
 DATA

MONITORING
Lobster provided monitoring:

CPU
efficiency

Software setup
overhead

Lost job runtime due to eviction
and worker connectivity issues

Cache population period

Lobster is a workflow manager for harnessing non-dedicated resources for high-throughput workloads. Lob-
ster brings together several tools from the Cooperative Computing Lab— Parrot, Work Queue, and Chirp—
along with new capabilities to yield a comprehensive system. Because it only requires standard permissions,
Lobster can deploy any resource on which the user can run. Lobster features a master-worker architecture,
with jobs created on-the-fly, allowing for dynamic job sizing.

The Notre Dame (ND) Tier
3 (T3) has about 1,000
CPU cores, a homoge-
nous hardware and dedi-
cated software setup, and
dedicated support.

We have developed Lobster to harness computing
resources that are not integrated into the Worldwide
LHC Computing Grid (WLCG), including private uni-
versity clusters, commercial clouds, and other pro-
duction grids. These systems are not immediately
prepared to service High Energy Physics (HEP)
workloads, because the required software
stacks, data sharing services, and workload man-
agement software are not present. Further, they are
not dedicated and commonly evict users without
warning. Lobster is designed to handle these factors
in multiple dimensions: job construction, software
delivery, data access, output management, and sys-
tem monitoring.

The ND Center for Research Computing (CRC) houses
about 21,000 CPU cores, heterogeneous hardware, and no
privileged access, specialized software setup, or dedicated
support. These cores are available for opportunistic use
when idle, but jobs will be evicted when the owner re-
claims their resources.

We are grateful to many people who assisted in constructing and troubleshooting this complex system; in particular, Jakob Blomer, Dan
Bradley, and the CVMFS team; Dave Dykstra, Barry Blumenfeld and the Frontier team; and Serguei Fedorov and the CRC staff.

This work was supported in part by National Science Foundation grant OCI-1148330 and a Department of Education GAANN fellowship.

Job scripts and the user sandbox are distributed to the
worker via WQ. The CMS software environment is
mounted via the CernVM File System (CVMFS) and
Parrot. Data is staged via Chirp or streamed via XrootD
for local data storage and streamed via XrootD for ac-
cess to the CMS wide-area data federation. CMS condi-
tion data is provided via Frontier. Outputs are trans-
ferred via WQ or an optional Chirp server.

WHY LOBSTER?

Workers can be submitted via a variety of batch
systems (HTCondor, SGE, PBS, etc.) Each task
includes a wrapper which performs pre- and
post-processing around the user application.
The pre-processing steps checks for basic ma-
chine compatibility, obtains the software distri-
bution and optionally stages the input data, and
starts the application. The application runs with
either FUSE or Parrot to access software at
runtime via the CVMFS global file system. The
post-processing step sends output data to the
data tier and summarizes job statistics, which
are sent back to the master. Workers hold re-
sources and run tasks for the master until the
work is finished or the worker is evicted. Multi-
core workers run multiple tasks in parallel,
sharing a local cache for CVMFS and WQ files.

FNAL
LPC

Concurrent jobs running with Lobster

V
o
lu
m
e
	t
ra
n
s
fe
re
d
	(
B
y
t
e
s
) N

u
m
b
e
r	o

f	t
ra
n
s
fe
rs
	(#

)

TRAFFIC	STATISTICS	

PER	SITE

2015-01-15	00:00	to	2015-01-19	00:00	UTC

inbytes outbytes intfrs outtfrs

T3
_U
S_
No
tr
eD
am
e

T2
_D
E_
D
ES
Y

Ro
am
in
g

T2
_D
E_
RW

TH

CE
RN
-n
/a

T1
_U
S_
FN
AL

T2
_U
S_
W
is
co
ns
in

T2
_U
K_
Lo
nd
on
_I
C

T2
_C
H_
CS
CS

0T

50T

25T

75T

100T

0k

1,000k

250k

500k

750k

Data transfer rates with Lobster

Tasks
running

Output
transferred EXECUTION

Lobster uses the Compact Muon Solenoid
(CMS) Database Bookkeeping System
(DBS) to obtain file metadata for a given set of
datasets to be processed. This is used to con-
struct a database of jobits— in other words, the
smallest elements into which the dataset can
be divided and still be submitted as a self-con-
tained task to the remote worker. Lobster as-
sembles tasks on-the-fly from an integer num-
ber of jobits, which can be adjusted by the user,
and schedules them via Work Queue (WQ). The
WQ master distributes tasks to workers and
reports progress back to Lobster. Optional WQ
‘foremen’ can be started to reduce the load on
the WQ master by mediating between it and the
workers.

SCHEDULING

ND

EXPLOITING VOLATILE OPPORTUNISTIC
COMPUTING RESOURCES WITH LOBSTER
Anna Woodard, Matthias Wolf, Charles Nicholas Mueller, Ben Tovar, Patrick Donnelly, Kenyi Hurtado Anampa,
Paul Brenner, Kevin Lannon, Michael Hildreth, Douglas Thain [University of Notre Dame]

