
Shifting the Bioinformatics Computing Paradigm: A Case Study using Genome

Annotation

Andrew Thrasher, Douglas Thain, and Scott Emrich

Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, IN

Zachary Musgrave

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI

Abstract—Next generation sequencing technologies have en-
abled various entities, ranging from large sequencing centers
to individual laboratories, to sequence organisms of choice and
analyze them on demand. Sequencing and analysis, however, is
only part of the equation: to learn about a certain organism,
scientists need to annotate it. Each of these problems is highly
parallel at a basic level of computation; however, only a few
applications support even a single parallelization framework
such as MPI. Ideally, because of overall increasing demand for
computational analysis and the inherent parallelism available
in these problems, applications should utilize a generic parallel
framework to take advantage of a large variety of computing
systems; this would enable labs of various sizes to harness the
computing power available to them without forcing them to
invest in a particular type of batch system. Here we describe
modifications made to one particular tool, MAKER. MAKER
is a tool for genome annotation that is provided as both a serial
application and as an MPI application. We make modifications
to enable it to run without MPI and to utilize a wide variety of
distributed computing platforms. Furthermore, our proposed
parallel framework allows for easy explicit data transfer, which
helps overcome a major limitation of bioinformatics tools
that generally rely on a shared filesystem. The distributed
computing framework we choose to utilize can be used, even
during early stages of development, to run bioinformatics tools
on clusters, grids, and clouds.

Keywords-Distributed computing; Bioinformatics

I. INTRODUCTION

Bioinformatics has emerged over the past decade as a

major producer of digital data and consequently a large con-

sumer of computing resources. The tremendous explosion in

sequencing capability with greatly reduced costs has enabled

scientists to now sequence non-model organisms and inves-

tigate their genomes. Moreover, they are also (re)sequencing

larger numbers of genomes from a population including

humans [1]. To help facilitate their scientific investigations,

many genome projects also perform additional sequencing

such as expressed sequence tags (ESTs), RNAseq, etc. These

factors all contribute to the large quantity and variety of data

available in a modern genome project.

Parallel to the increase in sequencing power, algorithms

for genome analysis and assembly have improved. Anno-

tation, however, remains a bottleneck to genome analysis

because accurately determining which regions of a genome

are “useful” usually is a highly human/curator intensive

process. As the number of genomes sequenced outpace

available curation resources, there have been ongoing at-

tempts to automate and provide reasonable annotations from

mostly computational approaches. These methods, however,

are often highly computationally intensive because they

integrate a variety of datasources to increase annotation

quality for a target genome.

Many of these bioinformatics problems have natural par-

allelism. We previously demonstrated that a clever choice in

distributed computing frameworks can allow developers to

leverage a variety of heterogeneous computational resources

in a light-weight and relatively easy to program manner [2]–

[5]. There are a variety of similar existing frameworks.

A common feature of a good framework is an easy to

utilize API, and we use Work Queue and Makeflow pro-

vided by the Cooperative Computing Lab at Notre Dame

(http://ccl.cse.nd.edu/). The main contribution of this work

is a case study that utilizes a diverse collection of com-

puting resources for data-intensive annotation and resulting

distributed bioinformatics tools for the research community.

II. RELATED WORK

Gene finding in novel genomes can follow an evidence-

based or ab initio framework. In the former approach, well-

characterized protein data from related organisms along with

expression data (including newer generation sequences) are

used to build gene models based on these experimentally

observed intron-exon boundaries. Because these data are

expensive to generate and do not cover everything, ab

initio approaches are used to predict intro-exon boundaries

using only a sequence of a new genome. Popular ab initio

approaches include GLIMMER [6], FGENESH [7], Gen-

Scan [8], SNAP [9] and Augustus [10].

Each ab initio approach uses complex probabilistic mod-

els trained on either a small subset of known genes or a

subset of likely genes. For example, GLIMMer uses long

open reading frames found in bacterial genomes for training

because they are unlikely to occur by chance [6]. The com-

mercial gene finder FGENESH relied on high confidence

EST alignments for training and has been reported to work

well for plant genomes such as maize [11].

