
Taming Metadata Storms in Parallel Filesystems with MetaFS

Tim Shaffer
Department of Computer Science & Engineering

Notre Dame, Indiana
tshaffe1@nd.edu

Douglas Thain
Department of Computer Science & Engineering

Notre Dame, Indiana
dthain@nd.edu

ABSTRACT

Metadata performance remains a serious bottleneck in parallel

filesystems. In particular, when complex applications start up on

many nodes at once, a łmetadata stormž occurs as each instance

traverses the filesystem in order to search for executables, libraries,

and other necessary runtime components. Not only does this delay

the application in question, but it can render the entire system

unusable by other clients. To address this problem, we present

MetaFS, a user-level overlay filesystem that sits on top of an existing

parallel filesystem. MetaFS indexes the static metadata content of

complex applications and delivers it in bulk to execution nodes,

where it can be cached and queried quickly, while relying on the

existing parallel filesystem for data delivery. We demonstrate that

MetaFS applied to a complex bioinformatics application converts

the metadata load placed on a production Panasas filesystem from

1.1 million operations per task to 1.9 MB of bulk data per task,

increasing the metadata scalability limit of the application from 66

nodes to 5,000 nodes.

CCS CONCEPTS

· Computer systems organization → Distributed architec-

tures;

KEYWORDS

Parallel file systems, metadata scalability, parallel computing, sci-

entific computing

ACM Reference format:

Tim Shaffer and Douglas Thain. 2017. Taming Metadata Storms in Parallel

Filesystems with MetaFS. In Proceedings of PDSW-DISCS’17: Second Joint In-

ternational Workshop on Parallel Data Storage & Data Intensive Scalable Com-

puting Systems, Denver, CO, USA, November 12ś17, 2017 (PDSW-DISCS’17),

6 pages.

https://doi.org/10.1145/3149393.3149401

1 INTRODUCTION

As HPC facilities continue to increase computing capability by in-

creasing core density and deploying hardware accelerators such as

FPGAs, GPUs, and TPUs, the overall performance of an application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PDSW-DISCS’17, November 12ś17, 2017, Denver, CO, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5134-8/17/11. . . $15.00
https://doi.org/10.1145/3149393.3149401

depends more and more on the ability of the underlying storage sys-

tem to keep up with the cluster. Parallel filesystems remain the tool

of choice for managing storage, and are capable of delivering large

file I/O bandwidth that scales with storage hardware by striping

blocks, files, and volumes across different devices.

However, metadata performance remains a troublesome bottle-

neck for most storage systems. Access to file data can be accelerated

through some combination of caching, striping, and larger transac-

tions. But the same techniques are not so easily applied to metadata

such as the directory structure and user-visible inode information,

because data elements are small, require a high degree of consis-

tency, and are manipulated using small update transactions.

Many production HPC applications generate periodic bursts of

metadata access, particularly during application startup. While we

often think of HPC applications as łsimplež compiled executables

that are loaded into cluster memory at startup, the reality is often

more complicated. What the user thinks of as a single łapplicationž

may actually be a complex assembly of interpreted programs, dy-

namic libraries, configuration files, and calibration data that must

be loaded via tens of thousands of interactions with the filesystem.

If the same application is loaded simultaneously on thousands of

nodes of the cluster, the result is a łmetadata stormž as every node

peppers the filesystems with thousands of small transactions. In this

paper, we use a complex bioinformatics application (MAKER [5])

to show how this behavior can happen in practice.

This problem is difficult to solve in the general case, if we assume

that the solution must observe the consistency semantics of general-

purpose filesystems. However, we observe that a shared filesystem is

used in differentways, each requiring somewhat different semantics:

for example, data shared between concurrent processes requires

strong, fine grained consistency; data shared between sequential

processes requires strong, coarse grained consistency; and data that

represents software will not change during the execution of a given

task.

To solve the problem of metadata storms during application

startup, we propose that the metadata representing the software be

loaded in bulk to each node that requires it and cached for the dura-

tion of a single application run. Rather than modifying an existing

parallel filesystem, we implemented this idea by creating an overlay

filesystem (MetaFS) that can sit on top of an existing filesystem.

MetaFS indexes all of the metadata for a particular application in a

regular file, then transports the metadata in bulk to each execution

node. Using a FUSE module at each node, metadata is served from

the cache, while data is served from the original filesystem.

