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ABSTRACTIONS FOR SCIENTIFIC COMPUTING ON CAMPUS GRIDS

Abstract
by
Christopher M. Moretti

Scientific computing users often find it difficult to transfoiserial domain appli-
cations into workloads for large non-dedicated heterogeae&ampus grids. Due to
hardware and software bottlenecks, a workload that susoee@& nodes can fail disas-
trously on 128; or even fail on 8 nodes for a different inseantthe same problem.

An abstraction is a flexible solution to a pattern of compatathat can be used to
harness distributed computing resources more easily fioraxperts. The users provide
the pieces, such as their datasets and serial function,henaidrkload is constructed
and executed for them in an appropriate manner for the emviemt in order to prevent
disastrous configurations and satisfy cost, policy, antbpmance constraints.

This work presents the design, implementation, and evaluatf a "toolbox” of
middleware and abstractions: All-Pairs, Sparse-Paird, Bata-Split-Join. These ab-
stractions are used for several problems in bioinformakbizametrics, and data mining.
The discussion of the abstractions includes modeling optbblem, managing input
data, organizing computation on the campus grid, and magagitput data. Results
include the largest known biometrics All-Pairs result &f kind, in which over two
years’ worth of computation was executed in 10 days, and gtaimalignment of the
Human genome using Sparse-Pairs, which completed in 2.5 lmouover 1000 hosts

with 952x speedup.
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CHAPTER 1

INTRODUCTION

Distributed systems are a necessary component of modesncecand engineer-
ing. Individual computers continue to increase in procespeed, memory and disk
capacities. But as larger and more difficult problems ar@esbiwith these bigger,
faster computers, their successes and conclusions irnsyere bigger questions to be
answered. If individual computers must be used to solve tbblem, this creates a
cycle of continual waiting for the next bigger machine taar Even after improved
hardware is acquired, there are still drawbacks, includiggapplication development
barrier [35], in which older applications do not run on new systenrsgannot take
advantage of a new system’s capabilities. This results pliegions having to be re-
designed and recoded, further delaying work on the largesimes of the problem. The
well-recognized alternative is to utilize many current e¢oodity computers to com-
plete the task instead of waiting for one next generationesygo do it alone. To
meet these computing needs, many institutions have iadt@impus gridsnade up of
hundreds to tens of thousands of assorted commodity prased2].

Just providing a campus grid isn’'t enough, however, becasses quickly realize
that distributed computing is hard. Many users construdalkeersions of their ap-
plications, but are unsure how to adapt them to a paralleitisnl. The applications
may require exclusive access to resources, or may expeaedhite among subprob-

lems. In constructing the parallel versions of applicagidmottlenecks develop within



the workload, for instance at the shared fileserver, netwlerkce, or results database.
Further, failures are much more common in distributed systthan on local machines,
so applications must be expanded to deal with a new variegyrofs.

Mishandling these challenges can result in poor performamatright failure of the
application, and abuse of physical resources shared bysotAk too often, an end user
composes aworkload that runs correctly on one machine ghégn machines, but fails
disastrously on one hundred or one thousand machines. Bor@®, consider a non-
expert’'s workload design in which each distributed proctags execution by loading
1GB of required data from a central fileserver. If one prooesdéone attempts this, it
will experience a latency of a few seconds, depending onatigknetwork speeds. Iften
processors start up simultaneously and compete for theatditeserver’'s bandwidth,
they will experience latencies of minutes. If one thousarat@ssors connect at once,
this will require a total of 1TB of data transfers — likely tdsng in dropped connections
for this and other unrelated workloads, very slow acces#hfose transfers that remain
active, and network congestion on shared switches thattaftesers not even using the
fileserver.

This dissertation proposes abstractions as the solutitretproblem of navigating

the complexities of computing on a campus grid.

Abstractions make distributed computing resources more easily used byerperts

Users must provide well-known pieces of their workload; theé workload is con

structed for them in an appropriate manner for the campus emvironment. Thi

)

improves usability, increases performance, and prevasésttous configurations.

An abstraction is a device used to improve the ability of mapert users to solve
problems using complex systems. The user provides elenoér@problem that he

knows, such as multiple sequential programs used to soévprthblem serially and the



data that they process, but cedes control of the actual methexecution to a workflow
engine. That engine can then manage disk, network, and ggoceequirements to
complete the intended computation while hiding the detfilsow the workload is
realized in the system.

In this work, “non-experts” are those who are not speciglistdistributed com-
puting. The users of the abstractions described here hanelly been computer
scientists from across the discipline, ranging from adeanmdergraduates to research
faculty members. Their general computing knowledge antissare fundamental to
their ability to do science at large scales: they must urtdedswhat they are doing and
why it is the correct course of action. Using an abstractioesdnot dispense with this
requirement, rather it reduces the meticulous load on theses to account for all of the
details of specific distributed computing challenges. Titstractions are designed with
the goal that, in subsequent work, scientists in other fielas are competent computer
users and programmers, even without broad computer sciammsledge and capa-
bility, will be able to function as effectively as the compuscientists for their own
applications of the computing patterns.

Abstractions are specified in terms of their major composiemtputs, functions,
and outputs. This can be applied, as in an implemented ahetraengine, or higher-
level, such as in an abstract problem specification. To dhice the way that abstract
problems will be formally defined, and to demonstrate thdlehges associated with
design and development of abstractions, consider firstampbe abstraction. The Map
abstraction [120] is a very simple pattern that has beeniegpicross a vast array of
problems from many disciplines. Map applies a transforamatunction to each mem-

ber of the input set, resulting in a new set of the same numbaements:



Map( data D[], function F(data z))

returns array R such that R[i] = F(DJi])

Although Map is a simple loop operation on a single machieeetbping abstrac-
tions to solve it and problems like it is not trivial. The cheteristics of the application
are often not well-defined by the general pattern; &.dor two instances of Map might
take the same input but vary in their execution time or memegqgirements by orders
of magnitude. Moreover, these differences can requiretidedly different solutions to
the problem; e.g. computing Map on 1,000,000 1KB files wherhé' takes several
hours should be distributed to as many nodes as possiblecashé@ would be very
inefficient to transfer 1,000,000 1KB files individually tdaage number of resources
if each F' took only a fraction of a second.

Not only are various instances of the same applicationyikelvary widely, but
the computing environment itself can as well. Campus grigsheterogeneous and
dynamic, so unlike a cluster in which a solution may be finalyed for the exact envi-
ronment in which it will operate, an abstraction for a camgtd must be flexible to a
wide range of available resources and configurations. Atebagh the user of the sys-
tem has access to an enormous number of CPUs, a standane fefiive environment
Is that his jobs may be preempted without warning when theuree provider reclaims
access.

Because an abstraction states a workload in a declaratiyetwan be implemented
in whatever way satisfies cost, policy, and performancetcaings — a critical flexibility
required for heterogeneous campus grids. An abstractignaisa use the information
available to it about the workload and the system to avoidbibilenecks and other
pitfalls that may not be apparent or important to a novicdiapfon developer, limiting

the opportunity for disasters. Whereas a customized soliut a problem may require



re-engineering to adapt to even the smallest changes —pg=egwen to a change in
specific inputs! — an abstraction should be flexible to masyaimces of a problem and
a broad set of available resources.

The contribution of this work is a “toolbox” of campus gridraputing abstractions
that have been implemented and deployed for scientific egidins, which are used
to present the considerations that must be taken into at@otime design and imple-
mentation of campus grid abstractions. Abstractions ahdrdtigh-level programming
interfaces are common on clusters, for instance the Map&e{B7] abstraction has
become a widely-used cluster computing paradigm in receatsy The abstractions
presented here work from a similar philosophy and towardsrala goal as Map-
Reduce: breaking down large computations into commonpattbat can be modeled,
planned, and executed in efficient ways without requirirggglogrammer to individu-
ally solve all of the complexities of a distributed compugtienvironment.

Where this work diverges from popular Map-Reduce impleratgoins and other
cluster abstractions is the underlying computing envirentn Many abstractions for
typical cluster environments — which often have homogesesris of high-end re-
sources, non-preempting scheduling policies, and a ladmitenber of separate resource
owners and administrative domains — do not consider theigaipbns of organizing
workloads for the characteristic campus grid challengestimeed above. Though the
core stages of of an abstraction on a cluster versus a campws g quite similar (mod-
eling the problem, managing input, coordinating compatgtand managing output),
the systems challenges for each stage, and thus the almstsattiemselves, are fun-
damentally different because of the disparity in the cafas and limitations of the
environment.

This primary contribution of this dissertation is the designplementation, and



evaluation of three abstractions for campus grid computfBgecific abstractions are
presented for three widely-applicable computation pagerAll-Pairs, Sparse-Pairs,
and Data-Split-Join. These problems are of interest to tbeétrics, bioinformatics,

and data mining communities, and are not well-served by &isfieg abstraction. The
common goal of these three abstractions is to allow usersrtptete workloads on the
campus grid that would otherwise be infeasible, either du&é number of resources
required or the complexity of organizing and managing thektead efficiently.

Chapter 2 describes the work that has previously been domampus grids, par-
ticularly in light of the differences between campus gridsl @ther parallel environ-
ments that tend to provide a more homogeneous set of respuacmore dedicated
environment, or both. It then addresses other workflow systand computing ab-
stractions for distributed workloads, including the wigleised and highly-influential
Map-Reduce [37] abstraction. Workflow systems are more igélgeadaptable than
abstractions for specific patterns of work, but this genigrabmes at the cost of per-
formance or interface usability for non-experts.

Chapter 3 expands on the properties of campus grid compatagonments and
the challenges of computing in such an environment in motaildét is here that the
contrast between solving a problem on a traditional tiglsttypled parallel environ-
ment with a central fileserver is contrasted with the arciitee for computing with
abstractions, including the differences in modeling thebpegm, collocating data and
computation, and specifying and managing resources. €h&palso describes the
various different middleware systems used by the abstnastiincluding the custom
master/worker middleware, Work Queue, which ameliorag&sal important disad-
vantages of batch system computing on campus grids.

All-Pairs is a doubly data parallel problem in which a resutiatrix for two datasets



is created by applying a function to every pair of elemerasfithose sets. Chapter 4
describes a thorough model for analyzing an instance of kR@ifs problem in order to
ascertain appropriate parameters for executing it on thgaa grid. Parameters (such
as local versus grid computing, number of computing nodes size of workload jobs)
are chosen with the model to minimize the overall turnaraime. The implementation
focuses on efficient data distribution to all nodes and wadldcation given the wide
data distribution. Results for the All-Pairs framework aorbetric and data mining
applications are shown, including the largest known cotepies data comparison,
a 5863% 58639 All-Pairs problem, which would not have been feasihithout an
efficient computing abstraction.

Sparse-Pairs is also a problem that computes the functigrafs of items from two
data sets, however unlike All-Pairs, not every possiblelmioation must be computed.
Instead, a Sparse-Pairs problem instance also includesda the pairs that should be
computed. Chapter 5 describes the engineering challemgkseaults for a Sequence
Alignment bioinformatics application of the Sparse-Palostraction. The implementa-
tion focuses on efficient network and memory managemengisork Queue. Results
include scalability (measured in terms of speedup and lghefficiency) experiments
for several increasingly large genomic datasets. The $amgsult is a complete align-
ment of the Human genome, which completed in 2.5 hours on b@® hosts with
952x speedup.

Data-Split-Join is a divide-and-conquer pattern in whicsirggle large data set is
splitinto a number of partitions, a function is applied togk partitions, and the results
of those functions are then joined back into a single resdts Chapter 6 describes a
distributed abstraction for ensemble classification, Whsca data mining data mining

Data-Split-Join application that is effective for leargion large data sets because it de-



creases the problem’s complexity and increases variety@mnastness versus learning
on the whole dataset at once. The discussion focuses ometiiffstrategies for data
partitioning and placement in the distributed system. Téwults are a thorough ex-
amination, using several common learning methods and atyasf real and synthetic
datasets, of several parallelization implementationsdffger in how they provide the
classifier processes with data instances.

For each abstraction, the discussion begins with the gepeshlem in abstract
terms and an application of it. Once this has been definednthlementation is pre-
sented in terms of the key theoretical and technical chgderassociated with one or
more of four tasks for a workload: modeling the system, mamaghe input data,
coordinating the computation, and managing the output ddta abstraction’s imple-
mentation and performance are compared with those from eecbional alternative,
a cluster-based solution, or a different abstraction. Bsedahe separate abstractions
naturally stress different components of the workflow, d&sing each of them in se-
ries permits focusing in each chapter on different partsrofibstraction design and
implementation.

Finally, Chapter 7 puts this work into a larger context. Ttimpter contains dis-
cussion of the calculus for choosing between the specifitrati®ons introduced in
this work and between those abstractions and widely-aghgemeral abstractions such
as Bag-of-Tasks and Map-Reduce. Although there are separaineters involved in
choosing which abstraction to apply to a problem, an abstrat¢hat fits the way the
user already looks at his problem is best for minimizing tostof translation to fit an
instance of a problem to an abstraction. Despite the popularseveral general ab-
stractions, even when a problem can be made to fit the gerestahation doing so may

yield a lower ceiling for possible performance relative toabstraction more naturally



aligned to the problem’s structure.

This chapter also summarizes the impact of the “toolbox”ldteactions in terms
of publications and utility to fields outside distributedgsyms. Designing software that
is used by others to speed up their otherwise-unmodifiedreserojects is a benefit
of this work for other fields, however to stop there misses aenfiondamental impact.
The availability of this software changes not only #peedf results generation and the
scaleof approachable problems, but thecesse®y which others do research. Being
able to harness large numbers of resources consistentlgfiai@ntly can change the
scientific design from a focus on one singular final resuti art opportunity to routinely
measure full-scale or near-full-scale waypoints along aene@mprehensive iterative
research process.

Using abstraction to give users a high-level interface tmglkicated systems is not
a new idea. For example, assembly language and then latgoileosnallowed users
to provide a high-level specification of a problem withouving to worry about the
intricate details of making it work on any given system. Bsisaientific computations
evolve to larger and more complicated systems, abstractiamst evolve with them.
Distributed computing abstractions like those presenezd Bnd middleware to support
their development are key tools that allow non-expert usensrness available campus
grid resources efficiently.

Computing efficiently on complex distributed environmesieh as campus grids
will always require cooperation between experts in varicoputational science do-
mains and experts in distributed systems. But this coojera more equitable and
sustainable when each partner is allowed to work primarithiw his own area of ex-
pertise. Distributed computing experts are better sergedlbcate most of their effort

designing tools and middleware that can be used by manytstenon several differ-



ent applications than to spend all their time re-enginggtite non-experts’ disparate
problem-specific or domain-specific solutions. And the cataponal scientists are
better served concentrating on their own scientific proaestead of moonlighting in

distributed systems just to get their applications runrgfigiently.

10



CHAPTER 2

RELATED WORK

2.1 Computing on a Campus Grid

With the spread of computational research, shared congpgtids are now a com-
mon feature of most research institutions’ campus comguénvironment. These
campus gridsare made up of a wide variety of computing resources, and blage
acteristics that can be quite different from traditionalsters, commercial computing
clouds, or tera- and peta-scale supercomputers. Usinglewdde, many disparate
clusters and standalone machines may be joined into a stoghputing system with
many providers and consumers. Today, campus grids of appately 1000 cores are
common [122], and larger initiatives grouping resourcesrirseveral institutions can
combine to tens of thousands of cores, such as the 20,000h&f4aha Diagrid [112]
and the 40,000-CPU Open Science Grid [101].

Computing on a campus grid has a number of differences fraditional parallel
environments such as a single many-core machine, a tigbtipled Beowulf clus-
ter [54, 56], or a BlueGene supercomputer [4, 6].

Perhaps the most widely known tools for parallel procesamegparallel languages
and libraries such as MPI [41], OpenMP [34], Split C [31], &tk [17]. Each of
these requires significant adaptation of a user’s seria¢ toarder to take advantage

of parallel environments. This adaptation often requirageful synchronization of

11



processes and direct, indirect, and collective interms@mmunication. While some
problems, particularly those that are naturally paralbeln easily be scaled up with
only slight additions to a serial program'’s code, in manyesascaling a problem to run
in parallel on several machines (much less hundreds or #muls3 requires significant
changes beyond the serial implementation. Many non-exgsers are unlikely to want
to face the learning curve of these systems in order to sqatkeair applications.

Even for those who can use one of these parallel tools, a caugmuiis a difficult
environment for traditional parallel computation. Campuisl resources are heteroge-
neous, which can make synchronization (Ml _Bar r i er operations) much more
expensive than they would be on a single many-core systengtuthytcoupled clus-
ter. Similarly, performance on collective communicatian éven regular interprocess
communication) can be significantly worse on a campus gedabse unlike InfiniBand
clusters [78] and similar tightly-coupled high-throughjaw-latency parallel environ-
ments, campus grid resources are linkedoampus area networkonnections. Perhaps
the largest hurdle is that the resources may be preempted, aftlike traditional par-
allel environments that give dedicated access for at leasesduration; most parallel
languages and libraries do not explicitly consider preéompas a normal condition.

