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Abstract—Large scale scientific workflows are typically run
using a task-based distributed workflow system. Many contem-
porary workflow systems are organized in a layered or modular
fashion, with one component managing the DAG or workflow
graph structure, and another component acting as the scheduler
or executor. These components communicate and regulate the
flow of tasks from the application to the remote execution site.
Scientific workflows perform significant amounts of I/O, typically
using an HPC parallel filesystem. Node-local storage technologies
are often used as an effective supplement to parallel filesystems,
relieving them of the large amount of bandwidth consumed
by intermediate data reads and writes which would otherwise
cause I/O bottlenecks. Node-local storage techniques depend
upon effective scheduling to place tasks close to their necessary
data, thus benefiting from data locality. Effective locality based
scheduling is a challenge however. The conventional layered
architecture results in the scheduler considering tasks on an
individual basis with a narrow view of the greater DAG. We
present a modified architecture of a workflow system which
allows the efficient construction of dependency-based task groups
which are passed through the DAG manager, scheduler, and
finally to the remote worker node where improved use of data
locality can be achieved. These modifications were implemented
using the Parsl parallel library and TaskVine execution engine.
We evaluate this implementation with a benchmark application
and a Montage workflow. We compare the results between a
conventional data-aware scheduler, our task grouping implemen-
tation, and a workflow system using only shared storage. We
find that task grouping achieves a significantly greater degree of
data locality, thereby improving performance and reducing total
data movement in the cluster when compared to the other two
methods.

Index Terms—HPC, Scientific Computing, Workflows, Storage,
Node Local Storage, Scheduling

I. INTRODUCTION

Modern HPC workflows involve large amounts of tasks
and considerable amounts of I/O. Generally HPC facilities
provide a parallel filesystem which is accessible by all nodes
across the cluster such that remote nodes can access input
data and write their outputs to a shared directory. Certain I/O
patterns which are intense in metadata operations may cause
the parallel filesystem performance to be the limiting factor in
overall workflow performance. There are a number of research
efforts which advocate for the cooperative use of node-local
storage in HPC workflows in order to keep data closer to the
cluster nodes, and relieve the load from the parallel filesystem
[1] [2] [3].

Fig. 1: Example Workflow DAG.
Task groups are outlined in boxes. This simple annotation

replaces the work of a complex scheduling algorithm.

These local-storage techniques are most effective when
complemented by data-aware scheduling that can place tasks
at the location where dependent data is cached, therefore
benefiting from data locality [4]. However, this scheduling
pattern is a challenge in a dynamic distributed execution where
resources fluctuate, and new tasks may appear at any time.
Many HPC workflow systems are constructed in a layered
or modular fashion, one component being the DAG manager
which understands the task dependencies and arranges them
into a directed-acyclic-graph, or DAG. The DAG manager
then releases tasks whose dependencies are ready to the
scheduler or executor, which is responsible for dispatching
tasks to the pool of remote worker resources. This fundamental
pattern of communication between a typical DAG manager
and scheduler complicates the synthesis of upcoming task
dependency information and the placement of data in node-
local storage. The main issue is that the DAG manager
only reveals to the scheduler tasks which are ready to run,
leaving the scheduler unaware of future task dependencies.
Given a data-aware scheduler, this future task dependency in-
formation would allow the scheduler to assign remote workers
for long dependency chains, liberating the scheduler from the
communication impediment and allowing it to make full use
of its capabilities. We present a modified workflow system
which identifies these dependency chains at the DAG manager,
passing them to the scheduler to form task groups. This allows
the scheduler to easily assign batches of dependent tasks to



Fig. 2: Workflow System Architecture
The application creates tasks which are arranged into a graph by the DAG manager. The ready tasks are released to the
scheduler, which are then dispatched to workers. The workers have local storage as well as shared access to a parallel

filesystem.