Here, we use Maker that incorporates both Augustus and

SNAP into the gene prediction pipeline. Both Augustus

and SNAP rely on Hidden Markov Models (HMMs) as

their underlying probalistic model. The key innovation in

Augustus is modeling of intron lengths on top of the HMMs,

which can improve results [10]. SNAP uses similar intron

length modeling and is very similar to GenScan [8] The most

important SNAP features for large-scale gene prediction in

novel genomes are flexible state diagrams to allow changing

the underlying HMM and flexible inputs such as the order or

Markov model and weight matrix used. This allows for both

customization and “boostrapping” in which models from

related species can be used to iteratively improve SNAP

training sets [9]. This iteration improves predictions, and

is a key component in the Maker pipeline.

One additional component of the SNAP/MAKER pipeline

is use of the Core Eukaryotic Gene Mapping Approach

(CEGMA) [12]. CEGMA, which is provided by the author

of SNAP, contains a set of 458 proposed core genes that

are present in many species. Specifically, these highly con-

served genes provide a highly reliable set of training models

because their conservation makes it easier to derive exon-

intron structure in a novel genome [12]. This method utilizes

profile-HMMs to produce gene structures.

III. THE STRUCTURE OF MAKER

Maker is a genome annotation utility produced at the

University of Utah. It is a pipeline for reconciling the

output of many different annotation tools. To do this, it first

runs independent tools on the input data, usually a genome

and supporting information such as proteins and expressed

sequence tags (ESTs). It then combines the output of these

tools and produces a consensus annotation for the genomic

regions. The standard Maker instance is configured to run in

either serial mode or in parallel using MPI [13] while relying

on a network file system. It is specifically aimed at smaller

genome projects. The authors describe the accumulation of

unannotated genomes that continues to occur as sequencing

costs drop and assembly algorithms improve. They assume

that the annotation step has become the bottleneck in the

genomics project pipeline.

Maker operates on data in “tiers”. Each tier is comprised

of FASTA-formatted nucleotide sequences with potential

comparisons to supporting data such as proteins, ESTs,

RNAseq, and other relevant information. Tiers also include

parameters specified by the user for use with the various

tools that provide output to Maker such as Basic Local

Alignment Search Tool (BLAST) [14], the ab-intio gene

predictor SNAP [9], Exonerate [15], and cross match from

the Phrap suite [16]. These tools are often tied together using

the BioPerl [17] library, which allows users with a basic

knowledge of a scripting language to complete complex

tasks using functions provided in this library. This also

allows users to perform common tasks, such as parsing

BLAST output . This variety of applications and libraries

makes parallelization a complicated task, which we discuss

here.

Tiers are computed in order. If a tier fails to complete,

Maker re-runs the tier by default up to a specified threshold

of attempts. Each tier, comprised of pieces of the input data,

utilizes the various tools of the pipeline. Maker then takes

the output of each tier and consolidates them into a final

annotation. (See Figure 1)

Maker tracks the progress of the annotation using a log

file. This file is maintained in a shared filesystem and, in

the case of MPI Maker, each worker node attempts to gain

a lock of the file and then write to this file what the worker

is currently doing. This allows the “master” process to track

the current state of the annotation and also to restart it in the

event of failure or termination. This setup, however, makes

distributed computing difficult as all workers are all bound

by this file. Scaling up is also difficult as each worker from a

cluster, grid or cloud must wait to obtain the lock of the file

before it can begin. If it fails to obtain the lock for a certain

length of time, the worker has to fail. Recovery of this

worker depends on the nature of the underlying distributed

framework but may add latency in systems such as Condor

where jobs do not start instantly.

Even so, the tiered nature of Maker is a prime candidate

for using distributed resources. Many of the annotation

tools are standalone executables and require a couple of

input data chunks. If there was explicit data management

the application would be easily portable and practical in

various heterogeneous distributed computing environments.

By relying on a network file system for implicit data

transfer and management, on the other hand, the user base

is locked into distributed computing resources with attached

networked file systems. This makes utilization of popular

resources like Amazon’s EC2 platform very difficult. Note

the use of a common log file on a networked file system

compounds this difficulty. Ideally, the master process should

be capable of tracking tasks that it has dispatched and of

determining success or failure from worker responses. This

would also eliminate the bottle-neck of multiple workers

trying to synchronously access the log file and as the

problem scales up resulting in many being forced to wait.

In the following section, we provide a description of work

we have undertaken to address some potential limitations

of the current Maker implementation that make it difficult

to utilize a distributed computing environment. We provide

this description to show the relative simplicity of using a

distributed computing framework to assist an application in

being useful across a wide variety of execution environ-

ments. The resulting tool is available to the broad scientific

community and has been integrated into a popular workflow

(Galaxy) to maximize its application.

