Mixed Modality Workflows in TaskVine

David Simonetti
University of Notre Dame
South Bend, IN, USA
dsimone2@nd.edu

ABSTRACT

Modern scientific workflows desire to mix several different comput-
ing modalities: self-contained computational tasks, data-intensive
transformations, and serverless function calls. To date, these modali-
ties have required distinct system architectures with different sched-
uling objectives and constraints. In this paper, we describe how
TaskVine, a new workflow execution platform, combines these
modalities into an execution platform with shared abstractions. We
demonstrate results of the system executing a machine learning
workflow with combined standalone tasks and serverless functions.

ACM Reference Format:

David Simonetti, Ben Tovar, and Douglas Thain. 2023. Mixed Modality
Workflows in TaskVine. In Proceedings of the 32nd International Symposium
on High-Performance Parallel and Distributed Computing (HPDC °23), June
16-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3588195.3595953

1 INTRODUCTION

Modern scientific workflows desire to mix several different comput-
ing modalities, which may include compute intensive applications
on multicore CPUs, data-intensive applications which require sub-
stantial memory and disk, and latency-sensitive applications which
require lightweight function calls. These application modes have
typically separate distinct frameworks and resource management
systems to serve their scheduling and management needs. This
makes it challenge to construct multi-modal workflows, which re-
quire deploying multiple systems coordinated from one (or more)
workflow management systems.

In this short paper, we demonstrate how TaskVine, a new work-
flow execution platform, enables the combined management of
three different computing modalities. Traditional high through-
put compute-intensive applications are expressed as Tasks that
are scheduled primarily to allocate compute resources and rely on
staged data. Data-intensive analysis tasks are expressed in the same
way but scheduled primarily to take advantage of data locality and
capacity within the cluster. Latency-sensitive tasks are expressed
in a serverless style by first deploying a LibraryTask that is then
invoked via later FunctionCalls that are scheduled around avail-
ablity of services. All three share a common underlying resource
management framework that permits a workflow to use all three
modalities and exchange data between them.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HPDC °23, June 16-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0155-9/23/06.

https://doi.org/10.1145/3588195.3595953

Ben Tovar
University of Notre Dame
South Bend, IN, USA
btovar@nd.edu

Douglas Thain
University of Notre Dame
South Bend, IN, USA
dthain@nd.edu

2 TASK AND FUNCTION ABSTRACTIONS

TaskVine is a workflow execution platform consisting of a manager
process and a large number of worker processes that are deployed to
the nodes of a compute cluster. The user writes a dynamic workflow
through a Python API that defines data assets, standalone tasks,
function libraries, and function invocations, and connects them
together.

Standalone Tasks. A normal Task indicates a Unix program
to be executed on a remote worker. As shown in Figure 1, a Task
is executed in a private sandbox directory. Each Task is allocated
a fixed quantity of resources and is monitored to ensure that it
does not exceed the allocated amount, otherwise it is killed. The
manager then schedules tasks to fill the available worker resources.

The standard Task modality is appropriate for compute intensive
tasks that are relatively long-running (30 seconds or more). How-
ever, in many scientific workflows, similar tasks are executed many
times with slight variations in input parameters. This can result
in an duplication of the same initialization work, such as starting
a container, loading common libraries, or reading a dataset from
storage. In extreme cases, the initialization overhead can become a
significant portion of the overall workflow if each task only runs
for a short time. For example, we have observed cases where this
overhead can grow to consume half of the total workflow execu-
tion time. Additionally, this problem is amplified on a shared file
system where the same files get accessed repeatedly and can lead
to overloading the file server.

Serverless Tasks. TaskVine extends the task abstraction into
two specialized task types: LibraryTasks and FunctionCall tasks.
A LibraryTask is a task which runs a Library, which is an ar-
bitrary program containing a collection of functions which can
be invoked by the worker. The manager installs a Library onto a
worker by sending out a LibraryTask, which may be accompanied
by dependent files and resources required to startup the Library.
After receiving the LibraryTask, the worker forks a child process to
run the Library. Once this is complete, the running Library process
is called a Library Instance and it passively waits to receive mes-
sages from the worker. In order to invoke one of the functions on
the Library, the worker uses the Library protocol, which involves
sending a JSON invocation message describing the name of the
function to execute and the arguments for that invocation.

FunctionCall tasks are used to perform these invocations. Func-
tionCall tasks specify the name of a function to run with serialized
arguments. FunctionCall tasks are sent to a worker like normal
tasks, but after the worker receives a FunctionCall, instead of in-
voking a Unix program, it communicates with the LibraryInstance
using the Library protocol to invoke the specified function. Once the
Library Instance receives the invocation, the Library Instance runs
that function with the given arguments and returns the result back
to the worker, and this is used as the output for the FunctionCall


https://doi.org/10.1145/3588195.3595953
https://doi.org/10.1145/3588195.3595953
https://doi.org/10.1145/3588195.3595953

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

TaskVine Worker
CPU CPU GPU GPU
= - file url
1 f19xa2 c03rd5
1

url
sd698d

data.tar.gz

result logfile.txt

Function Instance

Task Instance Library Instance

Figure 1: Combining Tasks and Functions at the Worker
TaskVine intermixes regular and serverless tasks in same resource
management framework. A normal task T executes alongside a Li-
brary Instance L and FunctionCall F. All three types allocate shared
resources, and consume and produce shared input and output objects.