We performed an initial evaluation of this concept on a 24-node,

192-core cluster using a Panasas ActiveStor 16 filesystem with 77

nodes published to support up to 84 Gb/s read bandwidth and

94,000 IOPS while reading data. We performed an initial evaluation

of MetaFS using a simple benchmark and observed a reduction in

25

https://doi.org/10.1145/3149393.3149401
https://doi.org/10.1145/3149393.3149401

PDSW-DISCS’17, November 12ś17, 2017, Denver, CO, USA Tim Shaffer and Douglas Thain

metadata operations from 179,091 to 8,738 I/O ops. When applied to

the more complex application MAKER, metadata load was reduced

from 1,142,781 to 14,726 I/O ops, which will enable the scalability

of MAKER from 66 nodes to over 5,000 nodes.

When referring to łI/O operationsž, we include both metadata

and data activity unless otherwise indicated. We also use the ab-

breviation IOPS for I/O ops. per second, and MIOPS and DIOPS for

metadata and data activity, respectively.

2 BACKGROUND

Metadata behavior is critical to the performance of scientific appli-

cations at scale. Scientific software often uses shared filesystems to

store intermediate files, synchronize between steps of an analysis,

distribute application software, and collect results from multiple

worker nodes. Each of these uses puts different types of strain on a

general-purpose filesystem. Some use cases, such as distributing

software components, leave room for tailored optimization.

Widely deployed shared filesystems such as Panasas [15], Lus-

tre [2], Ceph [14], Gluster [1], and HDFS [11] use designated data

and metadata servers to allow users to access programs and data

from anywhere in the system. Servers for data tend to be simpler

and optimized for throughput and parallel access. This allows fast

access to bulk file data and is well suited to large reads and writes.

Metadata servers provide hierarchical and consistent organization

of files and directories. Before a node can read a file, metadata

servers must resolve the file’s path and determine where the file

data resides. Efficient path resolution and metadata lookup is thus

critical for the performance of a shared filesystem.

Generally, multiple metadata servers balance the load of requests

by partitioning based on user activity or filesystem organization.

If one or more of these nodes becomes strained, the remainder of

the load must be shifted to other metadata nodes. When filesystem

load becomes excessive, requests cannot be served efficiently and

users see degraded performance or loss of service despite under-

utilized data storage nodes [16]. In general, metadata bottlenecks

are the limiting factor for a parallel filesystem at scale. Modern

parallel filesystems like Ceph are specifically designed to address

pathological metadata access patterns.

Several approaches to this problem have been explored. One

approach is to design a standalone metadata service distinct from

the parallel filesystem which maps metadata storage tables to file

objects in the parallel filesystem [10, 17]. This allows for the scaling

up of the total metadata transaction rate of the system, but still re-

quires each client to perform many transactions against the service.

A complementary approach is to reduce the transaction rate be-

tween clients and servers by introducing new operations that access

metadata in bulk or with weaker consistency guarantees. Exam-

ple of this include the proposed getlongdir and statlite system

calls [13], which are, unfortunately, not widely implemented.

Spindle [7] addresses the metadata problem in the specific case

of loading shared object files. Spindle alters the behavior of the

GNU dynamic loader to use an overlay network to distribute the

load of data and metadata activity during program startup. While

Spindle achieved significant performance improvement, it is not

well suited for heterogeneous applications since each language or

runtime (Python, Perl, Java, etc.) provides its own library loading

facility.

As a case study to investigate this problem, we consider the

MAKER bioinformatics pipeline. MAKER analyzes and creates an-

notated genomes from raw sequence data, and is widely used as

the preliminary step of the analysis of population characterization

and gene presence/activity. It can be deployed as a sequential, mul-

ticore, or MPI application, depending on the available resources.

However, deploying MAKER at scale is a challenging task: it has

a very large number of software dependencies that must be in-

stalled, such as OpenMPI, Perl 5, Python 2.7, RepeatMasker, BLAST,

and several Perl modules. It also places unusual metadata loads

on shared filesystems, and its scalability is limited in high latency

environments.

From the user’s perspective, MAKER is a single executable, but

it consists of a large number of sub-programs written in different

languages, each of which performs its own library loading and path

searches. Figure 1 shows substantial bursts and spikes of metadata

activity over the course of the analysis. Using strace logs, we

measured the frequency of metadata-related I/O operations and

found that MAKER exhibits extremely nonuniform filesystem be-

havior. The measured operations include library loads, program

startup, and searches for reference data. Some of the largest spikes

in metadata load occur in the first few seconds of the analysis. The

bursts of activity near the middle and end of the analysis show

more sustained activity patterns indicative of a large number of

jobs starting together.

