, unlikely to scale, and is inefficient.
Most importantly, it is not designed for granular functions. To
further highlight impediments, we describe open challenges
and partial solutions for typical problems when deploying
Python at scale. We also summarize the implications of these
challenges.

Representing granular parallelism. Python is infamous
for its concurrency limitations, primarily due to the GIL.
However, there are many Python libraries that can be used to
parallelize applications across cores and nodes. For example,
the multiprocessing module in Python’s standard library
enables applications to make use of multiple cores and several
Python libraries such as Dask, Ray, and Parsl enable scalable
execution in distributed systems. Unfortunately, existing meth-
ods rely on access to shared file systems and homogeneous
Python environments across nodes; furthermore, they do not
typically provide methods to efficiently subdivide nodes to
meet workload requirements. Implication: Current frameworks
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are limited in terms of coarse resource management and the
environments in which they can be deployed.

Managing Python environments. Python programs require
access to specific Python versions, external packages, and ad
hoc code accessible on the local file system. Python package
managers provide mechanisms to assemble and clone such
environments locally, and to import modules from remote
repositories; however, in HPC environments these are not
broadly supported, nor are they always efficient due to their
reliance on shared file systems. Implication: There is signifi-
cant manual overhead to assemble environments, make envi-
ronments accessible, and to diagnose environment differences.

Determining environment requirements. While Python
package managers support deterministic assembly of environ-
ments based on a list of requirements, they make no effort
to optimize the environment to include only those packages
that are strictly necessary for individual function execution.
Implication: Execution environments are typically much larger
than they need be and sometimes miss packages that are
imported locally via PYTHONPATH and relative locations.

Distributing and configuring worker environments. Par-
allel Python libraries are notoriously fragile, requiring that
master and worker software environments are nearly identical,
from the interpreter version to each individual library. This
often manifests as a “chicken and egg” problem and therefore
requires that users manually deploy worker environments such
that the parallel execution fabric can be deployed. Implication:
Applications fail with little explanation, and so frameworks
must take active steps to distribute consistent environments.

Minimizing load time for dependencies. Python environ-
ments can be large, exceeding several gigabytes and thousands
of files for common scientific libraries. As a result, the time
needed to load an environment can be significant and in some
cases may be greater than the run time of a particular function.
Implication: Overheads significantly reduce performance and
may adversely affect shared file system performance.

Fine grain resource management. Existing systems focus
on process level management and typically require that users
manually determine resource needs—a task that is well-known
to be inaccurate even at the granularity of Unix processes [13].
Providing efficient execution of fine grain functions requires
that nodes be subdivided at equally granular levels, for exam-
ple, in terms of cores or megabytes of memory. Implication:
Resources are used inefficiently due to lack of function-level
resource management and estimation.

We address these issues by defining an LFM, focusing on
distributing Python environments (§V) and fine-grain function-
level resource management (§VI).

V. DISTRIBUTING PYTHON ENVIRONMENTS

We describe how we identify Python dependencies, create
portable environments, and distribute environments to workers.

A. Observations
To illustrate difficulties that can arise when creating and us-

ing Python environments, we review application requirements
and experiment with Python load times on HPC systems.
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Fig. 4. Shared file system import time for libraries on Theta

1) Import Overhead: Figure 4 shows the time to import
Python and various Python libraries on Argonne’s Theta
supercomputer as we scale from 64 to 32,768 cores (1 to
512 nodes). On each core we run a Python script that loads
Python and imports a single module. We measure the time
to run the script and plot the average loading time. We see
constant performance for smaller modules, likely due to the
fact that there is minimal data to load and little file system
contention. For the larger TensorFlow, load time increases
with the number of nodes, leading to significant wasted time.
Figure 5 shows the cumulative time spent importing a single
library on different systems when loaded from the shared file
system (direct access) vs. unpacked on ephemeral disks from
Conda (local unpack). On many nodes, cumulative time is
many hours. Every function call on every node contributes
to this overhead. Thus over the course of an application,
we expect to pay this penalty many times over. Executing
many short-lived functions or increasing the size of the worker
pool further compounds this cost. Prior work has shown that
this library loading overhead is primarily the result of heavy
concurrent metadata load on the shared file system [14, 15].