Unlike the problems with the traditional parallel languagend libraries, the con-
straints of a campus grid are a good fit for problems that casthked up by managing
large numbers of instances of the same serial program. $hagprototypical problem
for the many-tasks computing (MTC) paradigm [105], which generally be applied
to resources that are heterogeneous in scale, performanda)etworking. As an ad-
ditional benefit, this instance of MTC meshes nicely with dhrerall goal of allowing

domain scientists to scale up using their own unmodifiecdabprograms.
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2.2 Workflow Solutions

A workflow is a set of data and computation patterns arrangeani end-to-end
relationship. This set of relationships may consist of ehe activities in a project [39],
or be constrained to a certain subset pipeline of processasvices [119]. Workflows
are often distributed for intuitive and performance reas@md can be organized in any
of several ways. A common paradigm is to orient a workflow btaeffow — that is, a
directed graph with processes as vertices and data inpditsLaputs as edges — which is
both orderly and amenable to maintaining detailed metaslath as provenance [118].

Workflows may be solved by a continuum of systems and softwareging from
very powerful general solution engines to very specific kitexx solutions to a particu-
lar workflow problem [131]. The latter requires an exact sfiestion of the computa-
tion and data for a workload on each resource, much like alssgpplication, and is not
easily adaptable to a broader set of problems (or even ggssibther instances of the

same problem).

2.2.1 Workflow Languages

The more general languages that design and construct waektioe much more
flexible, but also more complex for users. Addis, et al. [3iirte the basic require-
ments for a general workflow language as sequential flowsllpaflows, looping,
conditionals, nesting and recursion, and complex datastydéis set of capabilities
makes workflow languages the most adaptable tool for coetgtgi workflows, but
also the most complicated and least predictable. Extenseeof general workflow
languages risks potentially exacerbating the originabfmm that non-expert users are
prone to making disastrous mistakes when managing compdbdted workflows.

Between the application-specific and general languageaeniddie workflow sys-
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tems that do not provide all of the required capabilitiesd(#mus, are not as flexible)
as the languages, but which are still extensible to a largefggoblems. Often these
systems are simplified interfaces built upon a more compbmkiend implementa-
tion [79, 91, 134, 136] . This combination allows a solutibattis accessible to the
non-expert user, but powerful and fully featured.

Swift [136] is a general end-to-end workflow system thae®bn a fully-functional
workflow language — SwiftScript [129] — to specify an abstreemputation and the
logical relationships between complex data sets. That coatpn is then realized,
scheduled, and executed via the Karajan execution engt¥g.[ISwift tasks run on
virtual nodes provisioned by Falkon [104] from loosely-ptad distributed systems.
Provenance metadata, intermediate data, and final resaltst@ed in a data catalog
that may be a virtual node provisioned identically to the pating resources or a sep-
arate permanent storage server.

Scufl [114] is a high-level XML-based language that treatsheprocess as an
atomic task. Scufl has no variable definitions, so the stat& mei passed via the in-
put/output pipeline in order to be shared between instantéassks. Although Scufl
does not have explicit looping primitives, process or saviesting is allowed and this
can create data flows that accomplish looping, and the layjegsa uring-complete [51].
Taverna [90, 91] is a workflow system that manages a graphocisses, each of which
transforms data input into data output. Most processes aleservices or local Java
functions. Taverna workflows are expressed in Scufl, howener are most often ma-
nipulated using the Taverna GUI.

Dryad [68] is an extensively expressive programming framwhat executed di-
rected acyclic graphs (DAGs) made up of sequential prograsngertices and with

one-way data channels as edges. Dryad is a step up from thieamnal MPI-like sys-
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tems, as the user does not have to be an expert in concurggraprming. Its use of
sequential building blocks to construct large parallel kfiow solutions is similar in

spirit to MTC, as well as the abstractions presented in tigsaitation. Dryad itself
is a robust environment that is, however, more easily adgesthrough code built on
top of it than via the Dryad framework itself. Examples of Witow systems that are
built on Dryad include DryadLINQ [134], which presents a S{ide declarative pro-

gramming interface and integration into GUI solutions thalldw for easy description
of data and process workflow instructions. This allows ngpegt programmers to gar-
ner automatic parallelism from .Net and C#, and even thétybd describe some other
abstraction patterns, such as Map-Reduce, in a conciseanfij.

BPEL [44] is an Oasis standard [72] workflow execution larggughat defines
data interaction with web services. Unlike Scufl, which isadifow oriented, BPEL
is control-flow oriented with explicitly defined XML and WSD\ariables instead of
implicit data definition based on the input and output of acpss. Links in a BPEL
graph indicate transfer of control instead of transfer abgdé#or instance a client will
use theinvokeactivity to hand over control to another process. Commuigoacon-
sists ofreceiveandreply activity pairs or the expliciassignstatement. BPEL provides
a broad set of control logic, including event-driven cohtatata-conditional control,

and loops.

2.2.2 Workflow Management Systems

In addition to the GUIs, wrappers, and other high-level rfatges built atop the
workflow languages above, there are other workflow systemisréalize and control
large workloads without a fully-featured language inteefa Because workflows and

other specific patterns of computation can often be geredlinto DAGs, many of
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these systems could be thought of as broadly-expressive &sBactions.

Makeflow [120] is a workflow system that exposes a less featllanguage as
its interface. Based on traditional UNIX make [46], it isentded as an intermediate
interface — more general than the specific abstractionsigndissertation, but using
a language that users may be more familiar with and thus nilaely lto try than the
workflow languages above. Makeflow described DAG workflowa dependency con-
trolled list of rules: a user specifies a target to be createzidependencies it requires,
and a command to create the rule’s target. The Makeflow engineretizes the abstract
dependencies for a rule and executes the jobs that prodedartiet (using local mul-
ticore processors or remote distributed systems resourkkeflow will not continue
on to the next rule until its dependencies (often a previatget) are produced.

Other workflow systems emphasize other elements of DAG waxld] Pegasus [38],
for instance, is a cluster solution that focuses on dataogepént. The Pegasus engine
converts an abstract DAG into a concrete DAG by locating #méous data dependen-
cies and inserting operations to stage input and output d&ia DAG is then given to
an execution service such as DAGMan [121] for execution. DK@ itself acts as a
metascheduler similar to Makeflow, managing the submissigobs to Condor based

on DAG dependencies.

2.3 Distributed Computing Abstractions

Distributed computing abstractions are intended to alleersi to specify workloads
in a way that is natural and simple, without concerning thelses with the details of
how the workload will be executed on the system. The spetyificia particular pattern
of computation or class of workload allows the abstractiormiodel the system and

execute the workload in an efficient manner. Not surprigintflen, abstractions are
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less general than the workflow languages discussed abovevas® abstractions are
akin to hardware such as systolic arrays [76] and Kress suf88], which are highly
specialized machines that efficiently complete specifialpeitasks.

Because the next step up in scale beyond a single processuiticore server is a
small cluster, this environment has been a fertile groundévelopment of computing
abstractions. The most basic of these are cluster-widéoversf software systems that
abstract away complexities from the user. For example,ithple abstraction provided
by file systems has been extended on data-intensive clustersvide interfaces for
search [66], or for distributed data structures like mutidnsional arrays [15], matri-
ces [87], trees [80], and hashtables [55]. Similarly, dassbabstractions common in
the implementation of a single local database can be apptisaks a cluster for per-
formance or efficiency considerations, including sortiagard-oriented data [10], and
managing table-relational data [26].

Beyond filesystem and database abstractions, a simpleaj@oenputing abstrac-
tion is Bag-of-Tasks [11, 32], in which independent taslkssabmitted and executed in
parallel. Although primitive, Bag-of-Tasks is so genetattis has been the focus for
many different types of distributed systems research ¢haiveg [14, 77], QoS [128],
scalability [33], etc.) and is the paradigm employed by maalunteer computing
projects such as SETI@Home [8], Folding@Home [126], andriDiged.Net [40].

Other abstractions are designed for higher-level compytioblems on clusters and
grids. For example, there are abstractions that focus anrdanagement in a cluster,
often to collocate data and computation. Although the fode of Pegasus [38] is
a workflow system, when deployed as a end-user data-deplayonelata-realization
system it could also be considered a cluster data abstnacGhimera [48] also is a

data-realization abstraction, which provides an intexfer a user to access data from
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a cluster without having to manage staging the data to th&teribeforehand. The
user requests the data, which Chimera provides either frimoah copy already on the
cluster, a remote storage device, or a on-demand dataamgapeline.

Map-Reduce [37] is perhaps the best-known abstractionistrilbuted computa-
tion. The Map-Reduce abstraction considers both the datacamputation needs of
a workload. The user specifies two functions that transfdrendata into intermedi-
ate sets of name-value pairs (map) and summarize the datanetor more final sets
(reduce), respectively. Map and similar operations hawenlevailable in functional
programming languages such as LISP [115] for many years,hand been consid-
ered core operations for parallel programming [16, 71]. Map and Reduce pairing
is also evocative of operations long-seen in databasesr@esf which are described
in Sokolinsky’s survey of parallel database architect(itds]). The Map-Reduce ab-
straction is well suited for analyzing and summarizing éaggnounts of data, and has
a number of implementations [29, 106], of which Hadoop [1fhe most widely de-
ployed, and extensions, such as the data-parallel appisadf DryadLINQ [67]. If
the desired computation can be expressed in this form,reatt@icitly using map and
reduce operations or in a high level language [97] that definere complicated com-
binations of operations, then the computation can be segléd thousands of nodes.

FREERIDE [53] is a common abstraction for the paralleli@atof a variety of
data mining workloads. The framework is built on the recdtigni that basic parallel
implementations of many data mining tasks are similar incgtire, and thus a frame-
work may exploit parallelism at several well-recognizedgss in the computation of
a high-level defined workload. But for the same reason, itge difficult to manage
with remote data access or beyond a small number of nodes ERREE-G [52] is

an extension on FREERIDE that adapts to larger workloads aédta stored in remote
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repositories. The framework is a client-server middlewthiag is responsible for data
retrieval from repository disks, distribution to the conpuodes, actual execution of
the computation, and data caching on compute nodes where@jgte. FREERIDE-

G has been used to complete data mining workloads that stakveral gigabytes of

data on small clusters.
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CHAPTER 3

ENVIRONMENT AND MIDDLEWARE

Campus grids are made up of both dedicated grid resourdes (@fovided by an in-
stitution’s research computing facility), and non-detichscavenged shared resources.
These non-dedicated resources may come from underutilegasghrch clusters owned
by faculty, idle desktop machines in classrooms, labs, dficks, or various other as-
sorted machines. Even the non-dedicated machines areiditarp to 90% of the day,
providing valuable resources to the campus grid. The mashimay vary significantly
in capability — from the newest state of the art many-corehiras to processors that
may be 5-t0-10 years old — and are primarily commodity systesith no extraordinary
guarantee of reliability. Further, they may be removed ftbepool as a matter of pol-
icy: for shared resources, the resource owners must be giv@plete priority to their
own systems. Thus, a common policy within a campus grid ismppion [108], in
which if a resource owner requires access to a machine, thpusigrid job is evicted.

These machines generally have a standard campus interme¢c@mn (currently
100Mbps-10Gbps are common), but may reside on a complicategus area network
that has numerous subnets and switches that may be wilghardite in their capaci-
ties and utilization. The machines on the campus grid mayay not have a shared
filesystem, and even when available the fileservers aredetéfor general campus use

instead of exclusive service for campus grid computing.
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Campus grid resources are managed by middleware such asagad], SGE [49],
and Globus [47]. Though batch schedulers allow jobs to §p#oe exact resources on
which to run, the most common mode of execution is for usespaxify only general
requirements (for example, operating system and minimuriiR@nd allow the sched-
uler to negotiate where the job will run. In this case, thenHigyvel user interaction with

the campus grid is not unlike cloud computing [130].

3.1 Campus Grid Challenges

If workloads were to be completed on a dedicated cluster dwayeone user on
a switched network, efficient use of resources might not beree&n. However, in a
large campus grid shared by many users, a poorly configurekleaa will consume
resources that might otherwise be assigned to waiting jobshe workload makes
excessive use of the network, it may even halt other unili@teks, thus hurting the
performance of other users of the system.

Many distributed computing problems run up against the ssehef challenges on
campus grids, and these obstacles are common to the protiiscussed in this work:

Number of Compute Nodes. It is easy to assume that more compute nodes is
automatically better. This is not always true. In any kindpafallel or distributed
problem, each additional compute node presents some @adrhe&xchange for extra
parallelism. Data must be transferred to that node by sonanmevhich places extra
load on the data access system, whether it is a shared féesyst a data transfer
service. More parallelism means more concurrently runfatg for both the engine
and the batch system to manage, and a greater likelihood ofla failing, or worse,
concurrent failures of several nodes, which consume trentidin (and increase the

dispatch latency) of the queuing system. For many I/O intensoblems, it may only
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make sense to harness ten CPUs, even though hundreds dablavai

Data Distribution. After choosing the proper number of servers, it must then be
determined how to get the data to each computation. A cammisigually makes use
of an institutional file server or the submitting machine d#easerver, as this makes
it easy for programs to access data on demand. Often, howégpatterns that can
be overlooked on one processor may be disastrous in a sealgbiem. One process
loading one gigabyte from a local disk will be measured inogels. But it is much
easier to scale up the CPUs of a campus grid than it is to sgatbeucapacity of a
central file server, so hundreds of processes loading a gigétom a single disk over
a shared network will encounter several different kindsaftention that do not scale
linearly. An abstraction must take appropriate steps tefo#ly manage data transfer
within the workload. If the same input data will be re-usedhsnimes, then it makes
sense simply to store the inputs on each local disk, gettettebperformance and
scalability. Many dedicated clusters provide fixed locabdar common applications
(e.g. genomic databases for BLAST [7]). However, in a shacgdputing environment,
there are many different kinds of applications and comioetitor local disk space, so
the system must be capable of adjusting the system to sewerokkloads as they are
submitted.

Dispatch Latency. The cost of dispatching a job within a campus grid is surpris-
ingly high. Dispatching a job from a queue to a remote CPU iregumany network op-
erations to authenticate the user and negotiate access tesburce, synchronous disk
operations at both sides to log the transaction, data &esd move the executable
and other details, not to mention the unpredictable delags@ated with contention
for each of these resources. When a system is under heavydispatch latency can

easily be measured in seconds. For batch jobs that intemeh for hours, this is of little
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concern. But, for many short running jobs, this can be a ssrerformance problem.
Even under the assumption that a system has no contentiordources and a rela-
tively fast dispatch latency of one second, it would be f&olio run jobs lasting one
second: one job would complete before the next can be dispateesulting in only
one CPU being kept busy. Clearly, there is an incentive t@ kel granularity large
(relative to total available parallelism) in order to hidketworst case dispatch latencies
and keep CPUs busy.

Failure Probability. On the other hand, there is an incentive not to make individua
jobs too long. Any kind of computer system has the possjhaithardware failure, but
a campus grid also has the possibility that a job can be preshipr a higher priority
task, usually resulting in a rollback to the beginning of fhie on another CPU. Short
runs provide a kind ofle factocheckpointing, as a small result that is completed need
not be regenerated. Long runs also magnify heterogenditeipool. For instance, jobs
that should take 10 seconds on a typical machine but take @ihde on the slowest
aren’t a problem if batched in small sets. The other machividgust cycle through
their sets faster. But, if jobs are chosen such that theyouhdurs even on the fastest
machine, the workload will incur a long delay waiting for tfieal job to complete on
the slowest. Another downside to jobs that run for many hauthat it is difficult to
discriminate between a healthy long-running job and a jab ihstuck and not making
progress. An abstraction has to determine the appropatgianularity, noting that
this depends on numerous factors of the job and of the getf.its

Resource Limitations. Campus grids are full of unexpected resource limitations
that can trip up the unwary user. The major resources of ggieg, memory, and stor-
age are all managed by high level systems, reported to systermistrators, and made

known to end users. However, systems also have more presaiances. Examples are
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the maximum number of open files in a kernel, the number of dpg@&R connections
in a network translation device, the number of licenseslalba for an application, or
the maximum number of jobs allowed in a batch queue. In anlditb navigating the
well-known resources, an execution engine must also bebtad recognizing and
adjusting to secondary resource limitations.

Semantics of Failure.In any kind of distributed system, failures are not only com-
mon, but also hard to define. If a program exits with an errategavho is at fault?
Does the program have a bug, or did the user give it bad inputs the executing
machine faulty? Is the problem transient or reproducibleith@Vit any context about
the workload and the execution environment, it is almostasgible for the system to
take the appropriate recovery action. But, when using atrati®n that regulates the
semantics of each job and the overall dataflow, correct gosan be straightforward.

Ease of Use.Most importantly, each of these considerations must beesded
without placing additional burden on the end user. An abtiva interface must op-
erate robustly on problems ranging across several ordensagiitude by exploring,

measuring, and adapting without assistance from the end use

3.2 Architecture for Computing on Campus Grids

The conventionaimplementation for solving problems on a cluster or simdes-
tributed system executes the specification by simply submgit series of batch jobs
that use a central file server to read data on demand and wvatpeits into files in the
ordinary way. The user specifies what jobs to bymame Each job is assigned a CPU,
and does 1/O calls on demand with a shared file system. Theraysas no idea what
data a job will access until jobs actually begin to issueaystalls. Figure 3.1 shows

the difference between using this conventional cluster@gugh and computing with an
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Figure 3.1: Cluster Architectures Compared
When using a conventional computing cluster, the user foams the workload into
jobs, then a batch queue distributes jobs to CPUs where tbegss data from a cen-
tral file server on demand. When using an abstraction, the stsges the high level
structure of the workload, the abstraction engine partisdoth the computation and
the data access, transfers data to disks in the cluster, ed tispatches computation
to execute on the data in place.
abstraction.