Assuming a łmetadata stormž is a typical access pattern for

a MAKER analysis, both the average metadata access rate and

the peak activity are significant. As the number of nodes sending

metadata requests with large spikes and bursts increases, the shared

filesystem becomes more likely to see overlap of burst activity from

different nodes. If the filesystem must handle frequent spikes in

metadata activity from concurrent jobs, we expect the quality of

service for all users to suffer.We experienced this problem first hand

at Notre Dame when a single (well-meaning) user submitted a large

batch of MAKER jobs to our campus HPC cluster and accidentally

caused a metadata storm, rendering the entire facility unusable.

3 ANALYSIS

3.1 Metadata Behavior of MAKER

We suspected that these bursts of I/O activity were not caused by

MAKER’s outputs or intermediate data, so we examined execution

logs of MAKER and found library search to be a major contributor

to unruly behavior when the installation is located on a shared

filesystem. Each time a MAKER command starts a new process, the

library search makes numerous open calls before finding the re-

quired shared objects, Perl modules, etc. Framework initializations

also result in frequent filesystem searches and similar metadata-

intensive activity. Given the large number of processes spawned

over the course of MAKER’s analysis, these metadata operations

can accumulate and put strain on the shared filesystem.

In order to examine MAKER’s I/O behavior more carefully, we

used strace to record the syscalls made during an analysis. We

restricted our focus to I/O related syscalls, and divided them based

on the areas of the filesystem they interacted with. The numerical

26

Taming Metadata Storms in Parallel Filesystems with MetaFS PDSW-DISCS’17, November 12ś17, 2017, Denver, CO, USA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700

M
IO

P
S

Time (s)

Figure 1: Metadata Intensity of MAKER.

The observed metadata rate over time to the shared filesystem from

a single instance of MAKER analyzing E. coli on one node in 8 core

MPI mode. For this analysis, the average metadata intensity was

1,975 MIOPS. The largest burst of activity, 10,454 MIOPS, occurs in

the first minute of the analysis. Using MetaFS for this run would

have reduced the average and peak metadata activity to the shared

filesystem to 205 MIOPS and 1975 MIOPS, respectively.

Access Mode I/O Ops. Bandwidth (bytes)

CWD RW 257,060 1,435,228,808

TMP RW 1,163,711 2,463,335,142

SW RO 1,512,545 2,807,495,139

LOCAL RO 906,327 68,929,672

Figure 2: I/O Activity by Filesystem Location.

This table gives I/O operations and read/write bandwidth observed

during a MAKER analysis. CWD is the current working directory

where the task’s output data is stored, TMP is the local temporary disk

for intermediate data, SW is the location of the installed software on a

shared filesystem, and LOCAL indicates the libraries and executables

provided by the local operating system installation.

results are shown in Figure 2. We observed that the majority of I/O

operations were directed to the shared filesystem. Accesses to the

local system and /tmp directory are not problematic here as they

are local to each node and do not affect scalability. We decided to

focus our attention on installation data on the shared filesystem, as

we have can make stronger assumptions in this case. Specifically,

the installation is shareable and read-only over the course of the

workflow. Our optimizations also apply more generally in this case,

as the behavior of installation files is largely independent of the

algorithmic structure of the workflow.

3.2 Shared Filesystem Performance

The performance issues described previously occurred during a pe-

riod of higher than normal system load. To study the performance

under ideal conditions, we constructed a synthetic test to stress

metadata I/O behavior. Our campus’ administrators informed us

that filesystem load was low to normal at the time of our tests. We

created a directory tree containing 4,368 nested directories contain-

ing a total of 74,256 files. From a varying number of parallel hosts,

Parallel Running Total Metadata Average

Nodes Time (s) IO Ops. System MIOPS

1 13.7 179,091 13,038

4 22.6 716,364 31,664

8 41.9 1,432,728 31,194

16 86.1 2,865,456 33,262

24 130.6 4,298,184 32,916

Figure 3: Metadata I/O Operations under Ideal Conditions.