1 import parsl
2 from parsl.data_provider.files import File
3

4 f_image_list = File('imglist')
5 f_output = File('taskvinetemp://images.tbl')
6 f_mosaic = File('m17.fits')
7

8 output_table = create_meta_table(
9 inputs=[f_image_list],

10 outputs=[f_output])
11 mosaic = add_to_mosaic(
12 inputs=[output_table.outputs[0]],
13 outputs=[f_mosaic])
14 mosaic.result()

Fig. 3: Example Parsl Application
A simple Parsl application. Data dependencies are expressed
in the function invocations, and ”result” is called on the final
task in the workflow.

individual nodes, achieving the optimal level of data locality
and reducing scheduling overhead.

We implement these concepts using the Parsl [5] parallel
library and TaskVine [3] workflow execution engine. Our
implementation is evaluated using a benchmark application, as
well as a practical scientific application from the field of as-
tronomy. The evaluation applications were chosen to illustrate
the functional difference between three workflow execution
methods. We first compare the task-grouping implementation
to our standard TaskVine data-aware scheduler without group
scheduling or the forward knowledge provided by the modified
DAG manager. We also compare these methods to an inde-
pendent contemporary workflow system using an HPC shared
filesystem instead of node-local storage in order to provide a
context in which many HPC workflows are currently executed.
We find that task grouping achieves a significantly greater
degree of data locality when compared to the conventional
scheduler. This increased data locality results in significant
performance benefits in comparison with both the conventional
scheduler and shared filesystem implementation.

II. ARCHITECTURE

This work was built upon TaskVine [3] and its data-aware
scheduling capabilities. TaskVine is a workflow description
framework and execution engine for data-intensive HPC ap-

plications with a focus on local storage management. TaskVine
may be used as a standalone workflow system through a
Python or C API, or as an executor module for a number
of different higher-level workflow DAG managers. In this
work, we use the Parsl [5] parallel library as our DAG
manager coupled with the TaskVine executor for scheduling
and resource management.

The architecture of TaskVine and Parsl is described in
Figure 2. The first component is the application. A user
will write the application to describe their workflow, creating
individual tasks and annotating them with data dependencies
and products. There are multiple ways for a user to invoke
execution. Tasks may be called to run individually, or the
final tasks in the workflow may be called in the style of
futures, such that each prior task must be run in order to
obtain the final result. It is the latter method which is the most
concise and optimal for the workflow system, as this ensures
any issues with the declaration of data dependencies will be
identified. A simplified example of a Parsl application is seen
in Figure 3. The order of execution is indicated by specifying
data dependencies, or that the input of one task is the output
of another. The DAG is realized when the final task of the
series is invoked.

The application can be seen producing tasks to send to
the Parsl DAG manager, or data-flow-kernel, which constructs
a graph of the workflow identifying the order of execution.
Ready tasks which are colored in green are those whose
dependencies are fulfilled. At the beginning of the workflow
the ready tasks are only at the top level of the DAG. The
DAG manager is the central director of the workflow system,
and aims to maintain awareness of all things pertaining to the
execution such as task statuses and the creation of data. The
workflow DAG is built around data dependencies, so when
tasks complete and output is created it indicates a new set of
tasks are ready to run. In the event of task failure the capability
of the DAG manager to respond is limited. It may choose to
retry the failed task or give up. Since it is largely disconnected
from the cluster resources and data locations it must delegate
more complex recovery methods to the scheduler.

The ready tasks are passed by the DAG Manager to the
TaskVine scheduler. TaskVine is responsible for the main-



(a) Individual Task Scheduling (b) Group Task Scheduling

Fig. 4: Comparing Individual and Group Task Scheduling
Tasks are typically scheduled on an individual basis without using the context contained in the DAG or other tasks in the queue.
This allows the potential for missed data locality. Group task scheduling identifies data locality opportunities and schedules
them together.