When using ambstractionmplementation, like the three discussed in Chapters 4-6,
the user specifies both the data and computation needsjrajjtine system to partition
and distribute the data in a structured way, then dispateltdmputation according to
the data distribution. The abstraction implementationl@ipthe information found
in the abstraction by efficiently distributing common dabavthere it will be used,
choosing an appropriate granularity for decompositiongasing local data copies, and
storing the outputs in a manageable way, such as a custorstdadture.

Computation within a campus grid can use a hierarchy of abtm implementa-
tions. The abstraction manages the campus-grid-levehargtion of a workload, but
also is applied on each individual resource to manage lesalurces such as multicore

processors. Figure 3.2 shows this hierarchy as a geneudtste for implementing

abstractions that use abstraction engines at multipledayfea hierarchy. The user in-
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Figure 3.2: Distributed Multicore Implementation

Abstractions can be executed on multicore clusters withegainchical technique. The
user first invokes the abstraction, stating the input dats aad the desired function.
The distributed master process measures the inputs, mtuelsystem, and submits
sub-jobs to the distributed system. Each sub-job is exdduyea multicore master,
which dispatches functions, and returns results to theitisied master, which collects
them in final form for the user.
vokes the abstraction by passing the input data and funtidine distributed master
engine. The distributed master engine performs the sanmks tadoes if submitting
functions directly instead of organizing a hierarchicahgmarison. First, the it exam-
ines the size of the input data, the runtime of the functiod models the expected
runtime of the workload in various configurations. After dsong a parallelization
strategy, the distributed master engine submits sub-pnabto the locabatch system
which dispatches them to available CPUs.

The change in the hierarchical case is that each job cordistsulticore master
as the executable. When this multicore master is startedaamgous grid resource it
examines the executing machine, chooses a parallelizstiiategy, executes the sub-

problem, and manages the partial result (either returrontipe distributed master or

storing directly in the distributed data structure, depegan configuration).
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Figure 3.3. Time Variations in a Condor Pool

3.3 Notre Dame Campus Grid

The primary campus grid resources used for this work are flloenNotre Dame
Condor pool. Over the course of this research, the pool hpareded from approx-
imately 400 cores up to over 1000 cores consistently repptid the Condor match-
maker.

Additionally, most nodes in the system run a Chirp [123] Ble®r to manage access
to the local disk. Chirp is a lightweight user-level fileserthat provides a POSIX-like
file interface, performs access control, and executesteigcansfers between campus
grid nodes.

Figure 3.3 shows variations in the number of machines ppdimg in the Condor
pool over the course of a full year. The graph plots three €sion top of each other,
which creates the equivalent of a stacked column represemtd he bottom (medium
gray) indicates the of resources that are currently in uséhby owners instead of

running Condor jobs. Local policy sets machines to this “@wWrstate when there is
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either significant use of the CPU or keyboard typing detebiethe shell. The middle
(light gray) indicates the number of machines that are begegl by Condor to run jobs.
The height of each column is the total number of resourcdsdpool, so the top (dark
gray) indicates the number of resources that are unused isttmeeither in owner state
nor being used by Condor. As can be seen, all of these valus#adhe considerably as
machines are powered on and off, used during the work dayhangested for batch
workloads. Large dips in the number of resources being uge@dndor are often

indicative of either a hiccup with the Condor server, or glslilull as a dominant user’s
workload is ending and he (or another power user) has notwehited the next large
workload.

Each processor in the pool has a set of prioritized usens\guity corresponding to
the machine’s owner. These users, then, have the choicaiofiog their resources via
direct access to the system or via Condor jobs that will bedeled there, preempting
non-prioritized users’ jobs. Where no prioritized usettdas into a scheduling decision,
priority is determined by the standard Condor priority isefs.

At the time that Figure 3.3 was recorded, there were 11 stadlels who owned
the 902 resources operating in the Notre Dame Condor pod.cé8s were owned
and operated by the campus Center for Research Computitigding 164 from the
Notre Dame Green Cloud [20]. Assorted nodes owned by the atengcience de-
partment made up 182 cores, while two computer science ggofs accounted for 96
and 75 more, respectively. The chemical engineering deyeant contributed 39 cores.
The remaining cores in the pool were contributed in small bers by various other
professors.

With that many separate resource contributors, it cannat sarprise that the ma-

chines are highly heterogeneous, as seen in Figure 3.4. Nahimes are added to
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Figure 3.4: Performance Variance in a Campus Grid

A campus grid has a high degree of heterogeneity in availedggdeurces. (a) shows the
distribution of CPU speed, ranging from 1334 to 5692 MIP $s{wws the distribution
of disk bandwidth, as measured by a large sequential wrateging from 2 MB/s (mis-
configured controller) to 55 MB/s. (b) shows the weak relatip between CPU speed
and disk bandwidth. A fast CPU is not necessarily the bestelor an 1/0 bound job.
the system and old machines are removed on a daily basis) tbitse changes happen
as singletons when one machine crashes or is repaired, mdtisoes they occur in
batches as entire clusters are brought up or decommissidseiresult, both CPU and

disk performance vary widely, with no simple correlation.

3.4 Work Queue

Condor and other batch systems are well-suited and commadg to run large
numbers of long-running computations such as scientifickEtions. But that does not
make them well-suited for workloads that have a large nurobshort-running tasks,
very data-intensive tasks, or both of these charactesis@mne key reason is that these
systems are designed to mediate the needs of many diffeadetwlders, including the
machine owner, the job owner, and the pool manager. Thigaohsoordination means
that there is significant latency inherent in the system. adriabavy load, submitting
jobs to the queue may take several seconds. And even in dylangesed system, it
takes thirty seconds or more from the time a job is submittet it actually begins

running on a machine. This is especially detrimental forshanning jobs, in which
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the execution time is not much more than the latency.

Additionally, because Condor is careful to clean up thotdy@fter a job com-
pletes, there is no easy way to maintain state across naujopk even if consecutive
jobs are directed to the same machine. And if there is coioteior resources, al-
though the jobs are fast-running, the large number of sroll jmay count against a
user’s priority, making it even harder to get jobs running.

Work Queue [120] is an intermediate layer of software thahisnded to combat
these limitations, providing fast execution and data gégsice on top of Condor, other
batch systems, or arbitrary compute resources. Work Qaengpiration is a simple
observation from Falkon [104] that it is possible to dispeds a batch job long-running
middleware to execute many short-running tasks on a nodeowtthaving to pay the

overhead of submitting each task as a batch job.
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3.4.1 Architecture

Work Queue is a general purpose master-worker system wiimples protocol
in which the batch job (a “worker” process) connects overrévork to a process
on a central node (the “master”) that dispatches the smia#ks to run. Figure 3.5
shows how the pieces work together. The worker is a simpledsta executable that
is the same for all work queue applications. The master isr&lo@d-specific piece of
software that coordinates tasks based on the requiremithies workload via the Work
Queue API. Most masters perform a variation of the same suthispatch-wait-collect
cycle.

In practice, the user normally runs the master programs smhher workstation
or server. The worker processes can be submitted to the agruly run individually
from the command line on nodes where the user has login gcoesscombination
thereof.

Once running, the worker makes a network connection backrtonaing Master
process, receives files that the master sends over the retreaeives a task work
order from the master, executes the task as local process®ds the results back to the
master, and waits for the next task.

Likewise, the master determines the work that needs to be, gi@mtitions that work
into tasks, assigns a task to a worker, sends the data rddyirthe task to the worker,
and collects the results when the worker has finished. Ofssyuf the batch system
decides to evict the worker batch job, it will kill any rungiprocesses and delete the
local storage. The master is able to detect these evictantsre-assign tasks to other
workers as needed.

When the master collects the results from the worker, itspoasible for verifying

the results data and storing it. Making the master resp&Bib results storage allows
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several advantages over having the application or the wathee the results: no glob-
ally available shared filesystem is required, worker preessare completely indepen-
dent of the application, and master processes can integehaethods of verification

based on available resources or application-specific wadklevel considerations.

3.4.2 Advantages

Task dispatch from the master to a worker is much faster thamispatch latency
in the campus grid queue — milliseconds rather than 30 sectmdeveral minutes.
As contention for campus grid resources increases thisraage is compounded, be-
cause subsequent tasks can be started in millisecondgtadtérst finishes instead of
repeating the original latency for starting a batch job.

Another compounded advantage on some systems without pteenis that later
pieces of the workload are less influenced by the submittiexgaded priority (which
falls as the submitter uses campus grid resources over.tifie¢ worker is already
running, and thus is not affected by the degraded priorihgngas a new batch job sub-
mitted to handle the later work would be chosen to run basdti@degraded priority.

Another advantage of Work Queue tasks versus batch jobatitita workers retain
state between tasks, so files needed by many tasks only ndedttansferred from
the master to a given worker once. And tasks can be assignedriers based on
the amount of data the task requires that is already presetiteoworker, minimizing
data transfer. (By default, Work Queue assigns a task to ¢xé available worker,
irrespective of data. However the scheduler can be chosem &mong a few simple

options using the API).
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3.4.3 API

Work Queue masters are written using the Work Queue API. pitugides a set of
general operations that can be combined to create a conmpéetier process.

The fundamental operations are creating a queue, creatmigiaal task data struc-
ture, further specifying a task, waiting for tasks to finisind cleaning up when data
structures are no longer needed.

Once a queue has been initialized, the primary driver of therst-dispatch-wait-
collect cycle is the creation of new tasks. The task datactira is instantiated with
only the task’'s command defined. The command is a string septation of a simple
shell command line that may consist of a single command cgrakecommands in a
pipeline. All other options for a task are separate API fiort that modify various
fields of this data structure, for example, itag field, which is a user-defined short
text description of the task.

All files required by the task — the executable, files passethe¢oexecutable on
standard input, or other required files such as data, comtligurfiles, or libraries — are
specified using the API. Calling the API function to specifif@adoes not actually place
the file on the worker node, rather it adds the requiremeniéctask data structure’s
I nput fil es field and when the task is dispatched to a node, the mastsférarihe
files as part of the dispatch process.

In order to be transferred to the worker and placed on distg daes not have to
already exist on disk in the master. This is because the Adel allows the user to
specify that a memory buffer in the master process be copiedifile on the worker.

The last simple field that a user can specify is the output. fildss is somewhat
unintuitive, as the specification has no bearing on whetinefite is actually created.

Rather, theout put _f i | es list field in the task data structure specifies that to be a
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properly completed task, the function on the worker mustiae certain file, which is
then passed back to the master. Thus, the members ottheut fi | e list function
logically as postconditions for a task. If the file cannotiamsferred back to the master
when the task completes, the task is marked as a failure.

Once a task is created and all pertinent fields have beenfiggedhe next step
for the master’'s code is to submit the task. This API call doesactually assign
the task to a remote worker, rather it submits the task to aigué tasks. Tasks are
not explicitly started via the API, rather they are actuabsigned and transferred to
workers automatically after the APKsor k_queue_wai t instruction is invoked.

Thewai t call indicates that the user is done specifying and submgitiasks for
now and will wait for a specified amount of time or until theseitask completed to col-
lect. Thewor k_queue_wai t operation returns a task data structure (or null if no tasks
completed within the wait interval). The master may parsedhata structure as needed;
generally the postprocessing includes checking the cordriag’s return status for an
acceptable value, verifying that the returned output fiessdkpected format, and copy-
ing the output to permanent storage. If the task failed éeith terms of return status
or output verification), the user can create and submit a asWw Wwith the same spec-
ification. The state for a task is finally freed with thwer k_queue_t ask del et e
operation.

Code Excerpt 3.1 shows the typical submit-dispatch-waliect cycle within a
master via a sample application of compressing a set of filége queue is created
on line 1 with the user specifying the port the queue wildisbn for connections from
workers. The tasks are created in a loop, where the funatext Fi | e is representa-
tive of a user-defined function to determine the next quardatimork to be placed into

a task. The task data structure is created on line 3 witlyitigp command line; note
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g = work.queuecreate (port ,timeout);
while (nextFile (inputfile ,output_file)) {
t = work_queuetask create (
“‘lfusr/bin/gzip -9 < infile > out.gz’’);
work_queuetask specify input_file(t,input_file ,
“infile”’);
work_queuetask specify_outputfile(t, ‘‘out.gz’’,
outputfile);
work_queuesubmit(q,t);
¥
while (! work_queueempty(q)) {
t = work.queuewait(q,10);
if (t) work_queuetask.delete(t);

}

work_queuedelete(q);

Code Excerpt 3.1: Submit-Dispatch-Wait-Collect Loop inaarfple Master

that the filenames on the command line are hardcoded intdrihg for simplicity, but
the literal string could be replaced with a constructedhgttio change the command
line between tasks. The input and output files are specifiethéotask on lines 5 and
7. Line 9 submits the task to the queue.

In this example, all tasks are created before any task willaky begin running, but
the creation and execution could be pipelined for workloaitls very large numbers of
tasks. Thewor k_queue_enpt y call on line 11 checks if there are outstanding tasks
(waiting to run, running, or completed), which controls thait-collect cycle. In this
case, because there is no output frgm p and the existence of the output file (handled
automatically by Work Queue) is sufficient, a task can betddlas soon as it has been
collected by the master. Once all tasks have been compligtedjueue can be freed

and the master moves on to any application-specific postegsing.
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3.4.4 Fast Abort

A large computation can often be significantly slowed dowstoggglers. Although
slow tasks impact any workload, two particularly noticeabases are when there are
other tasks with dependencies on the slow task, or at thefen@arkload, when a slow
task is continuing far beyond the completion times of theremést of the workload.

Work Queue keeps statistics on task execution times adnessdrkload, and con-
tains a mechanism, “Fast Abort”, that proactively cancals$ ieassigns tasks that have
run too long. In initial versions of Work Queue, the criterifor having “run too long”
was a parameter of the system, however in the current veaflions the user to specify
his tolerance for stragglers (defined as a multiplier of terage task completion time,
or even a complete deactivation of Fast Abort) via the API.

Fast Abort is studied in considerable detail for the Wavefemd Makeflow abstrac-
tions in [133]. Section 5.4.4 evaluates activating Fastrbear the end of a sequence
alignment workload to lessen the chance of one or more sloghinas running tasks

far beyond the completion of all other tasks in the workload.
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CHAPTER 4

ALL-PAIRS ABSTRACTION

4.1 The All-Pairs Problem

The All-Pairs problem is an example of a computation thaivgt to implement for
a small computation on one computer, but has applicati@tsxtbuld require gigabytes
of data running on hundreds of computers for several days difapter discusses the
aspects of the problem that make implementation non-tigiascientific computing
users, the design and implementation of an abstractiomé&ptoblem, and results with
the abstraction for applications in several domains.

The All-Pairs problem is easily stated:

All-Pairs( set A, set B, function F ) returns matrix M:
Compare all elements of set A to all elements of set B
via function F, yielding matrix M, such that

MIi,j] = F(ALi],B[i)).

This problem is also known as ti@artesian producbr cross joinof sets A and B.
Variations of All-Pairs occur in many branches of sciencd angineering, where the
goal is either to understand the behavior of a newly creatadtion F on sets A and B,
or to learn the covariance of sets A and B on a standard inmelust F. The function
is sometimes symmetric, in which cases it is enough to coenpié half of the matrix

using the custom comparison function.
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AllPairs( set A, set B, function F
returns Matrix M

AO Al A2 A3
BO
B, F(A, B,
Ble ' F(A, B, )

Figure 4.1. The All-Pairs Problem
The All-Pairs abstraction compares all elements of setsd\Eatogether using a custom
function F, yielding a matrix M where each cell is the resdlFQ A[i], B[j]).
Solving an All-Pairs problem seems simple at first glancee Wpical user con-
structs a standalone progrdfthat accepts two files as input, and performs one com-
parison. After testing- on small datasets on a workstation, he or she connects to the

campus grid, and runs a script like this:

foreach $i in A
foreach $j in B

submit _job F $i $j

From the perspective of someone who knows how to programshubti an expert
in distributed systems this is a perfectly rational way tostouct a large workload,
because one would do exactly the same thing in a sequeniaraliel programming
language on a single machine. Unfortunately, it will likegsult in very poor perfor-
mance for the user due to all the challenges of computing angas grid discussed
in Chapter 3. Figure 4.2 shows a real example of the perfocenachieved by a user

that attempted exactly this procedure at on the Notre Dammpuaa grid, in which 250
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Figure 4.2. Performance of All-Pairs Problem Solutions

The graph shows the performance of an All-Pairs problem aongles machine, on 250
CPUs when attempted by a non-expert user, and on 250 CPUswgirenthe optimized
All-Pairs abstraction.

CPUs yieldedvorsethan serial performance.