To measure the total metadata capability of the our filesystem, we

ran the synthetic benchmark on an increasing number of hosts until

saturation is reached. Each benchmark instance issues 179,091 meta-

data operations, and the whole system saturates at approximately

32K MIOPS.

we queried each file and directory (using ls -lR). The average

time to traverse the directory tree is shown in Figure 3. Note that

the kernel’s filesystem cache was cleared before each measurement.

This simulates dispatching a job to a worker node whose cache has

not been warmed up. Kernel caching resolves I/O requests locally,

but not on the initial access. We would prefer a solution that works

for the first requests on new nodes instead of a simple caching

approach. strace logs showed that a single traversal consists of

179,091 I/O-related syscalls that interact with the shared filesystem.

Multiplying by the number of parallel hosts, we have the number of

metadata I/O operations serviced by the shared filesystem over each

parallel traversal. Dividing by the average time per traversal, we

arrive at the metadata bandwidths shown in Figure 3. Beyond four

concurrent tasks, the parallel filesystem appears to be saturated

with metadata traffic at about 32K MIOPS.

We found that MAKER makes an average of 483 metadata I/O

operations per second analyzing an E. coli dataset. To a first order

approximation, the shared filesystem would be saturated by only

66 concurrent instance of MAKER, which is far less than needed for

high-throughput bioinformatics research. This simple computation

only considers the average metadata accesses. As shown in Figure 1,

the distribution of I/O operations is far from uniform, and degraded

performance could occur with even fewer instances if the bursts

of activity coincide. Thus to scale up MAKER, we must reduce the

metadata impact of the application.

4 POSSIBLE SOLUTIONS

There are several potential approaches to this problem using exist-

ing technologies. One would be to install the software stack natively

on the local disk of each node in the system. This eliminates run-

time scalability problems, but it also precludes most of the benefits

of using a shared filesystem in the first place. Substantial storage

is required at each node, and it becomes a burden on the system

administrators to keep local disks synchronized. Further, different

users of the system may have distinct software requirements that

are mutually incompatible (e.g. Python 2 vs Python 3), so a single

installation does not satisfy everyone.

Another possibility is to create a self-contained disk image with

all the necessary files, store it in the shared filesystem, then mount

it as needed on each node. This replaces a large number of files

with a single image file. Once the image is mounted, both data and

27

PDSW-DISCS’17, November 12ś17, 2017, Denver, CO, USA Tim Shaffer and Douglas Thain

metadata accesses become data traffic to the shared filesystem. This

approach would have the desired outcome of converting metadata

traffic into cacheable data. However, it makes the overall system

more difficult for the system administrator to manage and for the

user to employ, because they must manually mount and unmount

images in order to traverse the filesystem.

Container technologies such as Docker [9] and Singularity [8]

are a more congenial way of generating and managing portable disk

images, and also have the effect of efficiently transporting metadata

along with data. However, Docker in particular requires system in-

frastructure and considerable local storage installed on each node,

and does not exploit the performance and capacity of the exist-

ing parallel filesystem. Even assuming the system infrastructure

supports Docker or another container technology, problems with

metadata scalability can still arise. Unless each node stores a com-

plete copy of the application, its dependencies, and any reference

or input data, the applications themselves can create a metadata

storm by loading reference data or similar files from the shared

filesystem.

An ideal solution would retain the benefits of using a shared

filesystem and keep the burden of manually transferring data or

building large, immutable disk images away from researchers. Thus

we looked for an approach that allows researchers to use a shared

filesystem normally, but can take advantage of some inside knowl-

edge of the application to improve metadata performance. An over-

lay filesystem is an effective technique for changing the perfor-

mance behavior of applications without making intrusive changes

to the applications or infrastructure. For example, PLFS [3] is an

overlay which maps a large checkpoint file into multiple indepen-

dent files, resulting in a large performance improvement without

changing the underlying filesystem. In this case, we aim to design

an overlay filesystem which converts a large number of metadata

operations into a smaller number of data operations which are

more easily cached and distributed. Our goal is not to solve all

metadata-related performance issues. Instead, we chose to focus on

a particular case that occurs frequently in scientific workflows and

is likely to be the first performance barrier researchers hit when

scaling up computational analyses. Our case study with MAKER

illustrates how the overhead of simply loading libraries and ref-

erence data becomes problematic with a large number of nodes

working in parallel. Using a metadata index, we reduce load on the

shared filesystem and free up time for researchers to focus on the

algorithmic activity in their workflows.