tenance of the worker pool, understanding the available re-
sources, and is also aware of task data dependencies and where
they reside on node local disks. Using this information the
TaskVine scheduler will determine where to send the tasks it
has been given by the DAG manager. Both the application and
the workers have access to a parallel filesystem, where workers
may be directed by the application to retrieve and create data.
Each worker also possesses a local disk where it may cache
data. TaskVine provides a number of capabilities regarding the
management of node-local storage in the cluster. Individual
files are tracked by which workers are in posession of them,
and the scheduler may take advantage of this information
by sending tasks to workers who posess some or all of the
required input data. TaskVine can direct remote transfers to
occur between workers in the cluster, such to avoid a costly
transfer from an outside source, or to distribute a large amount
of files in a peer-to-peer fashion to avoid a large distributed
read from the shared filesystem. The management of data in
TaskVine also enables efficient fault tolerance and recovery
when tasks fail or resources are lost. Data replication may
be configured such that files which are costly to produce are
replicated across multiple worker nodes. Thus, in the event a
worker is lost its valuable data will survive on other workers
and recovery can begin without the costly regeneration of the
data. If the data has been lost altogether, before conceding the
task has failed to the DAG manager, TaskVine may attempt to
recreate the data by rescheduling the tasks which produced it.

III. THE DATA LOCALITY CHALLENGE

It is important for us to clearly identify the limitations of
conventional task scheduling when aiming for data locality
benefits. We have introduced TaskVine and its data-aware
scheduling capabilities. We must address why simple data-
awareness in the scheduler is not sufficient to achieve an
optimal execution at scale.

Figure 4a shows a partial workflow execution with task
placements made by the scheduler which miss opportunities
for data-locality. Ideally each one of the three task sequences
should be placed on a specific worker so their intermediate
data remains local. The problem is easily illustrated when
the amount of concurrent work available exceeds the capacity
of the worker resources. There are 3 sequences and only 2

workers, so some tasks cannot be scheduled immediately. The
problem begins when the scheduler is considering task 3.
From the perspective of the scheduler the placement of task
3 is inconsequential since there are no input dependencies for
which to seek locality benefits. Task 3 is arbitrarily placed,
and when the scheduler considers task 4 the ideal worker is
now occupied. Determined to schedule task 4 it places it on
the other worker, resulting in a missed locality opportunity.

By considering tasks on an individual basis the scheduler is
bound to occupy workers who possess dependencies for other
tasks, delaying their execution. One solution for this may be to
do away with the absolute scheduling deadline and relax the
policy such that if no scheduling opportunity is available after
5 attempts, then concede to scheduling a task separate from the
data. This is in fact a description of delay scheduling [6] which
was shown to be generally effective. The problem remains
however, that the scheduler will occupy workers which will
then cause these delays to occur. The workflow will only
benefit by the proportion of tasks which were successfully
scheduled by data-locality. The cost of scheduling a task away
from its data can vary significantly depending on the data size
and bandwidth of the network it will need to be transferred
on. While perhaps trivial for short running tasks with small
dependencies, this can become more significant with greater
scale and size of data.

Rather than finding a perfect balance of determination vs.
concession at the scheduler which may become ineffective
when faced with a different application with different task
runtimes and I/O behavior, we intend to avoid this scheduling
challenge altogether by exploiting our knowledge of the
DAG to make task associations ahead of time. While delay
scheduling is an effective method for effective scheduling
of short running on-demand tasks, our system can use the
knowledge of some or all of the workflow DAG up front,
allowing it to quickly make group associations to pass to the
scheduler. This is illustrated in Figure 4b, where a partial
execution of the prior workflow is shown except the DAG
manager is communicating whole task groups to the scheduler.
This will enable the scheduler to achieve locality, but how
should these groups be constructed?



Fig. 5: Workflow DAG With Groups.

IV. TASK GROUPING

Consider a workflow described by the DAG in Figure 5.
This DAG features 6 distinct task sequences which are outlined
by boxes. We will consider these sequences to be our groups
with the intent of each group executing with perfect use of
data locality.