4.2 Applications

All-Pairs problems occur in several different computinddee The All-Pairs ab-
straction has been run and measured on the following apiolica

Biometrics is the study of identifying humans from measurements of theyp
such as photos of the face, recordings of the voice, or meammnts of body structure.
A recognition algorithm may be thought of as a function thetegpts e.g. two face
images as input and outputs a number between zero and oretingfltne similarity of
the faces. When a researcher invents a new algorithm forrezmegnition and writes
the code for a comparison function, the accepted evalugtiooedure in biometrics

Is to acquire a known set of images and compare all of themdch ether using the
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function, yielding asimilarity matrix Multiple matrices generated on the same dataset
can be used to quantitatively compare different compatrisoations.

The biometrics All-Pairs workload benchmark considereckehs the comparison
of 4010 images of 1.25MB each from the Face Recognition G2imallenge [96] to
all others in the set. This application uses functions thage from 1-20 seconds of
compute time, depending on the algorithm in use. This wardleequires 185 to 3700
CPU-days of computation, so it must be parallelized acrdag@ number of CPUs in
order to make it complete in reasonable time. Unfortunatedyh CPU added to the
system also needs access to the 5GB of source data. If run0o@PB0s, the computa-
tion alone could be completed in 8.8 hours, but it would rez2i5TB of I/0. Assuming
the filesystem could keep up, this would keep a gigabit (12EYBetwork saturated
for 5.8 hours, rendering the grid completely unusable byoaeyelse. Addressing the
CPU needs with massive parallelism simply creates a newebettk in 1/O.

Data Mining is the study of extracting meaning from large datasets. Qe of
knowledge discovery is reacting to bias or other noise withset. In order to improve
overall accuracy, researchers must determine which @lasswork on which types of
noise. To do this, they use a distribution representativihefdata set as one input
to the function, and a type of noise (also defined as a disioibuas the other. The
function returns a set of results for each classifier, alhgMiesearchers to determine
which classifier is best for that type of noise on that disifidn of the validation set.

Bioinformatics is the use of computational science methods to model angznal
biological systems. Genome assembly [59, 65] remains orlkeomost challenging
computational problems in this field. A sequencing device aaalyze a biological
tissue and output its DNA sequence, a string on the set [AGHGever, due to phys-

ical constraints in the sequencing process, it is not preduie one long string, but in
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tens of thousands of overlapping substrings of hundredsdosands of symbols. An
assembler must then attempt to align all of the pieces witih egher to reconstruct
the complete string. All-Pairs is a natural way of perforgithe first step of assembly.
Each string must be compared to all others at both ends, progla very large ma-
trix of possible overlaps, which can then be analyzed to gsepa complete assembly.
Additional All-Pairs applications in bioinformatics arésdussed in [102], which notes
that All-Pairs (or “doubly data parallel”) problems are cmon in biology.

Other Problems. Some problems magppearto fit the common All-Pairs pattern,
but may be algorithmically reducible to a smaller problera techniques such as data
clustering or filtering [9, 13, 43, 66]. In these cases, ther'asntent isnot All-Pairs,
but sorting or searching, and thus other kinds of optimaaiapply. In the All-Pairs
problems that are outlined above, it is necessary to olatidiof the output values. For
example, in the biometric application, it is necessary tafyé¢hat like images yield a
good score and unlike images yield a bad score. The problguires brute force, and

the challenge lies in providing interfaces to execute ieeiively.

4.3 Implementation

The goal of the All-Pairs abstraction is to provide the usemderface such that he

can invoke All-Pairs as follows:
All Pairs Set A Set B Function Matri x

whereSet A andSet B are text files that list the set of files to proceBanct i on is
the function to perform each comparison, avit r i x is the name of a matrix where
the results are to be stored.

In the initial versions of the All-Pairs engine, the usetstion was required to be

essentially a single-CPU implementation of All-Pairs. lisaFunct i on is provided
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by the end user, and may be an executable written in any lgegpaovided that is has

the following calling convention:

Functi on Set X SetY

whereSet X and Set Y are text files that list a set of files to process, resulting in a
list of results on the standard output that name each elecognpared along with the

comparison score:

Al Bl 0.53623
Al B2 2. 30568
Al B3 9.19736

This was good for performance, because the actual execti@nof of a single
comparison could be significantly faster than the time ndddeinvoke an external
program. It also improved usability, because the user ceaklly transition from a
small job run on a workstation to a large job run on the campick gdHowever, the
downside was that while usability improved, the user stdlswequired to rewrite his
serial code, and the overall performance still hinged orudes’s single-CPU All-Pairs
implementation’s efficiency.

An improved version of All-Pairs is more amenable to usingabtely unmodified
versions of functions that operate on exactly two input ggmstead of two sublists
of items). To do this it uses a hierarchical scheme in whiah dhstraction engine
coordinates the entire workload, then submits batch jobsakle local masters for the
system that can instantiate the computation efficiently achandividual resource in
the campus grid. This retains the usability aspect becdugseriginal serial 1-versus-1

comparison function can be used in an unmodified form. Algothere are multiple
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function calls instead of a single call, performance canaltt be improved by clever
design of the local master (particularly in non-trivial @mnments such as multicore
computers or a memory-bound problem) [132].

Regardless of the version of the function requirementstéhm functionis used
in the logical sense: a discrete, self-contained piece ¢¢ aaith no side effects. This
property is critical to achieving a robust, usable systetre abstraction engine relies on
its knowledge of the function inputs and the problem strrecta provide the necessary
data to each node efficiently and arrange the output to beatetl efficiently.

Now consider the implementation of All-Pairs in terms of thar stages shared by
many distributed computing abstractions and introducézhapter 1. For All-Pairs, the
problem is modeled to determine an appropriate number ofuress to use, input data
is distributed to all compute nodes in an efficient mannercbmputation is organized
by subproblem and computed in a two-level hierarchy, anathput results are stored

to a distributed data structure.

4.3.1 Modeling the System

In order to decide how many CPUs to use and how to partitionatbik, there
must be an approximate model of system performance. In aecdional system, it
is difficult to predict the performance of a workload, beaitsdepends on factors
invisible to the system, such as the detailed 1/0 behaviaazh job, and contention
for the network. Both of these factors are minimized whemgsin abstraction that
exploits initial efficient distribution followed by locaterage access instead of remote
network access.

Previous researchers have studied All-Pairs theoreji¢al4] and on small clus-

ters [28]. Unlike in those highly predictable environmergshieving optimal perfor-
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Figure 4.3. Three Workloads Modeled

This graph compares the modeled runtime of three worklohdsdiffer only in the
time () to execute each function. In some configurations, additiparallelism has no
benefit.

mance is essentially impossible in a large dynamic hetereges system where nothing
is under the user’s direct control. Rather, the best thaabstraction can aim for is to
avoid disasters by choosing the configuration that is optmitain the model.

The (distributed master) engine measures the input datetesrdine the sizes of
each input element and the number of elemeniis each set (for simplicity, assume
here that the sets have the same number and size elemengspravided function is
tested on a small set of data to determine the typical runtiofeeach function call.
Several fixed parameters are coded into the abstractionégytstem operators: the
bandwidthB of the network and the dispatch lateridyof the batch software. Finally,
the abstraction must choose the number of function catiggroup into each batch job,
and the number of hoststo harness.

The time to perform one transfer is simply the total amourdata divided by the
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bandwidth. Distribution by a spanning tree (described Wwglmas a time complexity of
O(logs(h)), so the total time to distribute two data sets is:

2ns

Tdistribute - Flog2(h)

The total number of batch jobsiig /c, the runtime for each batch job i3+ ct, and
the total number of hosts ig so the total time needed to compute on the staged data is:

(D + ct)
Tcompute = f

However, because the batch scheduler can only dispatclobreveryD seconds,
each job start will be staggered by that amount, and the testtvhill completeD (A —1)
seconds after the first host to complete. Thus, the totahtotmd time is:

2ns n?
Tturnaround - fl092(h) + E(D + Ct) + D(h - 1)

Now, the abstraction using a hillclimbing heuristic may oke the free variables
andh to minimize the modeled turnaround time. Some constraintsand’ are nec-
essary. Clearlyp cannot be greater than the total number of batch jobs or thikaae
hosts. To bound the cost of eviction in long running jobis, further constrained to en-
sure that no batch job runs longer than one hour. This is alul to enable a greater
degree of scheduling flexibility in a shared system wheremgion is undesirable. In
the original implementation; was chosen as a multiple of a result row to simplify job
partitioning, however in the hierarchical implementattbat has replaced it, is only
constrained to be a valid number of cells in a rectangle withe results matrix.

Using the function execution time the engine can also model a workload run lo-

cally. This allows the engine to compare the predicted tounad time running locally
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Figure 4.4: File Distribution via Spanning Tree
An efficient way to distribute data to many nodes of a systeim siild a spanning
tree. In the example on the right, a file distributor initiateansfers as follows: (1) A
transfers to B, (2) AB transfer to CD, (3) ABCD transfer to BFG he graph on the
left compares the performance of transferring data to thet #00 available hosts using
sequential transfers, a random spanning tree, and a topoéwgare spanning tree.
or on the distributed resources and choose the better of@erause the distributed ver-
sion is more prone to variability, the engine is built to mrefhe local execution until
there is a significant predicted benefit from distributingeTaccuracy of this automatic
changeover is discussed in further detail below.

Figure 4.3 shows the importance of modeling the orders ofmtade within the
abstraction. Suppose that All-Pairs is invoked for a consparof 1000x1000 objects
of 1.25MB each, on a gigabit Ethernet (125MB/s) network. &ejpng on the algorithm
in use, the comparison function could have a runtime anys&vbetween 0.1s and 10s. If
the function takes 0.1 seconds, the optimal number of CPB8,ibecause the expense
of moving data and dispatching jobs outweighs the benefitptaditional parallelism.

If the function takes one second, then the system shoul@bkaseveral hundred CPUs,

and if it takes ten, all available CPUs.
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4.3.2 Managing the Input Data

The model determines how many computing resources shouldéx: To choose
the nodes, the engine consulteegource catalogo determine the available machines.
Because the number of computing resources can scale far thsin the capacity of
a central file server, and the often data-intensive natuthefAll-Pairs problem, the
All-Pairs implementation prestages data to the computouges.

This approach is different from the conventional methodylnch batch systems are
usually coupled with a traditional file system such that whgob issues 1/0 system
calls, the execution node is responsible for pulling datenfithe storage nodes into
the compute node. Because the abstraction is given the datisrof the workload
in advance, it can implement I/0O much more efficiently. To\aelall of the data to
every node (a design decision discussed below at the ents@uhsection), the engine
can build a spanning tree which performs streaming datsfteasm and completes in
logarithmic time. Exploiting the local storage on each nadleids the unpredictable
effects of network contention for small operations at mni

A file distributor component is responsible for pushing all data out to a delect
of nodes by a series of directed transfers forming a spanneéggwith transfers done
in parallel. Figure 4.4 shows the algorithm, which is a gseeark list. The data is
pushed to one node, which then is directed to transfer it tecarsd. Two nodes can
then transfer in parallel to two more, and so on. The diretitaasfers are executed by
the Chirp fileservers running on each node.

Dealing with failures is a significant concern for pushindadaFailures are quite
common and impossible to predict. A transfer might fail agitt if the target node
is disconnected, misconfigured, has different access asntr is out of free space.

A transfer might be significantly delayed due to competiradfic for the shared net-

47



work, or unexpected loads on the target system that occul@ZB1J, virtual memory,
and filesystem. Delays are particularly troublesome, beeaus uncertain whether a
problem will be briefly resolved or delay forever.

A greedy work list is naturally fault tolerant. If any one titer fails outright or is
delayed, the remaining parallel branches of the spannegg\ill reach other parts of
the campus grid. Because individual nodes that report athbi@ato the catalog may
become unavailable during distribution (delaying coniplebr causing the distribution
to to complete with fewer nodes than requested), it is ofterereffective to simply give
the distributor a target numbér This way, the distribution can continue until data has
been placed on hosts, and then it will cancel any outstanding transfersletdhe
hosts actually reached.

Of course, a campus grid does not have a uniform network ¢ggol Transfers
may be fast between machines on one switch, but become s&sveansfers reach
across routers and other network elements. In the worst taeséile distributor might
randomly arrange a large number of transfers that saturakaeed network link, ren-
dering the system unusable to others.

To prevent this situation, the file distributor can be pr@ddvith a simplified topol-
ogy in the form of a “network map”, which simply states whiclchines are connected
to the same switch. The file distributor algorithm is slighrétfined in two ways. First,
the distributor will prefer to transfer data between clustieefore transferring within
clusters, assuming that the former are slower and thus dhlmiperformed sooner so
as to minimize the makespan. Second, the distributor willalmw more than one
transfer in or out of a given cluster at once, so as to avoidloading shared network
links.

The performance of file distribution is shown in Figure 4.4rél a 500MB dataset
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is transferred to the first 200 available hosts on the campdsmgcording the elapsed
time at which each single transfer is complete. Each of tdistibution techniques

is performed ten times, and the average at each host is stHe@quential distribution

takes 8482 seconds to complete. A fully random spanningdiess 585 seconds, while
a topology aware tree takes 420 seconds.

To conclude this section, consider whether it is really seaey to distributell of
the data to every node? An alternative would be to distrittueeminimum amount of
data to allow each node to run its job. In fact, however, tigting all of the data via
spanning tree igasterthan distributing the minimum fragment of data from a centra
server, and it also improves the fault tolerance of the systable 4.1 summarizes the
result.

Proof: Consider a cluster ok reliable hosts with no possibility of preemption
or failure. Thefragment methoaninimizes the amount of data sent to each host by
assigning each host a square subproblem of the All-Paitsigmmn Each subproblem
requires only a fragment of data from each set to complete. b§th data sets are
divided into intof fragments, wher¢’ = v/h. Each host then needs f data items of
sizes from each set delivered from the central file server. Dividioy the bandwidth
B yields the total time to distribute the data fragments:

2nsh B 2ns

Tfragment = B—f f h

Compare this to thepanning tree methodescribed above:

2ns

Tdistribute = FZOQQ(}L)

Becausdog,(h) << +/h, the spanning tree method is faster than the minimum

fragment method for any number of hosts in a reliable clusiémout preemption or
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failure. Of course, the total amount of data transferredghér, and the dataset must
fit entirely on a sufficient number of disks. However, as cordityoworkstation disks
now commonly exceed a terabyte and are typically undezeatil{42], this has not been
a significant problem.

In actuality, however, a campus grid is a highly unreliableimnment. The frag-
ment method is even worse when allowing for the possibilitiadures. With failures
during distribution, a given transfer must be retried ifeitcase, but the spanning tree
has the advantage of allowing multiple attempts at once. Bawhuse it delivers the
minimum amount of data to any one host, there is no otherimtatjob can be sched-
uled if the data is not available. With the spanning tree metlany job can run on any

node with the data, so the entire computation phase is moueatis fault tolerant.

TABLE 4.1

COMPARISON OF DATA DISTRIBUTION TECHNIQUES

Distribution  Total Data Fault
Method Time Transferred Tolerant?
Fragment (ns/B)vVh nsv'h No
Spanning Tree (ns/B)loga(h) nsh Yes
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Figure 4.5. Detail of Local Job Execution

The distributed master engine runs on the submitting nadsgtthg each working node
to compute a subset of the All-Pairs problem. On each nodeloitel master invokes

the users function, buffers the results in memory, and tipeiates the distributed data
structure with the results.

4.3.3 Coordinating the Computation

After transferring the input data to a suitable selectionades, the All-Pairs engine
then constructs batch submit scripts for each of the groygesi and queues them in
the batch system with instructions to run on those nodes evtier data is available.
Each batch job consists of the user’s function and the loeatter, shown in Figure 4.5.

Although the abstraction relies heavily on the batch systemanage the work-
load at this stage, the framework still has two importanpossibilities: local resource
management and error handling.

The All-Pairs engine is responsible for managing local veses on the submitting
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machine. If a workload consists of hundreds of thousandswditipns, it may not be a
good idea to instantly materialize all of them as batch jalvstibmission. Each mate-
rialized job requires the creation of several files in thealddesystem, and consumes
space in the local batch queue. Although Condor is capabtpietiing hundreds of
thousands of jobs reliably, each additional job slows dowewg management and thus
scheduling performance. When jobs complete, there is thsipitity that they produce
some large error output or return a core dump after a crasttedid of materializing all
jobs simultaneously, the engine throttles the creationadthp jobs so that they queue
only has twice as many jobs as CPUs. As jobs complete, theenigietes the output
and ancillary files to manage the local filesystem.

The engine and the local master together are responsiltafwiing a large number
of error conditions. Again, Condor itself can silently héagroblems such as the
preemption of a job for a higher priority task or the crash ahachine. However,
because it has no knowledge of the underlying task, it cahalg when a job fails
because the placed input files have been removed, the exeagichine does not have
the dynamic libraries needed by the function, or a brief mekoutage prevents writing
results to the matrix. Although events like this sound vedyg,ahey are all too common
in workloads that run for days on hundreds of machines. Taemddthis, the local
master itself is responsible for checking a number of eroorditions and verifying that
the output of the function is well formed. If the executioiidathe local master informs
the engine through its exit code, and the engine can resubenjob to run on another
machine.