5 METAFS

MetaFS is an overlay filesystem that accelerates read-only metadata

activity in a parallel filesystem. Application software does not need

to be modified or configured with different paths. A simple indexing

script reads all metadata information from MAKER’s installation di-

rectory and builds an index file to be used throughout the workflow.

MetaFS allows reads of file data to pass through unmodified, as

shown in Figure 4. For metadata operations like stat and directory

listings, however, results come from the locally cached index of

the installation. MetaFS can handle metadata queries and negative

lookups without interacting with the shared filesystem at all.

N4

N3

N2

1N

A

C

D

E

B

F

Parallel FSWorkers

N4

N3

N2

1N

A

C

D

E

B

F

$

$

$

$

IDX

Create

Index

Parallel FSWorkers

Data access

Metadata access

Figure 4: Architecture of MetaFS.

N1, N2, N3, N4 refer to processes on the worker nodes. The parallel

filesystem holds a metadata tree (shown at the top) and file data

(shown below). On the left, processes directly access the shared filesys-

tem, which is the usual system configuration. On the right, MetaFS

uses a cached copy of the metadata index (marked IDX) to service

metadata requests locally. MetaFS reads the index data from the shared

filesystem at startup. The metadata index is created once for the whole

system before starting MetaFS on workers.

MetaFS is derived from an earlier system, GROW-FS [6], which

was designed as a lightweight, read-only filesystem for wide-area

distribution. MetaFS uses approaches to metadata management

and software distribution pioneered by GROW-FS and CVMFS [4],

but applies them to parallel filesystems at the scale of a shared

computing site. Using FUSE, any access to the MAKER installation

is transparently redirected to MetaFS. No modifications to MAKER

are necessary.

FUSE is widely available, but on many shared computing re-

sources, mounting via FUSE is only available for privileged users.

We implemented MetaFS using FUSE because it provides a light-

weight, low-overhead interface for a virtual filesystem. We con-

sidered overriding parts of libc to redirect metadata-related I/O,

but in our experience this approach is very brittle and coupled to

a specific application. We also considered implementing MetaFS

using Parrot [12], which uses the Linux kernel’s ptrace interface to

intercept syscalls and is purely user-level, but doing so introduces

a larger performance overhead.

MetaFS’s metadata index transparent from the application’s per-

spective. This transparency was important in MAKER as several

of the programs use hard coded paths to the installation, which

precludes moving the installed directories. By mounting MetaFS on

top of the shared filesystem directory it is serving, the system ap-

pears unchanged from the application’s perspective. The processes

on the system interact with the filesystem as usual, but the kernel

redirects these open, read, and other calls to the FUSE module run-

ning in user space, which is free to handle calls as it sees fit. The

MetaFS module mediates access to the shared filesystem so that

misbehaving applications cannot directly interact with the shared

filesystem and overload the system or impact other users.

6 EVALUATION

Figure 5 shows the reduction in metadata operations on the shared

filesystem for MAKER and for the synthetic benchmark. With

MetaFS in place, we observed (as expected) that the majority of

28

Taming Metadata Storms in Parallel Filesystems with MetaFS PDSW-DISCS’17, November 12ś17, 2017, Denver, CO, USA

Metadata Data

Ops. Transfer (B)

ls 179,091 0

ls + MetaFS 8,738 4,900,655

MAKER 1,142,781 2,807,495,139

MAKER + MetaFS 14,726 2,809,472,114

Figure 5: Reduction in Metadata Load on the Shared

Filesystem with MetaFS.

Without MetaFS, the synthetic benchmark performs a large number of

metadata operations and data operations. With MetaFS, the majority

of metadata operations are replaced by a single read of the index

file. MAKER shows a similar trade of metadata operations for data

transfer. In MAKER’s case, data operations in the analysis dwarf the

transfer of the index file.

metadata requests are served locally, while data transfer increases

due to loading the index file. Note that this measurement was taken

with a cold filesystem cache. In the case of a warm cache, we ob-

served that MetaFS’s performance is on par with direct access to

the shared filesystem. FUSE introduces another layer of indirection

when accessing the filesystem, so we were concerned that it would

significantly worsen performance with a warm cache. We did not

observe a significant performance decrease on either the synthetic

benchmark or real MAKER analyses.