B. Static Dependency Analysis

Irrespective of how Python environments are packaged
and distributed, we first need to determine what packages
a function needs to execute. In some cases a README
enumerates installation steps or a Python pip requirements file
lists packaged dependencies; however, these methods are error
prone and often incomplete. A conservative approach would
be simply to copy the user’s entire Python environment. In
practice, this is often ill-advised; users install many packages
in their personal environment that are not needed for every
application, let alone function. To produce a truly transpar-
ent solution, automated methods are needed to determine
dependencies. We build upon prior work in static program
analysis [16–18] to identify function dependencies.

For this work we developed a tool that can introspect a
fragment of Python code (e.g., a function) and determine the
modules needed to execute it. We use static analysis as it
provides a simple way to trace import statements through
packages and does not require executing the code. This
approach is not foolproof in the general case. For example,
it is possible to import Python modules via function call at
runtime rather than by using static import statements. Parsl,
however, requires that any libraries used by a function must
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Fig. 5. Total time across pools of nodes to import TensorFlow. This overhead is incurred for each parallel function invocation that depends on TensorFlow.
For Direct Access, TensorFlow was directly imported from an environment on the shared filesystem. For Local Unpack, this same environment was first
packaged, then at runtime unpacked onto node-local storage.

be imported statically at the beginning of the function body,
so static analysis is sufficient. For each Parsl function to be
executed on remote nodes, the analysis tool uses Python’s
built-in parser and AST manipulation facilities to scan for
import statements (or variations thereof). Each function can
be analyzed in isolation from other functions and the rest
of the program, greatly simplifying analysis and allowing for
minimal dependency sets.

Once we determine which libraries a function uses, we
query the user’s current Python environment to identify the
installed version of each imported package and add it to
a list of dependencies. It is not necessary to include the
full dependency tree, as Python package managers provide
robust solvers for collecting dependencies recursively. We
have integrated our static analysis tool with Parsl to parse
the requirements of any Parsl functions and emit a list of
requirements.

C. Packaging Python Environments
To explore different methods for managing Python environ-

ments we measured the time to load Python in Conda and con-
tainer environments on several HPC systems. Specifically, we
measured the time to run a simple “Hello World” function in
a standard Python 3 environment. We compared performance
in Singularity, Shifter, and Docker containers on the Theta
supercomputer at Argonne, NERSC’s Cori supercomputer, and
AWS EC2, respectively. Table I shows our results. Conda
is significantly faster than containers for packaging Python
environments. To activate an environment, Conda needs only
to make changes to environment variables for the running
process. The container solutions, on the other hand, perform a
variety of additional operations: creating kernel namespaces,
mounting disk images, and preparing IO/resource controllers.

TABLE I
CONDA AND CONTAINER INSTANTIATION TIME FOR DIFFERENT

CONTAINER TECHNOLOGIES ON DIFFERENT RESOURCES.

System Conda/Container Min (s) Max (s) Mean (s)
Theta Conda 0.026 0.073 0.042
Theta Singularity 2.327 3.50 2.628
Cori Shifter 7.25 31.26 8.49
EC2 Docker 1.74 1.88 1.79

While our approaches could be applied to different virtual
environments or containers, we focus on Conda for several

reasons. Since Conda is an unprivileged user-level tool, it
can be installed in any environment without administrator
privileges. It is independent of any container technology, so the
same process can be used whether a site has Docker, Shifter, or
no container support at all. Finally, Conda is widely supported,
contains a large number of Python packages, and automatically
handles dependencies and installation steps.

D. Distributing Worker Environments

We now turn to the problem of distributing Python environ-
ments to worker nodes. We describe below several possible
methods that may be advantageous under different conditions.