The engine can also handle the problem of jobs that run foldng. This may
happen because the execution machine has some hardware failcompeting load

that turns a 30 minute job into a 24 hour job. Although theimetof an arbitrary batch
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job is impossible to predict in the general case, the engasedlacess to a model of the
workload, as well as a distribution of runtimes, so it cancam@nd resubmit jobs that
fall far out of the range of normal execution times. A variahthis procedure, “fast
abort”, is discussed at greater length in Chapter 3. To imptbe “long tail” of jobs
at the end of an execution, it could also submit duplicats gdin Map-Reduce [37],

although this approach has not been attempted.

4.3.4 Managing the Output Data

The output produced by an All-Pairs run can be very large. 60 by 60,000
comparison, approximately the size of the largest prodactiometric workload in
Section 4.5, will produce 3.6 billion results. Each resuiist) at a minimum, contain
an eight-byte floating point value that reflects the simijaaf two items, for a total
of 28.8GB of unformatted data. If there is additional datahsas troubleshooting
information for each comparison, the results may balloosetgeral hundred gigabytes.
Users run many variations of All-Pairs, so the system mugirepared to store many
such results.

Although current workstation disks are one terabyte angklaand enterprise stor-
age units are much larger, several hundred gigabyteslia significant amount of data
that must be handled with care. It is not likely to fit in memory a workstation and
applying improper access patterns will result in perforcemany orders to magnitude
slower than necessary. A user that issues many All-Pairs wilh still fill up a disk
quite quickly.

The user who applies existing interfaces in the most famwiay will run into
serious difficulties. The non-expert users of this work hiagen inclined to store each

result as a separate file. Of course, this is a disastrousovasget a filesystem, because
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each eight byte result will consume one disk block, one inadd one directory entry.
If each row of results is stored in a separate file in the fuomisi text output format,

this is still storing several hundred gigabytes of data, stiltthas a sufficiently large

number of files that directory operations are painfully sldBuch a large amount of
data would require the user to invest in a large storage amdaneintensive machine
in order to manipulate the data in real time.

Instead, the abstraction must guide users toward an apategtorage mechanism
for the workload. Output from All-Pairs jobs goes talestributed data structur@ro-
vided by the system. The data structure is a matrix whoseotsare partitioned across
a cluster of reliable storage nodes maintained separataty the campus grid. Data in
the matrix is not replicated for safety, because the clusteonsidered an intermediate
storage location in which results are analyzed and then thelsewhere for archival.
In the event of failure leading to data loss, the All-Pains can easily be repeated.

The full design and performance results for the matrix détacture are reported
in [87], but are summarized here.

Because of the underlying storage, row-major access is affisent: a row read
or write results in a single sequential 1/0 request to ond.hGslumn-major access is
still possible: a column read or write results in a stridegidrer write performed on all
hosts in parallel, taking advantage of hardware parattelisndividual cell reads are

also possible, but are inefficient.

4.4 Evaluation and Results

Configurations. Evaluation is based on the two implementations of All-Paien-
tioned above:abstractionand conventional For the conventional configuration, the

central file server was a dedicated 2.4GHz dual-core Opterachine with 2GB of
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Figure 4.6: Challenges in Evaluating Grid Workloads

Evaluating workloads in a campus grid is troublesome, beeaof the variance of
available resources over time. 4.6(A) shows the CPUs asdigmtwo variants of the
same 2500x2500 All-Pairs problem run in conventional ansti@ztion modes. 4.6(B)
shows the distribution of job run times for each workloadtHis case, the abstraction
mode is significantly better, but a quantitative evaluatoomplicated by the variance
in number of CPUs and the long tail of runtimes that occurs disributed system. To
accommodate this variance, thesource efficiencgescribed in the text is an effective
metric.

RAM, also running a Chirp fileserver.

Note that these cannot easily be compared against a kewadldistributed filesys-
tem like NFS [109]. This campus grid spans multiple admiaiste domains and fire-
walls; gaining access to modify kernel level configurati@isnpossible in this kind of
environment. Both configurations use the exact same sddtstack between the end
user's application and the disk, differing only in the plogdiplacement of jobs and
data. In any case, the precise filesystem hardware and seftsvarelevant, because
the conventional configuration saturates the gigabit neuwok.

Metrics. Evaluating the performance of a large workload running inampus
grid has several challenges. In addition to the heterogenéresources, there is also
significant time variance in the system. The number of CPUWsadly plugged in and
running changes over time, and the allocation of those CBUmtch users changes

according to local priorities. In addition, the two diffetemodes &bstractionand
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conventiongl will harness different numbers of nodes for the same prabldow can
an algorithm be evaluated quantitatively in this environif?e

Figure 4.6(A) shows this problem. The graph compares thecovidigurations of
an All-Pairs run of 2500x2500 on a biometric workload. Tdwventionamode uses
all available CPUs, while thabstractionmode chooses a smaller number. Both vary
considerably over time, but it is clear thalbstractioncompletes much faster using a
smaller number of resources. Figure 4.6(B) shows the Higion of job run times,
demonstrating that the average job run timabstractionis much faster, but the long
tail rivals that ofconventional

To accommodate this, for each result consider two quanttegsults. Theurnaround
timeis simply the wall clock time from the invocation to compteti Theresource ef-
ficiencyis the total number of cells in the result (the number of fimtinvocations),
divided by the cumulative CPU-time (the area under the cuméigure 4.6(A). For
both metrics, smaller numbers are better.

Results. Figure 4.7 shows a comparison between the two implementafar a
biometric comparing face images of 1.25MB each in about th.edor workload
above 1000x1000, the abstraction is twice as fast, and fim@stmore efficient. Fig-
ure 4.8 shows a data mining application comparing dataget8@KB in about 0.25s
each. Again, the execution time is almost twice as fast agelaroblems, and seven
times more resource efficient on the largest configuratione third application is a
synthetic application with a heavier 1/O ratio: items of3B with 1s of computation
per comparison. Although this application is synthetiocps#m to have ten times the
biometric data rate, it is relevant as processor speed reasmg faster than disk or
network speed, so applications will continue to be increglgidata hungry. Figure 4.9

shows for this third workload another example of the absimagerforming better than
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Figure 4.7: Performance of a Biometric All-Pairs Workload
The biometric face comparison function takes 1s to comperelt25MB images.
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Figure 4.10. Selecting An Implementation Based on the Model

This graph overlays the modeled multicore and cluster parémce on problems of
various sizes for All-Pairs. The dots indicate actual parfance for the selected prob-
lem size. As can be seen, the modeled performance is notipédeit is sufficient to
choose the right implementation.

the conventional mode on all non-trivial data sizes.

For comparison, the graphs also show the execution timeqgteedcby the model for
the abstraction. As expected, the actual implementatioftém much slower than the
modeled time, because it does not take into account fajlpreemptions, competition
for resources, and the heterogeneity of the system.

For small problem sizes on each of these three applicattbes;ompletion times
are similar for the two data distribution algorithms. Theitreal server is able to serve
the requests from the limited number of compute nodes fa dafficiently to match
the data staging step in the application.

For larger problem sizes, however, the conventional allgoriis not as efficient

because the aggregate 1/O rate (t) exceeds the capacity of the network link to the

58



central file server, which has a theoretical maximum of 125818 there were exactly
300 CPUs are in use at once (easily feasible on the campystipecaggregate 1/O rate
is 375 MB/s in Figure 4.7, 820 MB/s in Figure 4.8, and 3750 GB/Bigure 4.9. To
support these data rates in a single file server would requinassively parallel storage
array connected to the cluster by a high speed interconuett &s Infiniband. Such
changes would dramatically increase the acquisition cbghe system. The use of
an abstraction allows us to exploit the aggregate 1/0O c@ypatiocal storage, thereby
achieving the same performance at a much lower cost.

Figure 4.10 compares the multicore and cluster models antbdstrates actual
performance achieved when selecting the implementationrdtme. The model is
sufficiently accurate that it can be used to choose the apptegmplementation at

runtime based on the properties given to the abstraction.

4.5 Production Workloads

This implementation of All-Pairs has been used in a produncthode for over two
years to run a variety of workloads in biometrics. All-Pdwas been used to explore
matching algorithms for 2-D face images, 3-D face mesheasiraimages. The largest
single production run so far explored the problem of matghanlarge body of iris
images. A more detailed overview of iris biometrics is gilmnDaugman [36].

A conventional iris biometric system will take a grayscais image and extract
a small binary representation of the texture in the irislechhniris code[18]. The
iris code is a small (20KB) black and white bitmap designethetke comparisons as
fast as possible. To compare two iris codes, the comparigaetibn is the normalized
Hamming distance, which measures the fraction of the bas differ. Two random

binary strings would likely differ in about half of their lsitand would therefore have
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Figure 4.11. Results From Production Run
The results of All-Pairs on 58,639 iris codes. The gray iaths comparison of irises
from the same person (match). The black indicates compaadaises from different
people (nonmatch).
a Hamming distance score around 0.5. Two iris codes correipg to two different
images of the same person’s eye should not differ in as masy &nd thus have a
Hamming distance closer to 0. A comparison between tworgiffie mages of the same
iris is called amatch and comparison between images of two different eyes isdall
nonmatch Ideally, all match comparisons should yield lower Hammiliggance scores
than all nonmatch comparisons.

The largest single run computed Hamming distances betwié@aies of 58,639
20KB iris codes from the ICE 2006 [89] data set. The next lstrgeiblicly available
iris data set is CASIA 3 [25], about three times smaller, onclvimo results have been
published on complete comparisons. This is the largest msthit ever computed on a

publicly available dataset, as of the time of completion.
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Figure 4.11 shows the end result of this workload. A histogsaows the frequency
of Hamming distances fanatchesandnonmatchesAs can be seen, the bulk of each
curve is distinct, so an expert system for matching mightaugeeshold of about 0.4 to
determine whether two irises are distinct. However, theselts also indicate a group
of non-matching comparisons that significantly overlapriaches. External exami-
nation by a biometrics expert discovered that these lowescoccur when one of the
images in the comparison is partially occluded by eyelidthad only a small amount
of iris is visible and available for the comparison. This ebstion has has spurred
development of mechanisms to account for such irregudarith data acquisition and
processing [22]. Without the ability to easily perform largcale comparisons, such an
observation could not have been made.

The pool’s fastest single machine for this experiment cpeaidorm 50 comparisons
per second, and would take about 800 days to run the entirkloeat sequentially.
The All-Pairs implementation ran in 10 days on a varying $et@)-200 machines,
for a parallel speedup of about 80. The speedup is imperiecause the pool does
not uniformly consist of equivalent machines, and becausannot maintain ideal
conditions over the course of ten days due to competitiorefeources and unreliability
of resources. Table 4.2 summarizes all of the failures thatiwed over that period,

grouped by the component that observed and responded taikine f

As discussed above, the Condor batch system handles a famgem of the fail-
ures, which are preemptions that force the job to run elsesvhigéowever, the number
of failures handled by the rest of the system is still largewgyh that they cannot be
ignored. All are cases that are not supposed to happen inlaegelated system, but
creep in anyhow. Despite extensive debugging and developrie user’s function

still crashes when exposed to unexpected conditions ohtklidifferent machines. A
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TABLE 4.2

SUMMARY OF FAILURES IN PRODUCTION RUN

Failure Type Observer Count
Job killed with signal 15] engine 4161
Job killed with signal 9. | engine 372
Inputs not accessible. | wrapper 5344
Failed to store output. | wrapper 17
Dynamic linking failed. | wrapper 45
Function returned 255. | wrapper 20
Function returned 127. | wrapper 300
Job preempted. batch system 14560

number of machines were wiped and re-installed during time so input files were
not always found where expected. There are a surprisingle laumber of instances
where the job was forcibly killed with a signal; only a locgksem administrator would
have permission to do so. These data emphasize the poirdriftting can and will
happen in a campus grid, so every layer of system is respenfsibchecking errors
and ensuring fault tolerance — this task cannot be delegataily one component.
Despite these challenges, this production workload hasodstrated that the All-
Pairs abstraction takes a computation that was previoofhasible to run, and makes
it easy to execute in a matter of days, even in a uncoopertivieonment. Using this
abstraction, a new computer science graduate student Wwasodireak new ground in

biometrics research without first becoming an expert inlpgreomputing.
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CHAPTER 5

SPARSE-PAIRS ABSTRACTION

5.1 Sparse-Pairs Abstract Problem

There are many workloads that involve the comparison oElaets of objects, but
do not requireall possiblecomparisons. One specific pattern within this group is the

Sparse-Pairs problem.

Sparse-Pairg data A, data B, function F'( data x, datay), pairs P)

returns array R such that F'(A[P[i].x], B[P[i].y])

The Sparse-Pairs abstraction applies a funcfibto pairs of elements in setd
and B given by the sef’, yielding a result seR. Sparse-Pairs fits between the one-
dimensional array abstraction of Map, and the two-dimemai@rray abstraction of
All-Pairs. In this way it is a bit like superimposing Bag-o&sks on top of the one-
dimensional structure of a Map abstraction [120].

Data considerations differentiate Sparse-Pairs from bdp and All-Pairs. Al-
though the pairs are sparse, each sequence is still used tnaey throughout the
workload. Thus, while the pairs to be computed could be emitin full to files in
which every pair was a single element, and Map could then beusing that input,
this is inefficient. And although Sparse-Pairs result islasstiof a corresponding All-

Pairs result, it is unnecessary to complete an entire AllsRaoblem for every case of
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Figure 5.1. The Sparse-Pairs Abstraction Applied to Bioinfatics

Sparse-Pairs, and for particularly sparse sets of pamsayjt be very inefficient to do so
even if the All-Pairs abstraction is highly optimized.

Further, even disregarding the problem of unneeded cortipusa Sparse-Pairs
problems also do not have the regular structure that makieBas easy to interface.
The regular structure of All-Pairs allows the interfacehe abstraction to require only
the function and the names of the full sets. For Sparse-Bargsage is less uniform
even for the same input set size, thus it is less beneficiakstage all data to all nodes

and assign computation to arbitrary identically prepaesburces.

5.2 Application of Sparse-Pairs in Bioinformatics

Many bioinformatics problems are naturally data-paradiad thus lend themselves
to distributed computing at large scales [111]. The genossembly problem presents
both naturally data-parallel problems that can be scaletbupousands of nodes and

other problems that use much smaller levels of parallel agatpn to distribute disk
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or memory requirements. This section describes the gen@sen@ly pipeline, the
structure, data, and algorithms for a naturally parallgilegation within that pipeline,

and how the Sparse-Pairs can be applied to that application.

5.2.1 Assembly Pipeline

Genome sequencing the laboratory process of determining an organism’s DNA
string from a biological sample. A DNA string is a long ser@daseqA, G, T, and
C); however, no current sequencing process is capable diipiog an organism’s en-
tire string of millions or billions of bases. Instead, theypital process produces a large
number of randomly located substrings knowrreads Individually, these reads have
limited scientific value, as they are very short — 25 to 1008elsaeach [98]Genome
assemblys the computational process of arranging reads in the cooréer to produce
the largest possible contiguous strings knowrtaistigs There are many assemblers
[12, 60, 63, 88, 100] that solve the problem in a variety of svayoften performing
similar conceptual steps, but organizing and naming thdfardntly. For this discus-
sion, the organization will be simplified to three phasesididate selection, alignment,
and consensus. These phases are illustrated in Figured.i& the set of reads pro-
duced by genome sequencing; (b) shows the candidate patra/éiie determined as
potential matches in candidate selection; (c) shows thiedveslaps, as determined by
alignment; and (d) illustrates ordering the reads basedveriaps at the beginning of
the consensus phase.

Thealignmentstep is the process of finding overlaps between the suffix efread
and the prefix of another. To ensure that enough reads witlagyea genome sequenc-
ing project oversamples from the DNA in the cell by a factob€#O. In principle, every

single read should be compared to every other read; howegé€r(t:?) algorithm is is
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Figure 5.2. Stages of the Genome Assembly Pipeline

computationally infeasible for large numbers of reads.

To avoid this problem¢andidate selectiors performed first to find candidate pairs
or reads that are likely to overlap. One common heuristictfios asserts that pairs
without an exact short match are unlikely to be well-aligfada longer prefix or suffix,
and thus it is possible to discard pairs of sequences thabtishare a short (usually
20-30 bases) exact match. This heuristic will filter out tastumajority of theD (n?)
comparisons [99]

Finally, the assembler lays out reads in the proper ordenfatignment, creates
one or more combined sequences, and then forms them togetbéarger structures
called scaffolds In most assemblers these processes are divided into mpayase
steps, however the rest of this chapter will refer to themtjgias theconsensustep.