The synthetic benchmark illustrates some important considera-

tions for running MAKER at scale. First, local caching is important

for metadata-intensive operations in parallel. The cold cache mea-

surements would apply when submitting jobs to previously unused

worker nodes. In this case a large number of new workers starting

together could bring the system to a crawl, with performance across

the system suffering and no obvious culprit. The warm cache case

can also lead to surprising performance degradation when scaling

up. If a researcher had been testing on a small set of workers, the

local caches could hide the impact of metadata activity. On scaling

out to new machines that have data from other users in cache, the

performance could sharply decrease despite efficient algorithmic

implementation.

MAKER functioned as usual with MetaFS in place over its instal-

lation files. Nomodifications toMAKERwere necessary. Comparing

the performance of a single instance of MAKER running with and

without MetaFS, we did not observe appreciable overhead. Despite

the additional indirection on filesystem access which would be visi-

ble on microbenchmarks, the overall running time of a real analytic

pipeline appears not to be affected. This is readily explained by

an efficient scheduler on the system that can hide small delays in

I/O by switching to another process in the workflow. Based on

strace logs and statistics collected by MetaFS during MAKER’s

analysis, we observe a significant reduction in metadata operations

that reach the parallel filesystem as shown in Figure 5. With MetaFS

handling metadata requests locally, MAKER makes an average of 6

metadata-related I/O operations per second. This is substantial im-

provement over the previously observed 483 MIOPS. All directory

listings, file stats, etc. are transparently handled locally without

interacting with the shared filesystem. MetaFS can also locally ser-

vice the frequent failed opens during library searches. The shared

filesystem does not need to receive opens for files MetaFS knows

not to exist, so MetaFS can absorb all metadata requests aside from

successful opens and closes. Thus with MetaFS in place, the shared

filesystem could support up to 5,000 parallel instances of MAKER

under ideal conditions. We do not claim that MetaFS alone allows

5,000 instances to run in parallel, but only to have removed one

of the barriers to scalability. Applications are likely to face other

scalability limits, but the metadata traffic from program loading

that MetaFS targets is common across applications. It is also a fairly

low limit that researchers are likely to meet while scaling up an

analysis.

The primary difficulties with MetaFS were index creation and

read-only access. Before using MetaFS, users must generate an

index for the mount directory. The index for the synthetic directory

tree took 323 seconds to generate and occupied 4.7 MB disk space.

For comparison, the index of MAKER’s installation directory took

129 seconds to generate and 1.9 MB disk space. Assuming that the

installation does not change over the course of a workflow, the

index only needs to be generated once. When starting MetaFS, the

index file is read in its entirety by each node. Nodes can start up

immediately with the same metadata index until the user changes

or updates the software installation. Since parallel filesystems are

well suited to bulk parallel reads, we are happy to replace numerous

metadata requests with reads of data. As shown in Figure 5, this

additional read is insignificant compared to the data transferred

over the course of the analysis.

After any changes to the directory, the index must be updated.

For directories that change infrequently, this is no problem. Ensur-

ing read-only access is also an important consideration for users.

The current version of MetaFS sidesteps issues of consistency by

blocking writes to the indexed directory. Thus users must be sure

that their workflows only read program or reference data. For this

work we performed detailed syscall-level analysis of MAKER’s be-

havior. Other researchers would likewise need detailed knowledge

of the I/O behavior of their software stacks.

7 CONCLUSION

This work does not attempt to address the general problem of han-

dling metadata access in a parallel filesystem, instead targeting the

specific case of bursts of metadata activity during program loading.

By caching a metadata index on each worker node, we traded meta-

data activity for data transfer and observed order of magnitude

decreases in metadata load on the shared filesystem. We plan to

test our approach on other metadata-intensive software, and to

verify the scalability of our approach using real applications like

MAKER at larger scale. The decision to use FUSE makes it more

complicated to operate at scale on shared computing resources, so

adding support for other implementations mentioned would ease

deployment. The greatest difficulty from a researcher’s perspective

is determining where to apply optimizations in a complex scientific

workflow. To this end, we would also like to automate the profil-

ing we performed on MAKER to identify problematic patterns of

activity, allowing researchers to more readily understand the I/O

behavior of their workflows.

29

PDSW-DISCS’17, November 12ś17, 2017, Denver, CO, USA Tim Shaffer and Douglas Thain

REFERENCES
[1] 2017. Gluster. (2017). http://www.gluster.org/
[2] R. Behrends, L. K. Dillon, S. D. Fleming, and R. E. K. Stirewalt. 2007. White paper:

LUSTRE FILE SYSTEM High-Performance Storage Architecture and Scalable Cluster
File System. Technical Report. Sun Microsystems, Menlo Park, California. 20
pages.