Genome

CEGMA

ESTs Proteins

est2genome protein2genome

RNAseq

SNAP BLAST

MAKER

Annotation

Consolidate

Figure 1. MAKER overview. Maker uses a number of external executables
to produce an annotated genome from various evidence.

IV. MODIFICATIONS AND EVALUATION OF MAKER

In addition to the communities targeted by the authors

of Maker, there are many others with growing genome

annotation needs and constraints on resources. There are

large genome project initiatives such as the 1000 genomes

project [1] and the Anophelene cluster project [18]. These

genome projects focus on comparative genomics, but may

still require annotation services based on the large amounts

of supporting data and related annotations generated, which

Maker is well-suited to handle. The bottleneck is in the

implementation. Users of Maker are confined to either serial

mode or MPI mode on a grid. Many users and institutions

have access to a variety of resources such as Condor [19],

LSF [20], and SGE [21]. We believe bioinformatics appli-

cations should be capable of utilizing diverse computational

resources to maximize availability to the biological user

community.

To accomplish this, we have modified the Maker toolset

to utilize a variety of distributed resources. We decided to

rely on our prior knowledge and work with the Work Queue

framework [2]. Work Queue is a light-weight master/worker

implementation that uses worker processes which are sub-

mitted to a batch system. The worker count may fluctuate

throughout the computational cycle and workers will process

tasks until the completion of the computational workload.

Workers can also be submitted to multiple batch systems.

Additionally workers can be run as standalone processes on

any machine so it is not necessary to have a batch system

available to utilize individual computing nodes. This enables

labs of various sizes from very small to large to leverage the

computational resources to attack their annotation problems.

The general architecture of a Work Queue application is

presented in Figure 2.

The first major issue with combining Maker and Work

Queue is that Maker is implemented in Perl and Work Queue

Worker

Process
Input

Data

Data

Output

Application

New Task

. . .

.

.

.

return

finished

tasks

4:generate

2:command to execute

1:put input data

5:receive output data

3:execute command

Master

Queue

submit

Figure 2. The general framework of a Work Queue application. An
application creates a queue using the Work Queue API and submits tasks
to the queue specifying the data to be processed, the executable and a
command string. The queue then sends the information to a worker that is
connected for processing. The worker returns the output to the queue that
either marks the task completed and returns the output or marks the task
failed and resubmits to another worker.

in C. Therefore to simplify the combination of these tools

we created a Perl module to interface with the Work Queue

implementation. This was simplified by using SWIG [22]

and creating an interface file that is input to SWIG and

defines the functions and variables present in the C program.

Once we had a Perl module that was a working Work Queue,

we needed to modify Maker to utilize it.

As is often the case, this was a fairly straightforward

but time consuming task. We needed to modify the Maker

source code along with creation of an executable with some

logic to be run on the worker nodes. The modification of

the Maker source was primarily the addition of logic to call

the Work Queue module for distribution of the computation.

This involved setting up the Work Queue to accept tasks and

then submitting the tiers as tasks to the Work Queue. We

could potentially handle errors in the tier computation on

the workers by signaling failure to the Work Queue that

would automatically put the task back into the queue for

recomputation. However, we instead return a status to the

master node which then can determine which course of

action to take in the case of failure, including resubmission

of the tier to the queue. The stock Maker source code is

300 lines of Perl (including whitespace) and our modified

version is 555 lines of Perl (including whitespace).

In addition to the benefits produced by distributing the

computation across various resources, we also utilize other

features the the Work Queue package such as generating

a logfile. This allows us to generate visual representations

of the path of computation and observe what occurred

during computation (e.g., long tail effects). Also also pro-

vided valuable debugging information for our distributed

environment as it provided a detailed description of what

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45 50
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

J
o

b
s
 R

u
n

n
in

g

J
o

b
s
 C

o
m

p
le

te

Elapsed Time (hours)

Running
Complete

Figure 3. A run of the distributed maker platform using a 207Mb genome
with additional supporting data.

occurred and when. Maker automatically splits the non-

genomic inputs into chunks no larger than 100kb and then

combines the output results. However this is not the case

for genomic input. Instead it simply splits the genomic data

into individual contigs. This means that we have an uneven

computational problem. The computation time of chunks is

directly related to the size of the input. This makes for a

difficult distributed computation problem. We utilize the fast

abort functionality of the Work Queue to enable us to abort

abnormally long computation on problematic nodes in the

distributed environment.