To use a layman’s analogy, genome assembly is somethinguittang together a
jigsaw puzzle. One method for solving the puzzle would beheck every edge of
every piece against every edge from all the other pieces.aderythis is an inefficient
jigsaw puzzle technique, and instead heuristics such aardigsg pairs of pieces with
drastically different colors can be employed to reduce thmnlper of pieces that have
to be compared — candidate selection. The remaining pessdrinections are tried,
and pieces are connected into small clusters — alignmemséblusters can be joined

together to form larger and larger contiguous pieces — althffg and consensus.
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5.2.2 Sequence Alignment

Sparse-Pairs problems occur frequently in the field of beimatics. One such
example is the alignment step discussed above. Most predpproaches to paral-
lelizing assembly have focused on programming models artzaie architectures for
tightly-coupled parallelism, requiring dedicated higifpemance clusters or massively
parallel supercomputers. The pattern of computation, kewés amenable to execu-
tion on a campus grid. The alignment step is the naturallglfy requiring millions
of pairs of sequences to be compared using a self-contaliggdreent algorithm. No
task requires inter-computation communication or has dégecies on prior tasks.

In principle, one could run an All-Pairs abstraction to cargall fragments to each
other, and then match up the pieces with the best scores. \1ovas noted above, for
a sufficiently large problem, this is computationally irdéde — for the Human genome
discussed below, for instance, an All-Pairs comparisoreafls would require nearly 1
quadrillion alignments.

The candidate selection phase of genome assembly gredtiges the problem,
so instead of an application of All-Pairs, sequence alignmbecomes an application
of Sparse-Pairs. The list of “candidate” sequences remgiafter candidate selection
becomes thé set for a Sparse-Pairs workload, as shown in Figure 5.1.

It is natural to ask what good an aligner is without the othertipns of the as-
sembly pipeline. However, this work latches on to the grgmrend of developing
modular genome assembly components. Also, it was was dmelm conjunction
with a distributed candidate selection framework [86, 9Jpart of the Scalable As-
sembly at Notre Dame (SAND) software packabéet(p: / / cse. nd. edu/ ~ccl /
sof t war e/ sand).

The trend for modular assembly components is being appesbitbm both sides:
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the UMDOverlapper [107], for instance, can reliably workitwseveral common as-
semblers; while the AMOS consortium [98] is actively deyetm an open source,
modular assembly pipeline with the intent that others waliribute new and different
approaches to each of the pipeline stages. Typical pasalations to genome assem-
bly have tightly coupled alignment with the other stageshefassembly. These highly
specific assemblers have relied on batch processing, camiBéprogramming or spe-
cialized hardware such as BlueGene/L [73], FPGAs [116],thacCell processor [110]
to speed up alignment, but the new modular approaches aostgto the mechanisms
of the individual modules. This presents a perfect oppatyguior distributed abstrac-

tions to be supplied as modules.

5.2.3 Genomic Data and Algorithms

This chapter considers four different genomic datasetswahn Table 5.1. The
smallest dataset consists of the all the reads from the dagmffold ofAnopheles
gambiae Sthe next largest is the entife gambiae $enome. Thé\. gambiaeggenome
was sequenced using traditional Sanger sequencing, whglohger read lengths, but
is more expensive and time consuming. The large datasetas @ simulated reads
of the Sorghum bicologenome [93], generated by extracting reads of 500-1000sbase
from the finishedS. bicolorgenome with randomized starting positions. The largest
genome is the Venter human genome [125], which is used imtbik to demonstrate
scalability to state-of-the-art sized data sets.

An important choice in any assembler is the algorithm usedfignment of the
reads. In this work, two approaches are considered. Thegpyialgorithm is the simple
Smith-Waterman (SW) alignment commonly taught in bioinfatics textbooks [57].

This algorithm computes alignments in time proportiondhlengths of the sequences
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by computing progressive overlap scores in a dynamic progreag matrix. The rea-
sons for using SW are twofold: it can be implemented verylgalighlighting the

ability of the abstraction to be reused by scientists whocafgable but not familiar
with distributed systems programming; and its increasedisigity may be required in
certain cases, such as in SNP discovery programs like MO3&1Kand in short-read
sequence assemblers. The second approach is a simple kaighedent, also intro-
duced in [57], in which only a narrow band of the SW dynamicgseanming matrix is

computed. In this case, the amount of data remains the sahetiv execution time
of each task decreases significantly. This is used as an éxarfrthe various heuristics

that are not as sensitive much run much more quickly than SW.
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TABLE 5.1: GENOMES USED IN THIS CHAPTER

Number | Average | Candidate | Uncomp. | Task Data | Comp. | Task Data
Dataset Reads | Read Size Pairs Size Size Size | Comp. Size
Small A. gambiae scaffold] 101617 764.22 738838 | 80.2MB | 684.2MB | 21.9MB | 187.6MB
Medium | A. gambiae complete 1801181 | 763.66 | 12645128 | 1.4GB 13.2GB | 0.4GB 3.6GB
Large S. bicolor simulated| 7915277 | 747.57 | 121321821| 5.7GB 127GB 1.7GB 34.6GB
Huge H. sapiens complete 31257852 654.49 | 327025224| 20.0GB 299GB 5.5GB 79.7GB




5.3 Implementation

The sequence alignment application of Sparse-Pairs iswitii a Master-Worker
paradigm using the Work Queue API. Figure 5.3 shows how thstenand worker
pieces of the work together in SAND. The piece considere@iim¢hapter is the mid-
dle operation: Alignment. Typical of the general case, trester is responsible for
transferring the serial executable and task-specific detiaet worker — in this case, the
task-specific data is a pair of sequences for which an alignswore should be calcu-
lated. The worker completes the assigned computationsransférs the results back
to the master, which sanity checks them and releases therohival storage.

The alignment master is executed by the worker with few negoents:
sand_al i gn_master align. exe cands. cand seqgs.cfa results. ovl
The user supplies only his serial alignment executable,itywats, and a target output
file that will store a list of sequence pairs that overlap aathgbout the quality of the
overlap and where the alignments occur within the sequenides two inputs are the
list of candidate pairs generated by the candidate setestep, and the actual library of
reads. The candidates can be pre-computed by a candidaté@elprogram or, with a
runtime option, computed and supplied concurrently in &lme.

With the very large size of genomic datasets, managemerdtaftubth before and

during computation is the critical challenge for this apption of Sparse-Pairs.

5.3.1 Managing the Input Data

The principal complication for Sparse-Pairs is that it ig generally feasible to
optimize a bulk transfer of data files to many nodes becausk whch data item is
used multiple times, the number of repetitive uses may b&efar than the number of

nodes. Additionally, input datasets are quite large andarget campus grid resources
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Figure 5.3. A Scalable Modular Assembler

are neither persistent nor reliable. The former limits tlffeativeness or ability to
prestage all the tasks’ data to every compute node. The lati¢s the effectiveness or
ability to carefully craft exactly which tasks will run on vwdhn resources and prestage
the appropriate task input files accordingly.

So the conventional approach [64, 88] is to prestage the {@cekly, split the prob-
lem up into as many tasks as there are resources, submittdekseas batch jobs to the
campus grid , and require the batch system to transfer tkertpat data with the batch
job.

An issue with this solution, however, is its voracious cangtion of local state. As
most batch systems require all files to be in place on subamssid remain in place
(because of the likelihood of latency, out-of-order exawutor eviction) the framework
would have to prestage locally a file corresponding to evask.t For workloads in

which sequences appear in many different candidates tramsndat the master must
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have enough disk space for many times the total data setAsszan example, Table 5.1
shows the sequence library and required task data sizesddotir workloads used in
this chapter. The task data corresponds to the amount oflttenust be sent over the
network.

To prevent excessive consumption of disk space and slowsiies) access to many
small files, at runtime the master process reads the geregjieesces into a hash table
in memory for fast lookup based on the sequence identifiee dltstraction engine
(Master) can construct tasks on the fly as the workload adsrstreaming data from
memory buffers across the network.

The hash table can be extremely memory consuming on the Mastieh also must
be active in transferring data. This potentially createimgls bottleneck at the Master’s
outgoing network link. Both the memory consumption and teémork bottleneck
can be alleviated with compressed data — in bioinformatiesalphabe{ACGT} can
easily be compressed to two bits per basepair — or multiplstdfgrocesses running
on different nodes.

For fast-finishing functions, even if the Master has sufficleandwidth the network
latency may be too great to keep a sufficient number of Workatimted. To prevent
task submission latency from limiting effective parakseti, the input data (the sequence
ID, the sequence metadata, and the sequence data for ealilatarpair) for many
separate instances of the serial program are grouped trgath task buffers.

To decrease total data sent over the network in tasks thaistaf many separate
instances, the candidate list is sorted. This allows theten&s easily group together
pairs sharing a first sequence, abbreviating the task bsdf¢hat the shared sequence

is copied only once in a task buffer instead of once for evaiy fhat includes it.
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5.3.2 Coordinating the Computation

Because of the data-intensive nature of the bioinformapgdication, the natural
parallelism of the actual computation tasks, and the striplof Work Queue’s Master-
Worker framework, most of the challenges with this abstoactpplication are data
management. However, there is one particular computdtrelenge that impacts
users’ satisfaction.

All candidate pairs are independently computable, anddiotisig a workload even
very slow machines do useful work. At the end of a workloadyéweer, slow machines
may take work that would be completed faster on other aviailadsources. In the
worst case, this can hold up completion of the workload s$icgmtly and cause a long-
tail effect at the end of the workload. Although unpredid¢althis situation was not
uncommon in the initial sets of experiments.

Even beyond the performance impact of these longs tailgdtience for slow (but
eventually completing) tasks decreases significantly ettetid of a workload. Users
following the progress of their workload are anxious to dae results, and may get
concerned about the correctness of the system if a few thaalitasks appear to be
hanging.

Avoiding long tails is the intent of the Work Queue fast abmechanism. In all
previous applications of fast abort, however, the mecmamss either enabled or dis-
abled throughout the workload — generally based on whettegetwere computation
dependencies throughout the workload. In this implemantahowever, the fast abort
mechanism is enabletlring the workload at a certain point as an end-game strategy.
This allows slow machines to contribute during most of theklaad, but lessens the

chance that they will result in a long tail in finishing.
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5.3.3 Managing the Output Data

When Work Queue tasks complete, the worker send resultstbdabk master to be
written to persistent storage (in this case, the OVL recdeddrovided as a command
line argument). Because the master may run for many hourgys, @ includes a recov-
ery mechanism for starting back up a workload during which riiaster has crashed.
The recovery mechanism in the master scans the completed€ilis (in linear time
to the number of completed pairs) for the partially-comgdetvorkload. Because can-
didates may complete out-of-order, it is not possible tgaynstart in the candidate file
at the next candidate beyond the last completed result fn@enesults file.

For each completed result, a tag consisting of the two sexguieentifiers is loaded
into a recovery hash table in memory. Once tags are loadesl/éay completed result,
the master mimics starting a new workload, with one key diffice. As the master
scans the candidate list to create and buffer new tasksgttksheach candidate pair
against the tags in the recovery hash table. The master eglgsnto create tasks for
those candidate pairs that are not yet completed (that asetthat don’'t have a tag
in the recovery hash table). Because the recovery hash itadyerequire significant
memory, and this application does not have repeated tas&getovery mechanism
removes completed tasks from the hash table as they areet@ckthe candidate file.
This process gradually reclaims memory as each of the cdetplesults is reached;
and once all completed pairs have been scanned (so the ldshstampty), the hash
table itself is freed. The remainder of the workload contimunhindered as though the

recovery mechanism was never activated.
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5.4 Evaluation and Results

Candidate selection for each of the first three datasetgidedcabove was com-
pleted on the reads using the complementary SAND modulenmiéraory required for
candidate selection was reduced from 18GB on a single cdessahan 2GB per core
across the cluster throughout the workload, ensuring stersi access to data without
costly paging to disk, and garnering speedup [86]. Aftes firocess, sequence align-
ment on the datasets were benchmarked, varying the numbesaiirces provisioned
from the Notre Dame campus grid. Those results are presemtiuls section. Per-
formance at larger scales (in terms of both data set size antber of workers) is

examined in the next section.

5.4.1 Task Size

In the benchmarks below, each task contained 5000 aligremétdwever, when
running on a sufficiently fast network, such as a local ciysésk size does not have a
significant effect on performance, which can be seen in Ei§u4.

Task size becomes more important when many nodes are flateey over the
network, as the transfer time for each task does not scaadiynwith the size of the
task. Larger task sizes pay the same overhead while sendirgyaata, and utilize the
workers better, resulting in faster run times and betteedpp. However, there are two
major downsides to increased task size. First, if the syssesspecially volatile, more
work is lost when a worker is evicted. Second, the masteregsialarge amount of tasks
to ensure that the it can quickly dispatch tasks to workeastiave returned a completed
task, or to new workers that join. A larger task size will tapmore memory per task,
increasing the memory consumption. The effects of excessgmory consumption

are discussed in more detail in Section 5.5.
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Figure 5.4. Alignment Candidates Per Task
There is little difference in workloads with different nuenb of alignments per Work
Queue task, extreme task sizes may be inefficient with makgnso

5.4.2 Scalability Benchmarks

A workload that indicates good strong-scaling efficiencit,ior a constant work-
load problem size, see its speedup scale by the same fadioe ascrease in number
of processors. A workload that indicates good weak-scadffigiency will keep a con-
stant turnaround time if both the problem size and the nurobandes are increased
by the same scaling factor. Sequence alignment demorsstratk strong-scaling and
weak-scaling in the benchmarks in this section.

Calculating conventional parallel speedup (the sequlewd-clock turnaround
time divided by the parallel wall-clock turnaround time) fo heterogeneous and dy-
namic set of resources is not meaningful, because the sesalirce has little perfor-
mance relation to the parallel resources. Further, bedtiedgenchmarks were so large
and contained so many alignments it was not feasible to ginyol all the alignments

sequentially. Instead, the speedup metric in this work tisesworkload’s average
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Figure 5.5. Scalability of Alignment on Small Genome

The small genome scales efficiently to 128 local campus grigs Beyond that, the
problem is not large enough to exploit additional paraketi.

execution time across all tasks, multiplied by the numbeasks completed as the se-
guential runtime for the parallel speedup computation.eNbat in Figures 5.11, 5.12
and 5.10, which consider both problematic and correctethimtes of workloads, the
average run time from the corrected version is used to caleldpeedup as a function
of time.

Almost all of the benchmarks exhibit scaling speedup. Ha@xezach benchmark
has features that shed light on the strengths and weaknet#es system. For the
smallest dataset, benchmarks achieved near linear spesdii@bout 128 workers
(Figure 5.5). Because this is the smallest dataset, witrtaoy nodes all the work is
completed before some nodes receive a task.

The medium dataset (Figure 5.6) yielded better resultsgdtbpoff in speedup did
not occur until 512 nodes were used. The large dataset @&l displayed similar

scalability to the previous dataset. It was able to run ondgk2s in only 9595 seconds,
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Figure 5.6. Scalability of Alignment on Medium Genome
The medium genome scales efficiently to 128 campus grid abties same institution
as the master, and scales to 512 nodes while retaining 80&tesity.
for a speedup of 455x. This dataset did highlight some of tialenges of the assem-
bly problem and of distributed computing in general. Thesediscussed in detail in

Section 5.5.

5.4.3 Banded Alignment

One of the primary advantages of the abstraction framewsoits iability to substi-
tute any alignment algorithm for the one used in the abovel@arks. So, in addition
to the benchmarks using SW, Figure 5.8 shows execution ainédium dataset with
Banded Alignment to consider how the framework adapts gnatient programs that
are considerably faster. As a result of the increased velatrerhead, scalability should
decrease, and the results confirm this — scaling speedupadporkers, beyond which

are diminishing returns.
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Figure 5.7. Scalability of Alignment on Large Genome
The large genome scales efficiently to 256 campus grid nddbs aame institution as
the master, and scales to 512 nodes while retaining almd%t &ficiency.

5.4.4 Preventing Long Tails

Although long tails are common, even identical workloadsdaentical resources
within a campus grid vary too much for long-tail conditiondxte predictable. Because
of this, in order to evaluate the fast abort mechanism a seteritical resources were
picked from a 64-node cluster in which one of those nodes veaslicapped to take
5-10x longer to complete tasks than the other nodes. Thisamaent is much more
prone to substantial delays in the workload due to a singlg slew node.

Figure 5.9 shows a histogram of completion times for 38 waakls with the Small
dataset on this set of resources. The white boxes show cotimtsrkloads in which
fast abort is not activated and the dark boxes are count®eétim which fast abort was
activated after all tasks had been submitted. Though vamsitin workload timings
didn’t result in long tails every time without fast abort,ig clear that a significant

amount of the trials took much longer to complete. Upon icsipa, every one of these
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Figure 5.8. Effect of Faster Alignment

Many applications do not need the precision of a completetlSwaterman align-
ment and can use faster alignment heuristics. This graph efogkload on the
medium dataset with faster alignments shows decreasedsliy, but retains sig-
nificant speedup over a serial solution of approximately. 60x

delays resulted from having one remaining task being coatpon the slow worker
while all other workers were idle. The version with fast abenabled to cut off a

worker after it has exceeded the average completion timeOBy 8oes not suffer from

these extreme tails.