Loading directly from shared file system. The simplest
way to access Python environments is to use a shared file
system; however, increasing environment size and number of
concurrent workers will lead to poor performance.

Dynamically configuring worker environments. The de-
pendency list serves as a recipe for creating an environment
on-demand. We can therefore transfer the list to the worker and
use Conda to create the environment. This approach does not
require a shared file system; however, it relies on outbound
network access on the worker node to download required
packages. Further, the installation process can be slow and
concurrent downloads may result in network contention.

Transferring packed environments. An alternative ap-
proach is to create the Python environment on the master,
package it, and send it to worker nodes. Each node can then
unpack the environment locally and handle all task activity
using fast local storage. Here we use conda-pack [19] to
capture the environment in a tarball based on the dependency
list. As the package is simply a file, we can transfer it to worker
nodes using the shared file system, network, or burst buffers
without producing the large metadata load associated with
direct access. To use one of these tarballs on a worker node,
we first extract the contents of the archive, then reconfigure
the package for its new LFM.

E. Evaluation

We evaluate our environment packaging and distribution
approaches on four HPC systems as outlined in Table III.

1) Packaging Costs: Table II shows for various packages
the cost to analyze, create, and run the package via the shared
file system; the package size; and the total number of packages
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TABLE II
EXAMPLE PACKAGING COSTS (TIME TO ANALYZE DEPENDENCIES, CREATE

PACKAGE, RUN PACKAGE), PACKAGE SIZE, NUMBER OF DEPENDENCIES.

Time in seconds Size Dep
Analyze Create Run MB Count

Python 1.20 23.0 2.7 82 21
NumPy 1.52 28.9 3.7 104 27
TensorFlow 3.97 60.9 10.7 259 58
Hyperopt 2.90 37.8 4.8 132 36
MXNet 2.89 72.8 15.6 348 93
Pandas 1.97 35.7 4.4 118 31
Spacy 2.25 39.6 5.2 127 55
Drug Screening Pipeline 18.50 200.0 30.0 833 163
HEP 27.00 149.0 8.8 204 92
Genomic Analysis 147.00 220.0 22.0 760 107

TABLE III
RESOURCES AT OUR TEST COMPUTING ENVIRONMENTS.

Node Node Node
Site CPU Memory Storage Shared FS
ND-CRC 24 core Xeon 256 GB SSD Panasas
Comet 24 core Xeon 128 GB SSD+Disk Lustre
Cori 68 core Xeon Phi 96 GB SSD+Disk Lustre
Theta 64 core Xeon Phi 192 GB SSD+Disk Lustre

that are transitively required by the package (dependency
count). We provide these data for the Python interpreter
alone (which itself depends on several non-Python packages
provided via Conda); the widely-used NumPy package; five
packages selected from the Python Package Index (PyPI) based
on the “SCIENTIFIC/ENGINEERING” label and with high
download counts; and our three applications.

The TensorFlow and MXNet machine learning packages,
in particular, depend on numerous other packages, increasing
both the cost of all three package operations (analyze, create,
run), and overall package size. So too do the three scientific
applications; in their case, the large number of dependencies
is due to their use of non-Python sub-components that are
invoked by the Python functions, leading to a need for
other components such as Java runtimes and Perl modules.
However, while these dependencies increase costs associated
with automatic package management for these applications,
the costs must be balanced against the considerable effort
that would be required to manually prepare the complex
execution environments with many language runtimes and
required dependencies.

2) Distributing worker environments: We measured the cost
of distributing environments containing common packages
(NumPy, SciPy, Scikit-learn, Pandas, TensorFlow) on several
sites when using either the shared file system directly or
by transferring the environment to node-local storage. We
conducted these experiments by importing libraries concur-
rently across an increasing number of nodes, simulating the
behavior of batch job/tasks starting together and executing the
same code across many nodes. Figure 5 shows the import
cost using either direct shared filesystem access or unpacking
the software environment to node-local storage. We show
results for TensorFlow only as it is more representative of

real applications with many dependencies of varying size
and complexity. Note that all three sites show an increase
in overhead as the number of nodes increases, irrespective
of the distribution method. In each case, transferring the
environment using the shared file system and unpacking it
locally significantly outperforms the use of the shared file
system directly.