Let us assume the resource requirements of these tasks are
uniform, and each task will occupy the resources of one entire
node. Even if there is a large pool of remote workers available
it is almost certainly the case that the optimal execution
of this workflow would involve no more than 5 nodes, as
there is no potential for greater concurrency. Using local
storage, ideally each node will be responsible for a single
sequence at a time, caching the intermediate data for fast
reuse. From our perspective we can rather simply formulate
an optimal execution for this DAG given 5 worker nodes.
Consider the perspective of the scheduler in this execution,
and how it is only provided knowledge of the immediately
ready to run tasks. The task groups vary in length and some
begin before others, leaving some nodes idle for periods of
time. As the number of tasks in the system increases, the
scheduler considering each ready task individually may choose
to schedule a task which breaks a potential locality chain,
unaware of the significance this poses to the larger execution
scheme. The DAG manager has a complete view of the DAG,
just as complete as our view of Figure 5, yet it withholds this
knowledge from the scheduler.

Consider a scheme in which the DAG manager offers
these dependent chains of tasks to the scheduler. This allows
the scheduler to easily recognize the sequences. Rather than
scheduling individual tasks, the scheduler may send each
sequence to a worker in a single operation. The worker needs
only a simple capability to receive a queue of tasks which
describes their order of execution. We propose a modified re-
lationship between a DAG manager and data-aware scheduler
in which dependency chains apparent to the DAG manager are
revealed to the scheduler, enabling the scheduler to understand
the flow of data through a particular series of tasks, and
schedule this series with maximal use of data locality.

Enabling this capability is a multifaceted effort. The DAG
manager must be modified to identify task sequences and
communicate them to the scheduler. The scheduler must be

able to recognize these sequences, and communicate them to
workers who are capable of understanding execution order and
data dependencies. The scheduler must maintain a balanced
policy, maximizing the data locality benefits while still keeping
the system moving and avoiding any prolonged periods of
waiting to enforce an absolute policy. The main benefits
of this system model are the reduction of I/O costs as a
result of increased data locality, reduced inter-task latency by
queuing tasks at the workers, and a reduced number of task
communication events as a result of scheduling the tasks as
groups. These benefits are not without potential disadvantages
which will need to be addressed. Scheduling groups of tasks
into queues at the workers releases a number of previously
tightly-controlled variables into an unpredictable distributed
system. In the case of task or worker failure it will be more
complex to recover the system.

A. Grouping Strategy

There are multiple ways we may choose to associate tasks
and present them to the scheduler. Figure 6 shows a simple
DAG presented in three ways. Part a. shows the basic individ-
ual task scheduling strategy. Part b. shows groups in the DAG
identified by color, yet the tasks retain their individuality. In
contrast, part c. shows a merging, or fusing of tasks into larger
abstract units. Let us consider these latter two methods and
their potential advantages. The key difference is the granularity
of tasks as presented to the scheduler and worker. In the case
where task individuality is retained tasks remain lightweight
and any mechanisms for fault recovery or checkpointing may
still function efficiently, since upon failure we can identify
which task had failed within the group and resume execution
at the closest available checkpoint. In the merged abstract
task method however, we simplify the presentation of the
DAG to the scheduler, resulting in fewer overall scheduling
operations and communications between the workflow system
and workers, which may greatly benefit the system at scale.
This benefit trades off the cost of checkpointing and fault
tolerance becoming less granular, as we may no longer resume
a sequence of tasks in the middle since they have been
generalized into a larger task unit. This also requires the
scheduler to be quite certain of its decision making process.
There are many reasons some tasks may not be able, or should
not be grouped together. Resource requirements may not align,
or the DAG may be structured in such a way that a task in the
middle of a group may require an outside dependency. Events
may occur in the system where a previously feasible task group
can no longer run. In order to recover the merged abstract
task group must be deconstructed and reconsidered. With both
strategies considered, we decide to move forward with the
method of Figure 6b. in order to retain task individuality,
enable fault recovery and flexibility of group configurations.

B. Resource Utilization

Tasks may have a diverse set of resource requirements.
Some tasks may demand a large amount of cores, memory,
or disk, while others request very few resources. Regardless



(a) Individual Tasks. (b) Group Task Queues. (c) Merging Task Sequences.