5.5 Production Workloads on the Grid

For very large problems, the computational resources reduxceed the capacity
of the clusters comprising Notre Dame’s campus grid. Thisige explores the ramifi-
cations of running on multi-institutional resources sushr@mote Condor pools or the
Open Science Grid [2]. The primary experiments run on thgdalataset for sufficient
available parallelism, using Condor’s flocking mechanisraa example of using re-

mote grids. This section illustrates the problems that tedesign decisions discussed
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A heterogeneous environment is prone to long tails at theoémebrkloads. This his-

togram groups the runtimes of 38 identical workloads in saiclenvironment, half with

the fast abort countermeasure in place and half without. @stall of the runs without

fast abort take significantly longer than the ones in whichas turned on.

in Section 5.3, which often cannot be seen at benchmarkssaald examples of large
workloads that run efficiently when these problems are elated.

The last two subsections below describe two types of highbled workloads that
demonstrate the capabilities of the abstraction framewmnkin on a wide variety of
scales and use-cases. The first of these is a contrived @isti®) scenario that demon-
strates how a scientist may use the system to test a new mietpooduction and then
quickly scale the workload up to a multi-institutional gt@wlgenerate complete results.
The second is an even larger run coordinated from the stageganore than 1000 cores

to complete a workload of particular interest to the biomfatics community and the

public at large.
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Figure 5.10: Scaling Up to the Grid
This figure shows the timeline of a large assembly run on &sygtown progressively
from a single workstation up to a large scale grid includimgources at the University
of Notre Dame, Purdue University, and the University of \¢sin. The master is
forcibly killed halfway through to demonstrate failure caery.

5.5.1 Out-of-Core Task Data

Complete alignment on the large dataset scales at neadsrlspeedup up to 256
workers, but saw a marked decrease in performance when &&iBdgvorkers. The
biggest problem with running such a large dataset was menfdtijough the master
was running on a machine with 8GB of memory, the large dataast5.7GB. This is
loaded into memory to achieve the best retrieval times wheidibg tasks. Addition-
ally, the master buffers a significant number of tasks in mgrrand this number scales
up with the number of connected workers.

With 512 workers, the additional buffered tasks caused thsten to exceed phys-
ical memory. When the master began to need paging for itsrteslagement, perfor-
mance began to degrade. The effect of this can be seen ineFiglt(A). Because
it takes significantly longer to create the number of taskgiired, workers must wait

longer to receive their task. When running with many workeén® amount of time

83



100 100

-1 80 4 80

-1 60 4 60

Percent Done
Percent Done

1{ a0 1 40

4 20

Tasks Running and Speedup
Tasks Running and Speeup

i 120
i

0 L L L L A 0 0 H L L L L L L 0
0 2000 4000 6000 8000 10000 12000 0 1000 2000 3000 4000 5000 6000 7000
Time (seconds) Time (seconds)

Tasks Running Pct Complete mnn Tasks Running
Speedup === Speedup ===

Pct Complete

(A) No Compression (B) Compression

Figure 5.11: The Effect of Data Compression.
These graphs show the effect of data compression on the maadidity to dispatch
tasks using the large dataset. Each shows a timeline of desmig, with the number
of tasks running, the cumulative speedup, and the percenplate over time. Figure
5.11(A) does not use data compression, and oscillates bat@@0 and 400 tasks run-
ning at once, reaching a speedup of slightly better than 308gure 5.11(B) uses
compression, and stabilizes at about 500 workers with adygeef about 500x.
necessary to give tasks to all the workers is longer than ith@uat of time it takes a
worker to complete this task. This creates a convoy effebereworkers are spending
more time waiting to be processed by the master than theydspetnally working. This
explains the large variation in the number of tasks working.

Figure 5.11(B) shows how the same job ran on 512 workers wathpgression en-
abled. Once the amount of memory needed can be kept withiptthsical memory,
the master is easily able to keep up with the workers requgstisks. In this case,
the number of workers running at any time remains relatieelygstant, subject only to
minor fluctuations, mostly caused by changes in the numbewndfers active.

This continues to be necessary even as resources scalehutheitlata set sizes.
For example, the master for the human dataset was run on aimeaeith 32GB of
RAM, which was enough for its 20GB requirement. Without coegsion, however,

that requirement would have been far exceeded even therta@geory machine’s core

memory.
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Figure 5.12: The Effect of Splitting Masters.

When using a sufficiently large number of workers on the ldagaset, the master does
not have enough network bandwidth to keep all of them busgseTfigures show a

timeline of a single run with approximately 950 workers gsame master (A) and two

masters (B). With a single master, workers complete falstar the master can dispatch
new work, so not all nodes can be kept busy processing at ande¢he speedup reaches
less than 400x. With dual masters, peak speedup reachedégihe settling out about

700x. Note that the unequal rate of completing work in (B)sesuthe dropoff beyond

3000s.

5.5.2 Waiting for Task Assignment

When a master has many workers connected to it, it takes tlstemimnger to
assign tasks to all the workers in round-robin fashion. $ktassignment is slow, it
can take the master longer to assign tasks to all workerseptiol than it takes for
an individual worker to finish its task. The same symptomseapfs in the memory
case above: workers spend more time waiting to be given neks tidnan they spend
working, and efficiency suffers. In this case, the main peabls waiting for the master
to transfer task data to every worker. To exceed the numbenaxthines available
in Notre Dame’s Condor pool, machines are available froneotdomputing pools on
campus and other institutions’ Condor pools, particuldlydue University and the
University of Wisconsin.

Resources beyond the local campus grid, however, introsligedficant data trans-
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fer complications due to reduced throughput capacity. @/téta transmission to ma-
chines at Notre Dame averaged of 42.29 MB/s (meaning datatésk could be trans-
fered in only a few hundredths of a second), data to Purdule aoncaverage of .36s,
and data to Wisconsin was even slower, at .53s per transfea. with 900 submitted
workers for a single master with 5000 candidates per taskatierage transfer time was
0.27s. 835 workers completed tasks, with the others fattirfgnd an available campus
grid resource or exiting after starvation. This means thexaye time to transfer files to
all 835 workers was 225s, which is greater than the typicH tmmpletion time.

Ideally more nodes with fast connections could be addedangybf machines at
other institutions, however this is not always feasible mpas grids are often at the
whim of voluntary contributors and institutional budgelts.order to take advantage of
remote computing resources that have slower network teanishes without compro-
mising the efficiency of a workload, one mechanism is to divice workers between
two controlling masters, balancing the slow connectiortgvben them. This is not an
ideal approach, as it requires splitting the list of cantidaairs half and running the
master program on two separate machines with the same Issaqpfences but differ-
ent halves of the candidate pairs list. When using two masterthe above workload,
sending data to 450 workers each averaging 0.27s per task taky 121s, so both
masters were able to work efficiently.

Figure 5.12(A) shows a timeline of workers waiting rathartractively computing
associated with this problem for a similar job with 950 sutbed workers, while Figure
5.12(B) shows the smoother two-master version of the samklear. The maximum
number of workers running tasks at a time was 921 with two erast

The multiple-master technique is not limited in applicatto workloads with large

number of workers with slow connections. Various other eystesources limitations
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can cause workers to experience starvation even if netwmekds are fast enough to
support all workers. For instance, many Linux systems hare limits on file de-
scriptors open by a process (usually 1024), and users mighhave root access to
increase this limit. Using multiple masters multiplies ti@amber of connections, and
thus supportable workers, in this case.

In the future, instead of running multiple masters as sdphranvoked user pro-
grams, the masters themselves could be Work Queue tasHKsislcaise, a single hier-
archical master would be invoked by the user, which woulddsponsible for starting

masters as Work Queue tasks and dividing work between them.

5.5.3 Growing From Desktop to Grid

This subsection presents an example that is contrived -ighah actual domain
scientist did not proceed through this set of steps atedbud him, instead applica-
tion developers performed actions typical of an exploratere case for the abstraction
framework. This scenario serves not only to illustrate adgbuser’s actions, but also
to demonstrate all of the features and flexibility of the feamork: adaptability to many
types of resources (local execution, execution as a cljmelexecution on a campus
batch system, execution as part of a multi-institutionabrece pool); fault-tolerance
to failures on the worker nodes; and fault tolerance to fadwon the master node.

As in many fields, research in bioinformatics is highly exptory. An active re-
searcher may test many slight variations upon an algoritdpgnerating a number of
tests of various sizes before proceeding to analyze aneetiditaset. Because Work
Queue does not require a predetermined set of workers, amegislowly generate
small results, then progressively add resources as cowfdisngained. Figure 5.10

graphs such progressive growth for this contrived example:

87



TABLE 5.2

SUMMARY OF MULTI-INSTITUTIONAL WORKLOAD

Tasks| Average Runtime (s

Total 16936 184.1+ 53.8
Notre Dame| 7998 215.34+-46.4
Purdue 7760 154.0+ 40.8

Wisconsin | 1232 170.1+ 56.2

With the master running a scientist started a worker proceshis workstation.
After a few minutes, he surveyed the progress and deterntimstdthe results were
promising, but serial execution would not be sufficient, sabked a coworker to start
a worker on her own machine, and also prepared and submitteé vatch jobs to
his research group’s 32-node cluster. As these jobs stautedng, speedup increased
accordingly. Hoping to finish the alignments that afterndo& submitted jobs to the
campus computing grid at Notre Dame, followed by submissior€Condor-based grids
at Purdue University and the University of Wisconsin. Abbalfway through the com-
plete assembly, however, he accidentally killed off the terasausing the computation
to halt. Fortunately, when the master was restarted, itddaall of the complete re-
sults, accepted connections from the still-running waskand continued where it left
off. The entire assembly completed in just over two hourghvai speedup of 269x
and a maximum of 680 CPUs in use at once. Note that the low spestbuld not be
alarming, because of the gradual nature in which the wonkers added, and because
it includes the unproductive time during the crash in thedtedf the job.

Table 5.2 summarizes the work distribution across sites. thkks running at home
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were slower and exhibited more runtime outliers, becausedbal campus grid in-
cludes a large number of scavenged resources compared withhomogeneous ded-
icated grid resources at the other sites.

Even making many connections over the WAN, the master wialske to maintain
a steady task throughput with machines at three differestitutions. The scalability is
strong — taking into account that the final speedup is notatfte of the final state of
the workload — and with an improved wide area network corniardr a larger number
of local resources available even more resources could ime$sed. Additionally the
multiple-masters technique used before to demonstratéuiagoto insufficient net-

work bandwidth will still be advantageous.

5.5.4 Many-Node Runs on the two Largest Datasets

When there are not enough local machines, so resources ttmmiastitutions are
used (thus significantly increasing the master’s transfiees to each worker), using
two masters on a single workload shows scalability beyoadl $ben in this section’s
first scenario. Using multi-institutional resources, Smiaterman alignments were
computed for the large dataset — 121 million candidate geors a set of 8 millions
sequences — in under one and a half hours. For comparisosathe workload serially
would take over 57 days on an average resource from the cagniolysool. Figure 5.13
shows a peak of almost 1300 resources harnessed, sustawetzidbove 1000 for an
hour during the workload, and a final speedup of 927x at 71.8fallel efficiency.

Finally, the last workload demonstrates scaling beyona é¢le large workload. A
complete alignment of the Human genome [125] — 32702522didate pairs from
a set of 31257852 sequences — was computed in 2.5 hours Ww2dgbdes with one

master. The pool of resources was limited to 1024 nodes bedhis was the maximum
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Figure 5.13. Multiple masters at grid scale

This figure shows the timeline of a 121M candidate run on thgelgequence set us-
ing approximately 1300 workers at two institutions sepadaby a WAN. Two masters
support almost 1300 at peak and use 1000 or more workers stengly for most of the
90-minute runtime, totaling a speedup of 927x.

supportable number of connections on the machine where #stemwas run, but the
master process could have supported 3000-4000 workersnis tef network transfer
performance. The resources were all located on the locabuamrid at one institution,
so there was no detrimental effect of transferring data dwerWAN, although they
came from several different resource pools on campus. €igur4 shows a peak of
over 1000 cores harnessed (the theoretical maximum giveenumber of available file

descriptors), sustained peak levels once the peak is reaahé a final speedup of 952x

at 93.0% parallel efficiency.
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Figure 5.14. Human genome at scale

This figure shows the timeline of a 327M candidate run on tlgelsequence set using
1024 workers on the Notre Dame campus grid. The master stgoptirworkers at
peak, and sustains peak performance for over two hours duhe run, totaling a
speedup of 952x.
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CHAPTER 6

DATA-SPLIT-JOIN ABSTRACTION

6.1 Data-Split-Join Abstract Problem

The Data-Split-Join problem is an example of a computatian i straightforward
to write up on a chalkboard, but not so easy to implement f@liegtions that must
manage gigabytes of data splits to campus grid nodes, hdsdfecomputation tasks,
and a summary operation that of a collective join across gpoangrid. This chapter
discusses the design, implementation, and deploymentalbstnaction for Data-Split-
Join, particularly as applied to a general data mining aagilbn.

An abstract Data-Split-Join problem can be defined as faiow

Data-Split-Join( D, T, P, N, F, C ) returns R:

D - Primary (Split) Dataset: list of (hame,properties)

T - Secondary (Join) Dataset: list of (name,properties)
P - Partitioning method.

N - Number of partitions.

F - Function.

C - Collection process.

R - Result set: list of (name,class)

The Data-Split-Join workload starts by dataset D into pssde which creates N

partitions D1...DN. These partitions are the initial infntb N copies of F in parallel.
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Once a function has completed its computation on the pamtaf D, it then completes
a computation on set T, generating results R1...RN. Reauddtgoined by collection
process C into a final result R returned to the user. The fandiiis simply an existing

sequential function with the following signature:

F(D, T)returns R:
D - Partition of primary dataset: list of (name,properties)
T - Full secondary dataset: list of (name,properties)

R - Result set: list of (name,class)

Although Data-Split-Join has many more parameters as amaabgroblem than
All-Pairs or Sparse-Pairs, its implementation can be bmal@vn in the same way. The
first consideration is how to appropriately partition thésets (that is, manage the input
data) for learning. As with the previous abstractions, niodethe problem, managing
the input data, and coordinating the computation are mieed — part of what makes
a general problem solvable with a computing abstractiohas$ the design decisions
are interrelated in clear patterns. Thus, the subset joauitig approaches will often be

coupled with corresponding approaches for coordinatiegcthmputation.

6.2 Application of Data-Split-Join

6.2.1 Challenges of Data Mining Large Datasets

In recent years increasingly massive datasets have beca@iatde from scientific
research and data collection on humerous real-world agjmbics. The large increases
in dataset size and complexity taxes data mining algorithnasthe computer systems
they run on. Dataset sizes that exceed the memory capaditylesktop computer, in

particular, are a continually expanding challenge if dataxgmuch faster than memory
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capacity.

Parallel and distributed data mining [74] systems have baltk the wall of data
with scalable implementations of various learning aldors, allowing a capability to
scale to massive datasets. As a benefit, sampling [30] aredrdade methods [27] can
even gain a significant improvement in accuracy in such systeBuilding on these
successes, workloads have been applied across even |astydauted systems [24, 53,
62, 75, 95, 117].

But, as with many such developments, there have been twdyrdigjoint ap-
proaches. The projects that have successfully scaled gerlaystems [21, 50], by
and large, have done it with application-specific desigr iamplementations. The
implementations are often limited to highly-reliable ¢krs, or complicated to design
without expertise in distributed computing. On the othdesigeneral-purpose systems
may require less effort from the programmer and/or user bilicannot scale beyond

several Gigabytes of data [52].

6.2.2 Ensemble Methods for Classification

Ensemble classification is a general divide-and-conquer ohéning technique in
which a classification decision is reached through the soalece of several indepen-
dent classifiers, each of which was learned on a differensetubsf the training data.
This problem lends itself to parallelization. In the paghtiase, a dataset is partitioned
across a group of processors. Each of those processors kafassifier concurrently,
and a central processor coalesces these disparate clasasfi@n ensemble.

There are numerous variations for how to construct the ehkefrom the separate
classifiers. For this work it is asserted that the independessifiers are applied to

the testing set on the same parallel nodes they are alreaaiyngyi Their votes are
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collected by a process running on the central processochwtvalesces them with a
majority vote. By structuring the problem this way, enseenblassification matches
the signature of the Data-Split-Join abstraction; thentrey set is the primary dataset
D and the testing set is the secondary datéset

Ensemble classification can benefit both performance angdaoe of a workload.
An attractive characteristic of ensembles is that they cedine computational com-
plexity of the problem (oftem problems of sizen are easier to solve than one problem
of sizemn) which also decreases the hardware requirements for gptii problem.
Smaller training sets also decrease the risk of an indutdammer overfitting as it tries
to model the entire training set. And because each indepectiessifier learned on a
different small subset of the data, the classifiers are gejawhich can also improve
overall accuracy.

Parallelization of ensemble classification doesn’t distirany of these advantages,
and it gives the additional benefit of computing the smalepehdent classifiers at the
same time. The Data-Split-Join abstraction allows dataersimo scale up the gen-
eral pattern of ensemble classification efficiently on saverales of resources from a

campus grid.