Task. After completing the FunctionCall Task, the Library Instance
returns to passively waiting for the next invocation request.

Mixed modality workflows are possible because all of the task
types share the same underlying resource management methods,
allowing them to co-exist. Like standard tasks, each Library instance
consumes a static resource allocation on each worker defined by
the LibraryTask. Each FunctionCall task also consumes a set of
resources in addition to the LibraryTask. Tasks of all types can then
be packed into a worker until all resources are consumed.

As a simple benchmark, we consider the cost of executing tasks
that depend upon the Tensorflow library. A challenge of using
Tensorflow workflow is its size and number of dependencies. A
freshly created Conda environment with only Tensorflow installed
measures 1.2GB in size and can take 5-10s simply to import. We
compare a workflow of 500 null tasks consisting of nothing but
import tensorflow executed on 50 2-core workers: the entire
workflow completes in 61.86s when 500 standard Tasks are used,
but 11.69s when defined as a single LibraryTask and 500 Func-
tionCalls. This experiment illustrates the high-level benefit that
serverless tasks provide towards short-lived tasks with a large ini-
tialization cost. Furthermore, in the case where a workflow consists
of both long-running and short-lived tasks, a combination of tasks
types can be beneficial.

Figure 2 shows the timeline of a mixed modality workflow using
TaskVine on 50 workers. 100 standard Tasks taking about 30s each
are dispatched, each one requiring a 1.2GB Conda environment.
The tasks utilize Tensorflow to train a 100,000 weight model on
the MNIST handwritten digit dataset. LibraryTasks are deployed
with a function that evaluates the model on a portion of the test
data, and FunctionCall tasks are used to invoke these model assess-
ments. These FunctionCall tasks occurs a total of 1000 times (10
per model), each one taking only a few seconds. As can be seen
the system starts slowly, with the long-running training tasks that
only pay a proportionally small initialization cost dominating the

David Simonetti, Ben Tovar, and Douglas Thain

Task View of Mixed Modality Workflow

1000 -

750 1 WM tasks executing
results waiting retrieval

Task ID

5001 cache updates i*jf
i |
250 !
14 L — = . —
0 45 90 135 205s

time (seconds)

Figure 2: Combined Workflow Execution

Plot of mixed modality machine learning workflow. The tasks run in
the first two minutes of the workflow consist of the longer-running
standard Tasks training models. While this occurs, LibraryTasks are
being deployed as can be seen by the large blue bar at the top of the
graph. As Libraries are being deployed, FunctionCall tasks can begin
to run; these are the smaller bars in the last minute of the workflow,
and 1000 of these tasks can complete with minimal overhead.

first two minutes of the workflow. Once the training tasks are com-
pleted, the serverless evaluation tasks begin to be deployed and are
able to exploit the low initialization cost of individual serverless
function calls. This allows these short-lived tasks to avoid continu-
ally rerunning expensive initialization tasks, resulting in an overall
faster workflow and lower total resource usage. Overall, creating a
mixed modality enables greater flexibility and resource savings by
utilizing the upsides of both task types.

In the future, we intend to further explore the benefits that
workflows combining serverless and regular tasks can provide.
We intend to take preexisting scientific analysis applications and
convert them to using a mixture of serverless and regular tasks and
see if significant resource savings or runtime reductions follow.

3 RELATED WORK

OpenWhisk [3] is a serverless workflow system that focuses on re-
acting to external events with serverless invocations. OpenLambda
[4] is a platform directed towards providing performance optimiza-
tions for severless workloads. Parsl [1] is Python library that allows
users to easily create parallel scientific computing workloads. funcX
[2] is a workflow execution platform which exclusively executes
serverless workloads. Ray [5] is an Al focused workflow execution
platform including a distributed scheduler.

Acknowledgement:

This work was supported in part by NSF grant OCI-1931348.

REFERENCES

[1] Y. Babuji. Parsl: Pervasive parallel programming in python. HPDC "19, New York,
NY, USA, 2019. Association for Computing Machinery.

[2] R.Chard. Funcx: A federated function serving fabric for science. HPDC ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[3] T. A.S.Foundation. Apache openwhisk.

[4] S. Hendrickson. Serverless computation with openlambda. In 8th { USENIX}
workshop on hot topics in cloud computing (HotCloud 16), 2016.

[5] P.Moritz. Ray: A distributed framework for emerging { AI} applications. {OSDI}
2018.



	Abstract
	1 Introduction
	2 Task and Function Abstractions
	3 Related Work
	References