Fig. 6: Scheduling Task Sequences
Three methods of scheduling tasks. Part a. shows the conventional method. Part b. and c. show two potential methods for
grouping tasks, one preserving individuality in order to retain information, and one abstracting it in favor of simplicity.

of the method used to group and schedule tasks, resource
requirements must be considered and understood in order to
make the best scheduling decisions. Since we are grouping
tasks with the intention of a group running in a single location,
the worker to which the group is sent must have sufficient
resources to run the most demanding task in the group. There
is a potential for inefficiency if we consider a sequence of
tasks where the majority request few resources, yet one task
requires a large enough allocation that would cause the entire
sequence to be placed on a powerful worker. Therefore for
a majority of the time the sequence is executing the worker
resources are being underutilized. Whether or not this wasted
resource utilization is detrimental to the workflow performance
depends on the I/O benefits achieved by the group task, which
would be determined by the size and quantity of intermediate
data in the sequence, which is not necessarily known before
execution. The workflow system may decide to terminate
a task group when it encounters a task with significantly
disparate resource requirements, or it may adopt a policy
which favors grouping tasks above all resource considerations,
hoping that I/O benefits will outweigh the cost of resources
sitting idle. Both of these approaches may find advantage
in different situations, and the task grouping implementation
must make at some level an uninformed policy decision as to
which approach to follow. It was decided in this work to place
a priority on the formation of large, potentially diverse task
groups as opposed to smaller uniform groups.

adjustbox

V. IMPLEMENTATION

A. TaskVine Modifications

Our implementation in TaskVine groups tasks on declaration
by their intermediate data dependencies. In TaskVine files
may be specified as intermediate data, which is referred to
as ”temporary” being that their nature is ephemeral. They
are deleted on completion of the workflow and they are
not returned to the user. Creating task groups based on
intermediate data follows a simple logic. When a new task
is declared with an intermediate output it is considered for a
group. If the task has no intermediate input then a new group
is created with the task being the head of the group. When
a task is declared with a intermediate inputs, we will assign
it to the group associated with the task creating the input.
Any outputs of tasks added to the group will be associated

with the group, so subsequent tasks can be added. This
method of group construction requires very little overhead or
additional work since it is performed in the moments that tasks
are declared. This performs optimally using the conventional
workflow construction where the majority of tasks are declared
up front before execution commences, however tasks can be
declared and added to groups at any time over the course of
the workflow.

There is a decision to be made regarding group construction
and their maximum size. At the moment a group will be
constructed for any length sequence of tasks so long as they
all depend on associated intermediate data. This is simple
for a straight line of dependent tasks, but becomes more
complex when faced with branches such as in Figure 5, where
intermediate dependencies within one group become the initial
input of another group. The decision to be made here is
whether to absorb the additional sequence into the original
group to run in parallel, or to create a new group which will be
scheduled separately. In our implementation the policy dictates
there is to be no parallelism within a group. In effect, if there
are two consumer tasks of a single intermediate data item,
the two tasks should be in different groups. This prioritizes
more numerous simple groups utilizing more individual work-
ers rather than attempting to make decisions about effective
parallelism at runtime in an application with indeterminate
behavior.

Once some groups have been created and it is time to
schedule tasks to workers, the scheduler will choose a task.
The head of a group must be scheduled first since it is the
first element in a chain of data dependencies. The TaskVine
scheduler is implemented using a priority based queue of
available tasks. When task groups are created the head of
each group is given a high priority. As a result the head of
each group is considered and scheduled quickly, even when the
scheduler has been given a large amount of tasks to run. When
the scheduler is sending a group task, it will send all of the
tasks in the group at once to form a queue at the worker. This
effectively reduces inter-task latency by allowing the worker
to immediately begin the next task instead of waiting for
instruction after each task completes.

Scheduling groups of tasks into queues at the worker
requires modification to the TaskVine worker, since the worker
previously operated under the assumption that it would only
be sent tasks which can immediately run. Now it must be



a. b. c.
Fig. 7: Benchmark Results

able to receive a set of tasks from the manager which must
be run in a particular order. When the worker considers the
available tasks it will check the data dependencies required.
If the worker is sent a sequence of tasks, and it considers a
task which is not in the correct execution order it will find
that the data dependencies cannot be fulfilled. Typically this
will cause a task failure, since the task cannot be run without
its dependencies. With the modification however, much like
the TaskVine scheduler the worker will consider the other
tasks it has been sent for the data dependency required, and
if it finds that the data will be generated by another task in
its queue it will carry on without failing the task. One may
question whether having some order of execution implied by
the scheduler when the group is sent to the worker would make
execution more efficient, yet the cautious route was taken in
not informing the worker about the nature of group scheduling.
The simple routine of the worker is congruent with fault
tolerance capability, which is especially important with the
addition of task group scheduling. If one task in the sequence
was to fail, the worker must recognize that all following tasks
in the sequence can no longer be run at any time.