The authors of Maker provide a few compute times

in [23]. They provide their analysis on a 2.236-Mb sequence

on a 32 GB-RAM machine using a single processor on

a machine with eight dual-core 2-GHz processors. They

measure the compute time for the full Maker pipeline at

549 minutes on one processor and 299 on two processors.

With our parallel modifications to run on Work Queue across

distributed resources, we are able to scale up to the complete

annotation of a 207Mb genome with 2Mb of EST and 1893

Mb of RNAseq supporting evidence. This required 2911

min. in a distributed environment with a worker pool of

150 nodes. The computation was able to use the full 150

nodes for 1363 min., but then a long-tail effect comes in

(Figure 3).

The authors of Maker also report their findings on the S.

mediterranea genome with a rate of 4.1 h/Mb. The genome

is 850Mb which gives a total processing time of 3485 hr. If

we assume our 207Mb genome with 1895Mb of supporting

evidence will process at the same rate, this gives a single-

core processing time of 848.7 hr. Using this we can compute

our speedup to be 17.5x for this genome.

We ran the Maker serial tool along with our Work Queue

on the Caenorhabditis japonica genome. We retrieved the

genome from Wormbase [24] along with protein sequences.

Additionally we retrieved approximately 30000 EST se-

quences and assembled them with CAP3 [25]. The genome

is composed of 18817 contigs with a total length of over

Table I
MAKER RUNTIME FOR VARIOUS ORGANISMS

Organism Genome EST RNAseq

Anopheles stevensi 207MB 2.2MB 1893MB

Glossina morsitans 366MB 48MB 0MB

Rhodnius 699MB 6MB 372 MB

166MB and the protein sequences total 36105 with a total

length of over 10MB. The assembled EST data is 10000

contigs with a total length of over 5MB. These were run

through Maker using the same control files. The control

files were setup to use SNAP and est2genome as predictors.

All other Maker options were held at their default settings.

The serial version of Maker was run on a 12 core AMD

Opteron machine with 64GB RAM. The master for the

Work Queue version was run on the same machine with

workers being submitted to our campus Condor [19] pool.

We ran the parallel version of Maker using a constant set of

50 workers. As of submission time both are still running

but we approximate the runtimes here based on current

progress and speed. The serial version will require over 600

hours to complete while the parallel version will complete in

approximately 15 hours across 50 nodes for a total compute

time of 750 hours. This gives a speedup of 40x. This is less

than the ideal linear speedup of 50x but is still a good result.

We have performed additional work to enhance our WQ-

Maker’s usefulness for the community at large: we added

our tool to the popular Galaxy framework [26]–[28] for

bioinformatics. The tool runs our Work Queue version of

Maker by default, but could be made to run either the

serial version of Maker or the MPI version of Maker by

changing the executable that gets called. As Maker relies on

a shared filesystem for distribution of work, Galaxy needs

to be installed on a shared filesystem or at least have its

job working directory on a shared filesystem for the Work

Queue or MPI versions to function properly. We are working

to eliminate this restriction in future versions of WQ-Maker.

V. RECOMMENDATIONS

For the bioinformatics community to be fully capable

of utilizing the wide variety of computing resources at

their disposal, there are several key issues that need to

be addressed by developers. It is well established given

the increasing popularity of cloud-based solutions many

bioinformatics applications have highly parallel components.

Based on our experience developers should consider changes

to several key areas of the current bioinformatics computing

paradigm.

First, many bioinformatics applications rely on a shared

filesystem when explicit transfers may help run on more

heterogenous resources. This also helps with debugging,

both for the developer and the user, by allowing them to

log and identify problems with the application that are

caused by network failure and other issues which have

prevented a worker node from accessing key files. Explicit

transfer must be tightly controlled in environments like

Amazon where transfer into and out of a cloud incurs cost

but running a master process in the cloud overcomes this

concern. More importantly, a framework with build in fault

tolerance like work queue or make flow alleviate the need for

file-based checkpointing, which often limits the scalability

of the application regardless of the amount of parallelism

inherently available.