[3] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte,
and M. Wingate. 2009. PLFS: a checkpoint filesystem for parallel applications.
In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. 1ś12. https://doi.org/10.1145/1654059.1654081

[4] Jakob Blomer, Predrag Buncic, and Thomas Fuhrmann. 2011. CernVM-FS: Deliver-
ing Scientific Software to Globally Distributed Computing Resources. In Proceed-
ings of the First InternationalWorkshop on Network-aware DataManagement (NDM
’11). ACM, New York, NY, USA, 49ś56. https://doi.org/10.1145/2110217.2110225

[5] M. S. Campbell, C. Holt, B. Moore, and M. Yandell. 2014. Genome Annotation
and Curation Using MAKER and MAKER-P. Curr Protoc Bioinformatics 48 (Dec
2014), 1ś39.

[6] Gabrielle Compostella, Simone Pagan Griso, Donatella Lucchesi, Igor Sfiligoi,
and Douglas Thain. 2009. CDF Software Distribution on the Grid using Parrot.
In Computing in High Energy Physics.

[7] Wolfgang Frings, Dong H. Ahn, Matthew LeGendre, Todd Gamblin, Bronis R. de
Supinski, and Felix Wolf. 2013. Massively Parallel Loading. In Proceedings of the
27th International ACM Conference on International Conference on Supercomputing
(ICS ’13). ACM, New York, NY, USA, 389ś398. https://doi.org/10.1145/2464996.
2465020

[8] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1ś20.
https://doi.org/10.1371/journal.pone.0177459

[9] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J. 2014, 239, Article 2 (March 2014).
http://dl.acm.org/citation.cfm?id=2600239.2600241

[10] K. Ren, Q. Zheng, S. Patil, and G. Gibson. 2014. IndexFS: Scaling File System
Metadata Performance with Stateless Caching and Bulk Insertion. In SC14: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 237ś248. https://doi.org/10.1109/SC.2014.25

[11] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer
Society, Washington, DC, USA, 1ś10. https://doi.org/10.1109/MSST.2010.5496972

[12] Douglas Thain and Miron Livny. 2003. Parrot: Transparent User-Level Middle-
ware for Data Intensive Computing. InWorkshop on Adaptive Grid Middleware at
PACT.

[13] Murali Vilayannur, Samuel Lang, Robert Ross, Ruth Klundt, Lee Ward, et al. 2008.
Extending the POSIX I/O interface: A parallel file system perspective. Argonne
National Laboratory, Tech. Rep. ANL/MCS-TM-302 (2008).

[14] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A scalable, high-performance distributed file system. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 307ś320.

[15] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System. In Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST’08). USENIX Association, Berkeley, CA, USA, Article
2, 17 pages. http://dl.acm.org/citation.cfm?id=1364813.1364815

[16] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and
Norbert Podhorszki. 2012. Characterizing Output Bottlenecks in a Supercomputer.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12). IEEE Computer Society Press, Los
Alamitos, CA, USA, Article 8, 11 pages. http://dl.acm.org/citation.cfm?id=2388996.
2389007

[17] Q. Zheng, K. Ren, and G. Gibson. 2014. BatchFS: Scaling the File System Control
Plane with Client-Funded Metadata Servers. In 2014 9th Parallel Data Storage
Workshop. 1ś6. https://doi.org/10.1109/PDSW.2014.7

30

http://www.gluster.org/
https://doi.org/10.1145/1654059.1654081
https://doi.org/10.1145/2110217.2110225
https://doi.org/10.1145/2464996.2465020
https://doi.org/10.1145/2464996.2465020
https://doi.org/10.1371/journal.pone.0177459
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1109/SC.2014.25
https://doi.org/10.1109/MSST.2010.5496972
http://dl.acm.org/citation.cfm?id=1364813.1364815
http://dl.acm.org/citation.cfm?id=2388996.2389007
http://dl.acm.org/citation.cfm?id=2388996.2389007
https://doi.org/10.1109/PDSW.2014.7

	Abstract
	1 Introduction
	2 Background
	3 Analysis
	3.1 Metadata Behavior of MAKER
	3.2 Shared Filesystem Performance

	4 Possible Solutions
	5 MetaFS
	6 Evaluation
	7 Conclusion
	References