B. Parsl Modifications

Up to this point we have described the TaskVine imple-
mentation as if it were handed all of the tasks in the system,
rather than only those which are ready to run as in the
DAG manager executor scheme. When the TaskVine executor
is being used with a DAG manager such as Parsl some
modifications had to be made. Fortunately the architecture
of Parsl lends itself well to this task, with their concept of
data staging providers. Parsl allows users to write custom
data staging providers, which define the behavior of different
IO mechanisms such as FTP and HTTP file staging. While
the utility here is not immediately obvious, the data staging
provider is in fact the mechanism which notifies the Parsl
DAG manager of the existence of output files, and therefore
which task dependencies are fulfilled, influencing the set of
ready tasks. For this work a custom data staging provider was
written for TaskVine which ”fools” the Parsl DAG manager, or
”Data Flow Kernel” by reporting that all temporary output files
have been created. This results in an interesting and mutually
beneficial interaction between the two components. Given a
workflow DAG with some potential group task sequences,

Parsl will send to TaskVine all ready to run tasks as well as
subsequent temporary-dependent tasks which may be placed
into groups. These tasks may only be a subset of the entire
DAG, allowing the scheduler to spend its time more effectively
without iterating over later tasks and only focusing on the
present tasks and creating groups.

VI. EVALUATION

Our implementation was evaluated on a university HT-
Condor [7] cluster. All machines in the cluster are outfitted
with SATA solid-state local disks and are interconnected by
10Gb/s ethernet links. Each worker used in this evaluation was
a 12-core machine. The cluster is equipped with a Panasas
ActiveStor [8] shared filesystem outfitted with 77 nodes and
capable of 84 Gb/s read bandwidth and 94,000 read opera-
tions per second. Each evaluation application used the shared
filesystem as its launch directory, and all FS operations that did
not use node-local storage ocurred from this shared storage.

A. Benchmark Application

The benchmark application was constructed to assess the
impact of task sequence length on three methods of workflow
execution. All methods use Parsl to construct the DAG. ”No
Groups” is an ordinary TaskVine execution in which the
intermediate data is contained on node local storage. Tasks are
dispatched one at a time, and only opportunistic data locality
benefit is achieved since the DAG sections with grouping
potential are not immediately revealed by the DAG manager.
”Task Groups” uses the implementation discussed, where the
sequences are scheduled together in queues to each worker.
”Shared FS” uses Parsl with the standard High Throughput
Executor, which directs workers to read and write data to
a shared directory in the parallel filesystem. Thus, there is
no data-aware component to the scheduler. Each run of the
benchmark application consists of 20 task sequences of a set
length. There are 20 12-core workers receiving the tasks, and
each task occupies a whole worker. Each task in a sequence
consumes a file from the previous task, and produces a new file
which the next task depends on. The size of each intermediate
data file is 200mB.

Figure 7 illustrates the behavior of the benchmark applica-
tion. Part a. shows the scaling of the application and the effect
on execution time. These results find task grouping to scale at



a. b. c.
Fig. 8: Montage Results

an approximately linear rate in respect to sequence length. The
shared FS runs also maintain linear scalability but at a greater
coefficient. Without task groups, the data-aware scheduler is
severely impeded as the number of tasks and intermediate
data items grow. The cause of this is evident in parts b. and
c. of Figure 7. Part b. shows the locality achieved with and
without task grouping at each sequence length. The shared FS
is not included since local storage is not used. The percentage
of locality achieved is the amount of workflow data which
remained local to one machine. Task groups maintain perfect
locality across all benchmark scales where the ordinary data-
aware scheduler quickly declines in effectiveness. Part c. is a
histogram of the I/O latency across all benchmark runs. Task
grouping results in a more narrow distribution concentrated
at a range approximately a third shorter than the ”no groups”
distribution. Thus, the benchmark application benefits from
task grouping by achieving improved data locality, therefore
reducing overall task runtimes by eliminating the cost of
network data transfers.