Second, common bioinformatics operations are often ab-

stracted into libraries such as BioPerl. While convenient for

developers and users, in more heterogenous environments

like ad hoc clouds the library must be available across all

compute nodes by either being installed on each node or on

a shared filesystem. Neither of these are desirable situations

large scale commodity-driven computation. We have found

a paradigm similar to the functional programming revived in

Google’s map reduce is preferred as compiled and statically

linked C executables can be more easily transferred around

to multiple systems in our experience compared with Perl

or Python.

Third, a distributed computing framework such as Work

Queue enables the utilization of an application across a

variety of execution environments (e.g., a SGE closer, Ama-

zon EC2). In fact, we have used this framework effectively

to harness Condor, SGE, individual workstations, and EC2

compute cycles for large bioinformatics workflows like

MAKER. The clear advantage of a system such as this

is that it allows the user to utilize any and all computing

resources that are currently available to them (or can be

purchased from a third party) offering elastic scaling for

these applications without refactoring the underlying code.

VI. CONCLUSIONS

We present a modified Maker annotation tool capable of

being run on a variety of distributed computing resources

and commodity resources. This modification will enable

even small labs to leverage additional computing power to

complete the annotation of their genomes. Additionally this

technique is generally applicable across bioinformatics tools.

Tool developers can use the Work Queue platform to enable

their application to be run across a variety of computational

resources without having to know the details of all of the

possible distributed environments.

The use a of framework for distributing bioinformatics

computational problems across distributed computing re-

sources needs to become commonplace. The framework

must also be portable across a variety of systems, not

tied to one particular system. Additionally this implies that

tool developers need to consider the data transfer of their

applications. Rather than simply relying on the implicit

data transfer of a shared filesystem, tool developers should

utilize frameworks that have explicit data transfer syntax.

This will allow portable applications that can be of use to

people in a variety of environments without being restricted

to a particular implementation. Further, we believe tool

developers need to be conscientious in their library selection.

Utilizing libraries such as BioPerl inside of an applica-

tion speeds implementation but greatly limits scaling in a

heterogeneous distributed computing environment. Having

these libraries utilized within an application will require

them to be available on the computation nodes which makes

distributed computing efforts much more difficult.

REFERENCES

[1] R. Durbin, D. Altshuler, G. Abecasis, D. Bentley,
A. Chakravarti, A. Clark, F. Collins, F. De La Vega, P. Don-
nelly, M. Egholm et al., “A map of human genome variation
from population-scale sequencing,” Nature, vol. 467, no.
7319, pp. 1061–1073, 2010.

[2] L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd,
and D. Thain, “Harnessing parallelism in multicore
clusters with the all-pairs, wavefront, and makeflow
abstractions,” Cluster Computing, vol. 13, pp. 243–
256, 2010, 10.1007/s10586-010-0134-7. [Online]. Available:
http://dx.doi.org/10.1007/s10586-010-0134-7

[3] A. Thrasher, R. Carmichael, P. Bui, L. Yu, D. Thain, and
S. Emrich, “Taming complex bioinformatics workflows with
weaver, makeflow, and starch,” in Workflows in Support
of Large-Scale Science (WORKS), 2010 5th Workshop on.
IEEE, 2010, pp. 1–6.

[4] I. Lanc, P. Bui, D. Thain, and S. Emrich, “Adapting bioinfor-
matics applications for heterogeneous systems: a case study,”
in Proceedings of the second international workshop on
Emerging computational methods for the life sciences. ACM,
2011, pp. 7–14.

[5] C. Moretti, M. Olson, S. Emrich, and D. Thain, “Highly
scalable genome assembly on campus grids,” in Proceedings
of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers. ACM, 2009, p. 12.

[6] A. Delcher, D. Harmon, S. Kasif, O. White, and S. Salzberg,
“Improved microbial gene identification with glimmer,” Nu-
cleic acids research, vol. 27, no. 23, p. 4636, 1999.

[7] A. Salamov and V. Solovyev, “Ab initio gene finding in
drosophila genomic dna,” Genome Research, vol. 10, no. 4,
p. 516, 2000.

[8] C. Burge and S. Karlin, “Prediction of complete gene struc-
tures in human genomic dna1,” Journal of molecular biology,
vol. 268, no. 1, pp. 78–94, 1997.

[9] I. Korf, “SNAP: Semi-HMM-based Nucleic Acid Parser,” Ian
Korf homepage: http://homepage.mac.com/iankorf/.