VI. ADAPTING TO CLUSTER RESOURCES

We now look at LFM resource management on clusters.

A. Observations

In traditional distributed applications, the relationship be-
tween units of work and the execution context is simple: users
submit a command to the batch system, and the command
process is then launched on a node and run until comple-
tion. When dealing with functions as first-class citizens in
large applications, the relationship becomes more complicated.
Long batch system latencies (days for large jobs on heavily
used systems) and coarse time division make it infeasible
to run short or interactive functions directly on a batch
system. Likewise, since Python has strong support for running
computations on multiple cores, choosing to map each function
to a single core is ill-advised as native Python functions have
no way of knowing what share of the node they are expected
to use. Currently, Parsl configuration is done statically across
an entire pool of workers, with each function assumed to have
identical requirements. In practice, resource requirements can
vary widely between different functions.

Even if expected resource requirements are carefully
matched to the static configuration of nodes, minor changes in
the application can cause unexpected resource conflicts later.
NumPy is an excellent example of this issue, as a popular
library for performing efficient computations on matrices. The
default mode of operation for NumPy’s matrix operations is
single-threaded. When built against another library, BLAS,
however, some of NumPy’s operations switch to multicore
implementations. There is no user-visible interface to control
which implementation is used. The same application code,
calling the same package and version, may nonetheless see
striking differences in resource utilization depending on the
build environment used. Even careful per-function resource
configuration would not be sufficient in this case.

B. Approaches

Efficient execution of individual functions requires several
changes in approach compared to traditional batch submission.
Pilot job systems, such as Work Queue, offer a solution:
long-lived agent processes are submitted that, upon execution,
connect back to a master program. This approach allows us to
maintain a pool of nodes that can execute lower-latency tasks.

As modern nodes have many cores (at least 20 in our test
environments) there is potential for significant slowdown when
assigning functions to whole nodes. Work Queue provides the
ability to dynamically pack tasks onto available worker nodes
if tasks are labelled with resource requirements. Thus we need
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Fig. 6. HEP. L: 500–4000 tasks on 20 × 4-core workers. C: 10–40 × 4-core workers, 2000 tasks. R: 2–8 cores per worker, 20 workers, 2000 tasks.

methods for automated discovery of Python function resource
usage, and for using that information for function packing.

1) Function-level resource monitoring: Aside from the lack
of a language-level mechanism to define the resource proper-
ties of individual Python functions, it can be burdensome or
even impossible for users to provide this information statically.
Monitoring the resources used by a function invocation, such
as cores, memory and disk, presents an interesting challenge
for tasks defined as native Python functions. Unix machinery
for measuring resource use, such as the /proc file system
and getrusage, is designed to measure processes. A simple
solution is to run a Python interpreter per task and measure the
resources used by the processes spawned by the interpreter.
However, the overhead of launching an interpreter per task
quickly becomes prohibitive for short-running tasks. Further,
a single interpreter cannot execute more than one task.

Instead, for each task we create a new process that we
can measure with the psutils package or the Work Queue
Resource Monitor [20]. The new process is initially a copy
of the original Python interpreter and thus has access to
the memory state before its creation. However, as Unix pro-
cesses execute in their own copy-on-write memory space, any
changes, including any task results, are lost when the new
process terminates. To overcome this problem, we establish,
before the new process is created, a queue for communicating
results between the original Python interpreter process and
the new task process. The task’s function is wrapped such
that its results (or its stack traceback in case of an exception)
are returned via the queue to the original process. This setup
also allows us to implement enforcement of resource limits. If
during monitoring a tasks uses more resources than a specified
limit, then its process can be terminated without terminating
the original Python interpreter.