B. Montage

Montage [9] is a software from the domain of physics and
astronomy which is used to assemble astronomical image data
produced by telescopes into full images or mosaics. A typical
Montage workflow begins with a set of FITS images. These
images may go through several preprocessing and adjustment
steps before being combined into the final mosaic. The set of
input images, and their intermediate counterparts generated
over the course of the workflow can add up to several
gigabytes.

We evaluate our work using a custom montage application
which handles a non-trivial amount of data. 50 mosaics are
created in parallel on 50 workers. Each mosaic begins with
a set of 91 distinct input FITS images, where each image
is slightly over 2 megabytes in size. There are 12 tasks in
the construction of each mosaic. Each task produces several
intermediate data items, in some cases hundreds of files. The
intermediate data produced must be read by one or more
subsequent tasks in the sequence.

Each method evaluated was run several times in order to
ensure any particular result was not a performance outlier.
Statistics from three selected runs of each method are dis-

Execution Time
No Groups

Local Files %
No Groups

Execution Time
Task Groups

Local Files %
Task Groups

442s 72% 228s 91%
660s 66% 209s 92%

1380s 61% 192s 94%

TABLE I: Data Locality Achieved in Montage Runs

played in Figure 8. In part a. each bar displays the median
execution time. The minimum and maximum times are indi-
cated by the error bar. Both task grouping and the shared FS
exhibit relatively consistent results, where the default TaskVine
scheduler is largely unpredictable, sometimes competitive with
Parsl HTEX and the shared filesystem, but in other cases
severely impeded.

Part b. of Figure 8 shows the cumulative bytes transferred
between workers. The shared FS runs are not pictured since
there is no data transferred between workers. The graph shows
that task grouping transfers significantly less data between
workers than the ordinary scheduler, as well as avoiding any
significant ”plateau” in the rate of workflow progress.

This graph closely relates to part c., where the number of
tasks scheduled is graphed over time. Each run schedules over
500 tasks. The task grouping runs are consistent and without
significant impediment. The ”Group Events” line shows the
number of group scheduling events which occurred compared
to the total amount of tasks scheduled. Without grouping each
task requires its own distinct scheduling event. With task
group dispatching the application required less than 1/3 of
the scheduling events and interactions between manager and
worker.

The data locality achieved by TaskVine base and task
grouping is displayed in Table I. This application involves
approximately 117 thousand intermediate data files. The total
amount of data used in the workflow amounts to 245.7GB.
The general trend across all runs is consistent in showing that
task grouping utilized over 20% more local data than the tradi-
tional scheduling method, resulting in significant performance
benefits.

VII. RELATED WORK

A. Workflow Systems

There are a number of workflow systems available to HPC
users wishing to parallelize and distribute their code to a



cluster of computational resources. These workflow systems,
such as Parsl [5], Dask [10], Ray [11], Kepler [12] and Pegasus
[13] offer an API for users to describe their workflow in
terms of tasks or functions with input and output dependencies.
The workflow system interprets the user input and constructs
a DAG to clarify the execution order and opportunities for
parallelism. TaskVine also provides an API for workflow
description, as well as the capability to act as a scheduler
for some of the workflow systems described such as Parsl and
Dask. The distinction of TaskVine when compared to other
workflow systems is the management of data, and an emphasis
on local storage usage which is coupled with TaskVine. Other
workflow systems typically provide only a simple data staging
interface to work with the shared filesystem. While data is
what determines the structure of the DAG, other workflow
systems do not concern themselves with how the data is
handled. TaskVine manages the transfer of data from the
submit location to remote workers and transfers between
workers themselves, and is acutely aware of the location and
characteristics of data assets within the cluster. This data-
awareness is what enables scheduling based on data locality.
The benefits of data aware scheduling are thoroughly explored
in [4] and [6]. We discussed delay scheduling [6] at some
length in our presentation of the scheduling challenge. Delay
scheduling was shown to be highly effective in locality based
scheduling when given tasks on-demand, such that no forward
knowledge of tasks is known by the workflow system at all.
The system operates with the assumption that the scheduler
will make decisions found to be counterproductive given new
information, and includes arrangements for canceling tasks in
favor of replacing them with data-local tasks, and provisions
not only node-local but rack-local locality awareness.