[10] M. Stanke and S. Waack, “Gene prediction with a hidden
markov model and a new intron submodel,” Bioinformatics-
Oxford, vol. 19, no. 2, pp. 215–225, 2003.

[11] S. Emrich, W. Barbazuk, L. Li, and P. Schnable, “Gene
discovery and annotation using lcm-454 transcriptome se-
quencing,” Genome research, vol. 17, no. 1, p. 69, 2007.

[12] G. Parra, K. Bradnam, and I. Korf, “Cegma: a pipeline
to accurately annotate core genes in eukaryotic genomes,”
Bioinformatics, vol. 23, no. 9, p. 1061, 2007.

[13] I. Foster, Designing and building parallel programs: concepts
and tools for parallel software engineering. Addison-Wesley,
1995.

[14] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman,
“Basic local alignment search tool,” Journal of molecular
biology, vol. 215, no. 3, pp. 403–410, 1990.

[15] G. Slater and E. Birney, “Automated generation of
heuristics for biological sequence comparison,” BMC
Bioinformatics, vol. 6, no. 1, p. 31, 2005. [Online].
Available: http://www.biomedcentral.com/1471-2105/6/31

[16] P. Green, “Phrap,” http://www.phrap.org/phredphrap/phrap.html.

[17] J. E. Stajich, D. Block, K. Boulez, S. E. Brenner,
S. A. Chervitz, C. Dagdigian, G. Fuellen, J. G. Gilbert,
I. Korf, H. Lapp, H. Lehvslaiho, C. Matsalla, C. J.
Mungall, B. I. Osborne, M. R. Pocock, P. Schattner,
M. Senger, L. D. Stein, E. Stupka, M. D. Wilkinson,
and E. Birney, “The Bioperl Toolkit: Perl Modules
for the Life Sciences,” Genome Research, vol. 12,
no. 10, pp. 1611–1618, 2002. [Online]. Available:
http://genome.cshlp.org/content/12/10/1611.abstract

[18] N. Besansky, “Genome Analysis Of Vectorial
Capacity In Major Anopheles Vectors Of Malaria
Parasites,” White Paper, 2008. [Online]. Available:
http://www.vectorbase.org/Help/Anopheles species cluster white paper

[19] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the
Grid,” in Grid Computing. Wiley Online Library, 2002, pp.
299–335.

[20] http://www.platform.com, “LSF Home Page.” [Online].
Available: http://www.platform.com

[21] W. Gentzsch, “Sun Grid Engine: Towards Creating a Com-
pute Power Grid,” in CCGRID ’01: Proceedings of the 1st
International Symposium on Cluster Computing and the Grid,
2001.

[22] http://www.swig.org/index.php, “Simplified Wrapper and
Interface Generator (SWIG).” [Online]. Available:
http://www.swig.org/index.php

[23] B. Cantarel, I. Korf, S. Robb, G. Parra, E. Ross, B. Moore,
C. Holt, A. Sánchez Alvarado, and M. Yandell, “MAKER: an
easy-to-use annotation pipeline designed for emerging model
organism genomes,” Genome research, vol. 18, no. 1, p. 188,
2008.

[24] L. Stein, P. Sternberg, R. Durbin, J. Thierry-Mieg, and J. Spi-
eth, “Wormbase: network access to the genome and biology
of caenorhabditis elegans,” Nucleic Acids Research, vol. 29,
no. 1, pp. 82–86, 2001.

[25] X. Huang and A. Madan, “Cap3: A dna sequence assembly
program,” Genome research, vol. 9, no. 9, pp. 868–877, 1999.

[26] B. Giardine, C. Riemer, R. Hardison, R. Burhans, L. Elnitski,
P. Shah, Y. Zhang, D. Blankenberg, I. Albert, J. Taylor
et al., “Galaxy: a platform for interactive large-scale genome
analysis,” Genome research, vol. 15, no. 10, p. 1451, 2005.

[27] D. Blankenberg, G. Kuster, N. Coraor, G. Ananda, R. Lazarus,
M. Mangan, A. Nekrutenko, and J. Taylor, “Galaxy: A web-
based genome analysis tool for experimentalists,” Current
Protocols in Molecular Biology, 2010.

[28] J. Goecks, A. Nekrutenko, J. Taylor, and T. Team, “Galaxy:
a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life
sciences,” Genome Biol, vol. 11, no. 8, p. R86, 2010.