The resource measurement is done using two techniques:
polling and process creation/exit events. With polling, at given
intervals we read process information from /proc/PID/,
where PID is the identifier of the process running the task.
Polling by itself is sufficient for tasks that run for more than
a handful of seconds, and that do not fork themselves. To
ensure that a task’s resource usage is measured regardless of
the polling interval and that new processes spawned by the
task are also measured, we need track when task processes are
created and terminate. This is done by pre-loading a library via
the LD_PRELOAD facility from ld.so(8) before the Python

interpreter is run. The pre-loaded library captures calls to
process creation (fork(2)) and termination (exit(2) and
__attribute__(destructor)), registering new pro-
cesses to be tracked, and triggering measurements.

LFM resource monitoring is activated via a Python decora-
tor. The decorator receives as optional arguments a dictionary
that specifies the maximum resources a function may use, and
a function callback that executes at the end of each polling
interval. This callback can be used, for example, to report the
current resources used by the function.

2) Automatically labeling resource requirements: The final
missing piece is the ability to turn information about previous
function resource usage into resource labels for future function
execution when packing functions onto workers. If the re-
sources consumed by function invocations were constant, this
task would be easy: run the first invocation on a whole node,
measure its consumption, and assign future invocations the re-
sources used. In practice, however, resource consumption can
vary significantly, and incorrect choices can reduce throughput
by wasting available resources or by oversubscribing and
causing job failures.

Work Queue implements an algorithm [21] that solves this
problem in an automated manner with no user input. Briefly,
a master runs a task under a large allocation with resource
monitoring enabled. (This initial measurement can be skipped
if an initial guess is manually configured, or if statistics from
previous tasks are available.) The master then computes a first
estimate for the resource requirements. If this initial labeling
is too small and the task fails, the master updates its model
and tries a larger allocation. The algorithm continues in this
manner until it converges on a set of resource labels for the
workload’s tasks. To minimize wasted resources these labels
must avoid over-fitting (resulting in many retries as tasks
exceed resource limits), but must not allow allocations to
become too large (resulting in unused capacity); our previous
work [21] explores these trade-offs. In this work, we modified
Parsl to use this algorithm for automated inference of resource
labels for individual Python functions.

C. Evaluation

We tested LFM resource monitoring and labeling on the
HEP, Drug Screening Pipeline, Genomic Analysis, and FaaS,
workflows (see §III-B), for which workflow dependency
graphs are shown in Figure 3. These workflows exhibit a vari-
ety of structural organizations and resource utilization patterns

8



commonly encountered in large-scale scientific applications.
We carried out our evaluation at sites where these workflows
are actively being used and developed, to ensure that we have a
reasonable basis for comparison. For each workflow we tested
four resource management strategies: perfect knowledge of
the resources used (Oracle), dynamic allocation for maximum
throughput (Auto), imperfect knowledge (Guess), and no-
knowledge (Unmanaged). It is often not possible to obtain
perfect knowledge of an application’s resource usage, thus the
Oracle strategy is shown only for reference. Existing state-of-
the-art parallel execution frameworks (including Parsl) employ
either the Guess Strategy (the user provides approximate re-
source information in advance) or Unmanaged strategy (tasks
are allocated an entire node).

1) HEP: This workflow consists of a variable number of
preprocessing, analysis, and postprocessing tasks (Figure 3:
left). We ran the the HEP workflow on ND-CRC. For all tasks,
the largest input is the HEP Conda environment, a 240 MB
file. All tasks also access two common data files with total
size of 1 MB. Data unique to each task is 0.5 MB. Each
task generates 50 MB of output. Input data transfer is thus
dominated by Conda environment loading, which scales with
the number of workers. For 20 workers it is approximately
6 GB. Tasks run for 40 to 70 seconds.