B. Group Scheduling

Grouping or ”clustering” tasks is a familiar notion for users
of the workflow system Pegasus [13]. Pegasus allows extensive
configuration regarding the clustering of tasks. Tasks may be
clustered ”horizontally” by grouping tasks in the same level
of the DAG, or tasks may be grouped by user annotation.
It is important to note that the horizontal task clustering is
grouping parallel jobs together instead of sequential jobs, and
the goal of clustering in Pegasus is not exactly to benefit
from data locality, but to submit less overall jobs to the
cluster, since cluster batch schedulers may have a very high
job startup overhead. In this way there is some similarity
between the TaskVine implementation and Pegasus, since we
are also focused on latency between tasks, and the cost of
scheduling work to a remote resource, but our focus is on
a different layer of the HPC software stack. While Pegasus
schedules a workflow through a batch job provider such as HT-
Condor, TaskVine uses HTCondor to deploy its workers, and
once deployed all task scheduling and communication occurs
between the manager and worker processes. Another aspect
which enables Pegasus to offer a rich set of job clustering
features is the static compilation of the workflow DAG, i.e. that
all tasks are known before runtime, and the user and software

are free to design the DAG with certainties about its nature.
TaskVine and its workflow system counterparts for which it
may act as executor receive tasks at runtime, therefore unable
to determine the exact structure of the DAG until all tasks have
been revealed. While a precompiled DAG may easily reveal
the ideal execution pattern, there are many benefits to a system
which can react dynamically in an unpredictable distributed
system. A workflow system in which tasks are declared at
runtime may handle workflows with indeterminate execution
patterns and overcome failures when resources are lost and
data must be recreated.

C. Node-Local Storage

Storage technologies for use in HPC workflows are a
fundamental component in the cluster environment. Parallel
filesystems such as Lustre [14], Panasas [8], and Ceph [15]
are typically installed in HPC facilities and used as a primary
location for staging workflow data. Advances in distributed
filesystem technologies focus on increasing total I/O operation
throughput, since there are a number of I/O patterns in data-
intensive applications which can reach performance limitations
in the capacity of the filesystem to distribute data. There
are a number of projects which support the use of node-
local storage as an alternative or supplement to a parallel
filesystem in order to overcome these limitations. Many of
these technologies combine the local storage of nodes within
the cluster into its own distributed filesystem such as BeeOND
[1] and GekkoFS [2]. These and other works are considered
”burst buffers” [16] [17] [18] [19], which in effect move
data closer to the execution site, creating a private shared
filesystem for each instance. While using these technologies
prodvides I/O benefits, the workflow system is still separate
from the storage provider. Therefore the workflow system
cannot determine exactly where the data is in the cluster.
TaskVine is distinct from these technologies as it does not
create a traditional FUSE-type shared filesystem across the
workers which must be installed and mounted at the execution
site. Rather each worker’s local disk is tracked and managed
separately by the workflow system. The coupling of storage
management to the workflow system allows TaskVine to be
aware of exact data locations and to place tasks on the same
worker where the data exists.

VIII. CONCLUSION

This work has presented an implementation of task group
scheduling using the TaskVine and Parsl workflow systems.
We have shown that a key issue in local-storage based work-
flows is the ability to achieve data locality in the face of
scheduling complexity. Our evaluation found a significant im-
provement in locality-based scheduling effectiveness resulting
in performance benefits which open new avenues for local-
storage based workflows in the HPC ecosystem.
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