As noted in §VI-A, it can be difficult/impossible for users
to determine in advance the exact resource requirements for
tasks as in the Oracle case. In the Guess configuration we run
several tasks in parallel on each worker, without determining
the exact requirements and attempting to maximize throughput
(each task was allocated 1 core, 1.5 GB of memory, and
2 GB of disk.). The Unmanaged configuration allocates an
entire worker to each task. For Oracle runs, all tasks used
at most 1 core, 110 MB of memory and 1 GB of disk. The
dynamic (Auto) allocation found it best to run each task with
1 core, 84 MB memory, and 880 MB disk, and then rerun
the task using a full worker in case of resource exhaustion.
As the workflow is uniform, less than 1% of tasks were
retried because of resource exhaustion. In this experiment Auto
achieves similar performance to Oracle, even when starting
from no knowledge about the tasks.

We tested this scheme with a different number of tasks,
number of workers, and worker sizes, with results in Figure 6.
Worker nodes had 2, 4, or 8 cores, with 1 GB memory
and 2 GB disk per core. Since HEP performs a significant
amount of IO on its input data files, increasing the degree
of parallelism on individual workers is of limited benefit. As
expected, shortest completion times are achieved when perfect
knowledge (Oracle) of the resources used by a task is available,
with more tasks running per worker. When no knowledge
is available, the automatic allocation (Auto) achieves similar
completion times with less than 1% of task retries. We
also show the results for imperfect knowledge (Guess), and
Unmanaged resources using a full worker per task.

2) Drug Screening Pipeline: We ran the drug screening
workflow on Theta, launching one worker per node. We again
tested four resource strategies, with Guess runs set to 16 cores,
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Fig. 7. Drug screening. Left: varying number of total tasks. Right: varying
number of workers (workload proportional to number of workers).

40 GB RAM, and 5 GB disk. We first varied the number
of tasks in the workflow and ran on 14 nodes, as shown in
Figure 7, left. We then fixed the number of tasks per worker to
4 and increased the number of workers (and hence the number
of tasks), as shown in Figure 7, right. As expected, Oracle
results in the shortest completion time, with Auto close behind.
Unsurprisingly, Unmanaged has much worse performance.

3) Genomic Analysis: We ran the GDC pipeline on NSCC
Aspire (Singapore), launching one worker on each 2×12-
core CPUs + 96GB RAM computer node. We set resource
constraints for Guess runs to 12 cores, 40 GB RAM, and
5 GB disk. First, we ran the pipeline on 14 compute nodes,
and varied the number of genomes analyzed in the pipeline.
Figure 8, left shows the completion time of the pipeline versus
the number of genomes. We then fixed the number of genomes
per worker to 1 and increased the number of workers from 1 to
16 (and hence the number of genomes), as shown in Figure 8,
right. We see that Oracle leads to the shortest completion time,
while Auto achieves similar completion time to Oracle. Guess
and Unmanaged perform less well. Auto outperforms Oracle
in a few cases, primarily because of an artifact in our Oracle
setting: We manually configure the “perfect” knowledge for
each type of task. In practice, the resources used by some tasks
are highly dependent on the number of variants of specific
genomes, which makes such perfect configurations difficult
to achieve even for this work: another reason for our LFM
resource management approach.
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Fig. 8. Genomic Analysis. Left: varying number of total tasks. Right: varying
number of workers (workload proportional to number of workers).

4) funcX: To further explore the benefits of our approach
we extended the funcX FaaS service by replacing its execution
components with the LFM model. funcX [22] is a distributed
FaaS system that supports function execution on heteroge-
neous resources, including HPC clusters that use specialized
HPC containers. When functions are to be executed funcX
simply passes the serialized function (and its list of dependen-
cies) to our system, using LFMs in place of containers. We
note that we do not integrate static analysis or environment
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distribution as these capabilities are provided by funcX. We
select a FaaS benchmark [23] which classifies images using
Keras ResNet [24] model. We show in Figure 9 performance
for this benchmark while scaling the number of tasks (left)
and workers (right) with LFMs (Auto, Guess) and without
LFMs (Unmanaged). Our results show that auto labelling
and LFMs results in near-oracle performance and significantly
outperforms the unmanaged (non-LFM) case.
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Fig. 9. funcX image classification benchmark. Left: varying number of total
tasks. Right: varying number of workers (workload proportional to number
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VII. RELATED WORK

Parallel computing in Python. The Dask [1], Ray [3],
FireWorks [25], and Parsl [2] libraries support distributed and
parallel execution in Python. They share similar features, such
as how they express parallelism in Python and their imple-
mentation of a task dependency graph to manage execution.
While we focus here on Parsl, our approaches are generally
applicable to all of these libraries. PyWren [26], a Python
library for running Python functions on Amazon Lambda,
includes a scheduler for allocating tasks to lambda functions,
serialization capabilities for functions and arguments, and
support for determining dependencies. The authors suggest
that using Conda, as we do here, would address some of the
difficulties PyWren faces in packaging some environments.
Our approach further innovates with support for arbitrary HPC
environments and granular resource management in LFMs.

FaaS. Commercial FaaS systems use specifications of pro-
gramming functions and their dependencies to build containers
for datacenter deployment. Open source FaaS systems [27]
generally rely on container orchestration systems (e.g., Ku-
bernetes) for deployment.

Containers. FaaS systems have developed new lightweight
container models to address the cold start problem. Amazon’s
Firecracker [28] builds on KVM to implement a virtual
machine monitor that provides secure isolation, low cold start
latency, and low memory overhead for serverless workloads
by only implementing the features that are needed for server-
less container and function workloads. Similarly, SOCK [29]
reduces container cold start latency by optimizing expensive
operations in container initialization according to serverless
needs. It uses a Zygnote process to dynamically cache popular
Python libraries to reduce Python startup latency in containers.
These technologies, while practical in production clusters, are
unnecessarily heavyweight (e.g. security isolation) and cannot
be applied to HPC sites that do not provide privileged access.

Python package management. Python virtual environ-
ments [30], enable creation of specialized software environ-
ments tailored to specific applications. Historically pip has
been the de facto standard package manager for Python;
however, Conda has grown in popularity and is now widely
used for managing both Python and non-Python software.

Python package management on HPC. Sites often use a
module system such as LMod [31] to allow users to activate
a static set of software components. Many sites offer cus-
tomized Conda environments optimized for HPC file systems.
We leverage such Conda environments where possible. The
Pynamic [32] benchmark can generate Python modules and
utility libraries to test Python performance on large systems.

Python performance at scale. The Pynamic [32] bench-
mark can generate Python modules and utility libraries to test
Python performance on large systems. MacLean et al. [6]
showed that starting the Python interpreter and importing
modules on many nodes places significant stress on a shared
file system metadata server, and furthermore can result in poor
performance for all users. They proposed to mount an image
of the metadata as a local disk device to reduce the metadata
server load. However, this method is not user-oriented—it
requires admin privilege and is a site-specific optimization.

Adapting resources for high performance. Much re-
search [33–37] has focused on scheduling batch jobs on
HPC systems or on interference between workloads running
concurrently [38–40]. Rather than looking at the job-level re-
source allocation problem, we focus on function-level resource
matching, which has finer granularity and leads to less wasted
resources. Prior resource allocation solutions generally assume
that the user is familiar with job resource needs [41–46],
or that the tasks submitted in a job have identical resource
requirements [47]. Parallel Python systems, such as Parsl and
Dask, statically divide a node’s resources equally. We propose
a new approach to automatically map the right resources to
each function.

VIII. CONCLUSION

Making Python function invocations the fundamental unit
of resource management in a distributed system raises issues
relating to granular parallelism, management of software envi-
ronments, and adaptation to computing resources. We extended
and integrated Parsl and Work Queue by developing tools to
handle these execution challenges automatically on behalf of
the user. Our evaluation shows how our advanced dependency
management and dynamic provisioning techniques can achieve
near-optimal performance across a variety of computing en-
vironments and applications. Our enhancements are available
to users in Parsl and Work Queue and can be installed via
Pip or Conda. Test applications in Jupyter notebooks are
distributed on GitHub to show how users can run complete
scientific applications efficiently at scale through a purely
Python interface.
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