6.3 Implementation

6.3.1 Managing the Input Data

There are many possible ways to implement Data-Split-Joia parallel or dis-
tributed system. An implementation must choose how to uskesdor computation,
how to use nodes for data, and how to connect the two. Figlrsitws several possi-
bilities, differing only in where data is placed in the syste

Like All-Pairs, data movement and placement is criticadese network and file
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Figure 6.1: Four Implementations of the Data-Split-Joirsgéaction

This figure shows four possible ways of implementing the {Salé-Join abstraction
by varying the placement of data and functions on the nodéseo$ystem. Rounded
boxes show the boundaries of one node in the system, whidiotiaa CPU and local
storage. For example, in the Pull implementation, the piami function P reads the
training data D and writes the partitions D1...DN back to tteme node. Each of the
functions F run on separate nodes and pull the data over tih@ar&. But in Push, the
partition function P reads the data D from one node and writespartitions directly
to the execution nodes, where the functions F read the lagal.d-ull details are given
in Section 6.3.
server access is a key limitation at large scales. UnlikePalirs, there is little to gain
from putting all data everywhere, because each partitignires only a subset of the
full data.Even if many separate partitions will be computedeach node, this still
requires solving something akin to the partitioning prablen each individual node,
because the function must be able to address and accessdifscgpartition from within
the full dataset.

Streaming. The simplest implementation of Data-Split-Join conneetsheprocess
in the system at runtime viastreamsuch as a TCP connection or a named pipe. Data
only exists in memory between processes and, except for soimenal buffering, a

writer must block until a reader clears the buffer of datae Shmplicity of avoiding the
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disk, however, results in the requirement that all proce$seready to run simultane-
ously. It also affords no simple recovery from failure — ifeoprocess or stream fails,
the abstraction has two options. It can either perform aisegmt collective communi-
cation to determine what data has been distributed, thempamarhat to the entire data
set to determine the contents of the lost partition, or it gae up and retry from the
beginning. Neither of these is attractive if failures arencoon, thus, Streaming is ap-
propriate only in very select cases. One such case is anmngpltion for a multicore
machine with the number of partitions less than or equal ¢éorthmber of processes.
Except for very small workloads, Streaming is not practial larger clusters or a
campus grid where the possibility of network or node failisevery high. To make
the abstraction robust, the implementation must make us®me storage between
processes.

Pull. In thisimplementation, P reads data from the source nodevates partitions
back to the same node. When the various Fs are assigned tg @eYsonnect to the
source node anpull in the proper partition. This provides maximum runtime flebdipi
as there is no constraint on where an F may run. Because estiopas stored on
disk, individual Fs may fail and restart without affectirtgetrest of the computation.
This places a significant 1/0O burden on the source node in tiahpartitioning and
computing stages, however. The technique may be apprepoiea cluster with a large
central file server, but is not likely to scale to a campus gfidny significant size.

Push. In this implementation, P choosesadvancewhich nodes will be responsi-
ble for working on each partition. As it reads data items fritni@ training set, they are
pushed outlirectly to the assigned nodes. The Fs are then dispatcheddoution. In
“Pure Push”, each F must run only on the node where data isddcal his may not

be possible in the absence of dedicated resources, as tianmay have been dynam-
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ically assigned to an unrelated task. “Relaxed Push” isghsiiariation that resolves

this, where each F prefers to run on the node with its pantibat may also run on

another node and access that partition remotely. This tgahrcan improve the per-

formance of partitioning and the overall I/O rate as the nandf nodes increases. The
value of the Relaxed version is particularly significant witentention for resources is
high.

Note that relying on nodes from the campus grid for data aceek increase the
exposure of the system to failed, slow, or otherwise misbielgedisks, which are sur-
prisingly common across a large computing pool. This is atkagieoff between the
reliable (but possibly underprovisioned) central servet a set of remote resources.

Hybrid. To address thémitationsof Push and Pull, a fourth implementation, Hy-
brid, is designed with thetrengthsof each. In this mode, P chooses a small set of
intermediate nodes known to be fast, reliable, and of sefficcapacity to write the
partitioned data. At runtime, each F then reads its parntitieer the network from these
nodes. This combines advantages of Pull (flexible allooatioCPUs, reliable parti-
tioning) with advantages of Push (increased 1/O perforrandowever, it requires the
implementation to have some knowledge of the reliabilitythe underlying system,
which may not always be possible.

Even once a general pattern for data distribution to thetiooaf the computation
is establishes, there is still the matter of the actual ppaning mechanism. There are a
number of different partitioning techniques for the traigiset, each again with certain
tradeoffs.Shuffleselects data items one at a time and sends each to a randatiomart
resulting in roughly equal-sized partitions. These piarti are unlikely to be corrupted
by the structure of the input data (if the instances are dofte instance), however this

comes at the cost of having to make a separate decision foy sigyle instance. A
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shuffle partition may also bel-overlapping in which an item may appear in M parti-
tions, allowing for more accurate sampling of minority das but increasing data sizes
and runtimesChop on the other hand, does not make separate placement aedigio
each instance, but rather divides the training set into lqgjeaes, preserving the exist-
ing order. For the ensemble classification applicatiors, ihtypically only appropriate
when the data is pre-randomized, or when the user wisheptodece runs exactly, as

any inherent structure or organization in the training saymorrupt classifiers.

6.3.2 Coordinating the Computation

The source node running the Data-Split-Join abstractioagponsible for several
tasks: partitioning the data, configuring local state torgethe batch jobs, submitting
the batch jobs, and collecting the results after all jobseheampleted. The remote
nodes on the campus grid are responsible for executing tiedifun instances and gen-
erating the prediction output.

Local state requirements include an execution directbgyprimary and secondary
dataset definitions required by all functions, and the babthdefinition files. The
secondary dataset (and other shared metadata, such .asahes dataset definition)
is not replicated on the local disk, but rather shared efiitye The job definition files
are created after the data partitioning, and the batch jobsabmitted using these
definitions.

Within the batch jobs themselves, there is a hierarchicalitecture of processes.
The batch job that is run on each remote node isnthegpper, a standard piece of code
that is the same for all instances of the ensemble classificapplication of Data-
Split-Join. The wrapper is responsible for setting up thecexion environment on

the remote compute node, then executingftimetion The function is a user-provided
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application-specific piece of translational middlewarke Tunction executes the under-
lying executable (thapplication) and maps application-specific output to the structure
expected by the wrapper. The function allows execution gfiarderlying application
without having to change core pieces of the abstraction dwaonk. After the func-
tion is complete, the wrapper is again responsible for enguhat all items are in the

required places to be picked up by the batch system.

6.3.3 Managing the Output Data

Collection is the process of managing the output data, which consistegty of
the results from each function. In the case of ensembleifizd®n, the results are
the votes from each individual classifier on each instandes $ection considers two
approaches for collection, each of which is vaguely analsdo one of the partitioning
methods in terms of the order in which it accesses and maatgsithe data.

The first, by-file is analogous to chop partitioning. The algorithm comddtes
entire results file for one function at a time, maintaininglarglity-determining data
structure for each instance in the secondary dataset. Alftéites are processed, each
data structure contains the combined final result. The dvacauracy, accuracy per
class, and other important data mining statistics can bgated from these data struc-
tures. As the number of instances in the secondary datagetises, this version needs
more memory to maintain data structures for each instanegndfly requirements scale
by a factor of the product of the number of secondary datas¢tinces and the number
of classes in the dataset.

The alternative, collectingy-instanceis akin to shuffle partitioning. The results
files for all the functions are accessed concurrently, anlg one data structure is

needed as each instance is tallied serially across alltselds. Memory for this
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version remains constant as the number of instances iregeamce the memory re-
quirement is only a factor of the number of classes in thes#aita®DOn the other hand, it
requires more files open at once and accesses individudtiséses less efficiently.

An abstraction may decide the tradeoff between file res@aceessed concurrently
and memory used for concurrent tallying data structures. datasets that have few
classes, concurrent data structures for each partition finémory easily even when
the test set is large. However, for very large numbers ofsela®r very large numbers
of instances in the secondary dataset, it is possible focaliection to exceed main
memory capacity.

Because the largest collection memory requirement of ataseatested in the eval-
uation below was less than 100MB, all of the results use leyefilllection. Note that
another concern could be the transfer of all prediction fil@sk to the submitting node,
however because the largest set of prediction files wadesdlthan 10MB of output it

was not necessary to use separate file server or distriblgegdiem.

6.4 Evaluation and Results

This section summarizes the results of the large number péraxents — across
datasets, algorithms, and system sizes — to evaluate tfegrpance and scalability of
the Data-Split-Join abstraction implementation as apglieensemble classification.

The platform used as testbed to evaluate the performancscatability character-
istics of Data-Split-Join is the same institutional congool as described in Chapter 3.
Although the pool as a whole is a campus grid with limited colfor the user, in con-
ducting the experiments a 48-node subset allowed diredtaorrhis allowed more
power over the environment (e.g. reliability of resourqa®prity status for execution).

The machines in this dedicated cluster are dual-core 648gitarchitectures with ei-

101



TABLE 6.1

ATTRIBUTES OF DATASETS

Dataset Training Instances Test Instances Attributes
(Size on Disk) (Size on Disk)
Protein | 3,257,515 (170 MB)| 362,046 (20 MB) 20
KDDCup | 4,898,431 (700 MB)| 494,021 (71 MB) 41
Alpha 400,000 (1.8 GB) | 100,000 (450 MB) 500
Beta 400,000 (1.8 GB) | 100,000 (450 MB) 500
Syn-SM | 10,000,000 (5.4 GB) 100,000 (55 MB) 100
Syn-LG | 100,000,000 (54 GB) 100,000 (55 MB) 100

ther 2GB or 4GB of total memory (1GB or 2GB per core, respetyiv Jobs were

instructed to prefer this cluster over other nodes whenalviz.

6.4.1 Datasets

The data for these experiments is a combination of real amthsetic datasets
with varying dimensions covering a wide range of sizes. Thadh dataset is real
data describing the folding structure of different aminadag the task is to predict
the structure of new sequences. The second dataset stams$hieo1999 KDD-Cup
(htt p:// ww. si gkdd. or g/ kddcup/ i ndex. php) and contains real network
data; the task is to distinguish the “good” instances of néttraffic from the “bad” in-
stances (intrusions). The next two datasets, Syn-SM aneL&ynvere produced with
the QUEST generator [5] using a perturbation factor of 0.08 function 1 for class

assignment. The last two datasets, Alpha and Beta, are fet@nthe Pascal Large
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Scale Learning Challenge These were included in order to have an appropriate set
for support vector machines, as the other datasets regsigedicant SVM parameter

changes even on much smaller subsamples than were usedh&viathier algorithms.

6.4.2 Algorithms

Three traditional learning methods were used to evaluaeatistraction frame-

work’s scalability:

e Decision trees (popular C4.5 implementation [103])
e SVMs (efficient implementation [70])
e K-nearest neighbor classification (implementation by KarsSteinhaeuser)

The algorithms cover a range of computational complexgied rank among the
most popular learning methods. For decision trees and stippctor machines, they
were configured with the default parameters provided by #@spective implementa-
tions. Fork-nearest neighbor classification there wére= 5 neighbors. All of the
algorithms were compiled for 32-bit x86 systems with+ v3.4.6 using optimization
-03.

These algorithms naturally fit the distribute-computdexdl paradigm. However,
it is worth noting that with only minor modifications to thestaction, other learning
methods could be accommodated, such as Distributed K-M&assering [69] or find-
ing frequent itemsets using Apriori-Based methods [135]iclw may require multiple
distributed stages.

The scalability experiments covered the range from 1 to 1@&es for the five
smaller datasets. With Syn-LG the memory requirementsdohendividual partition

are much larger, so 48 to 256 nodes are used with that datasek-nearest neighbor

http://largescale.first.fraunhofer.de/
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classification, the test set size was 1,000 instances fosyththetic datasets and to

10,000 instances for all other datasets to keep computtgasible within the system.

6.4.3 Partitioning and Collection

In large clusters or across a campus grid, data would idéalf?Pushed to a num-
ber of remote nodes equal to the number of partitions to miaerparallelism. Fig-
ure 6.2(a) shows, however, that chop partitioning to a lagaber of remote resources
begins to reduce performance due to moving beyond homogendasters and en-
countering a greater variety of hardware. Shuffle partitigrhas its own drawback in
the larger environment, because it requires remote commscio remain open to every
remote node throughout the entire partitioning.

Figure 6.2(b) shows that remote partitioning even to a miosietsof reliable nodes
is faster than local partitioning, without the pitfalls ofi$hing data to unreliable envi-
ronments.

Figure 6.3 shows the time required to collect results of &ibisted ensemble of
classifiers using these two approaches, varying the numbgartitions. The input
data is the set of prediction files from a run of the KDDCup datsosen because
it the largest by-file memory requirement among the datgsgigroximately 91MB).
However, even this dataset does not result in significant@wndue to prediction files

being too large to collect in-core.

6.4.4 Campus Grid Execution

The primary thrust lies in the scalability analysis movingybnd the component
benchmarks to larger executions. Figure 6.4 shows the éradime for decision trees,

k-nearest neighbor classification, and support vector maslhon multiple datasets for
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Figure 6.2: Performance of Partitioning

6.2(a) shows the time to partition 5.4GB of data into 256 parts on a single local
disk or a varying number of remote disks. Figure 6.2(b) shtvestime to partition
5.4GB of data into a varying number of partitions, using agéelocal disk and writing
to 16 remote disks
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Figure 6.3. Performance of Collecting

This figure shows the time to collect classifier output (3.2MBpartition) from each
of a varying number of remote disks. By-file collection useg® of memory, while
by-instance uses less than 1KB.

varying number of partitions. Within the grid of plots, rowsrrespond to datasets and
columns correspond to learning algorithms. Each indivighlat contains three lines
for the different data distribution methods.

The results for Syn-LG with decision trees and k-nearegihi®rs are omitted for
space reasons as the trends observed are very similar t8Byaitbeit at a larger scale.
In addition, for massive datasets it is difficult to measuwsiPpartitioning. This task
is feasible for smaller datasets and controlled envirorisydaut becomes more difficult
as the size of the dataset or number of hosts and diversihed\ystem increases.

Decision Trees. The first column of Figure 6.4 shows strong parallelizaypitf
decision trees across all datasets. In most of the expetsyitie data distribution does
not significantly influence the execution time through 16 ®mpartitions, demonstrat-

ing extensive, though not exclusive, use of the 48-nodecdéetil cluster. Beyond that
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threshold, performance diverges as jobs begin utilizinglistble, heterogeneous nodes
from the campus grid. Even beyond the cluster/grid threshwobdwever, there are im-
proved turnaround times for several algorithms using theridlyapproach.

As an example of a case where additional parallelismnaditiprovide any added
benefit, the KDDCup plot for decision trees shows that no owements in execution
time are achieved beyond 32 partitions. For decision treeauiticular, the small work-
loads result in very minimal classifier training times. Indéobn, smaller jobs yield
more relative overhead and higher costs to complete thal staiges of the process. It
is unsurprising, then, that almost exactly the same amautine is required for the
execution phases when exceeding 32 partitions. For instataubling the collection
time (twice as many predictions to process per instanca)imes) more time than is
saved by the marginal improvement in execution time affdrolethe resources.

Another factor impacting the scalability of executionshis tlata set size. The Syn-
SM set continues to improve execution time using Hybriddigto128-way parallelism,
whereas a smaller dataset, Beta, achieves limited funtin@ravement beyond 32 nodes.
The primary difference here is that for small data setshimrpartitioning results in no
effective gain when balancing batch job execution time mgfaadditional overhead
from greater parallelism (partitioning, collection, anakth system overhead).

For almost all configurations the Hybrid approach yieldeattst turnaround times,
and Pull yielded the longest turnaround times. Combinirgattivantages (and mitigat-
ing the disadvantages) of the Push and Pull techniquestisydarly apparent for the
larger datasets and as the number of partitions gets larger.

K-Nearest Neighbor Classification.The results in the second column of Figure 6.4
also show encouraging trends in execution time with redppabie number of partitions.

All datasets observe consistent improvements in exectitiwhile staying within the
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Figure 6.4: Scalability of Classifiers from a Cluster Sulisghe Campus Grid

This figure shows the runtime of executing Data-Split-Jairfive different datasets
with decision tree and k-nearest neighbor classifiers. Eamffiguration is scaled up
from 1 to 32 nodes on a homogeneous reliable cluster, and upeto 128 nodes on
a campus grid. Each abstraction is run in three differentfaurations: Push, Pull,
and Hybrid, as shown in Figure 6.1. Each graph shows the numbkeosts on the X
axis and the execution time in seconds on the Y axis. Geyneadlaking, the hybrid
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Support Vector Machines
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Figure 6.5: Scalability of Support Vector Machines

This figure shows the runtime of executing Data-Split-Jointlee Alpha and Beta
datasets. Results for SVM are not shown on the first threesdegtdrom Figure 6.4,
because the algorithm does not converge.

small cluster (up to 32 nodes) and with one exceptions also &4 partitions. Only
for 128 partitions is there increased execution times iresg\cases, most notably for
the Push method. This behavior is due to some jobs gettimgglan slower machines
in the campus grid. In addition, the plots only show timesdoccessful runs, but it
is worth noting that with Push it sometimes took severalnapts to complete the task
without experiencing a failure.

The aforementioned tradeoffs are also apparent in theséses particular with
dataset Syn-SM. Neither Push nor Pull are able to improvery4 partitions, and
in fact both achieve significantly worse performance. Haosvethe flexibility of the
Hybrid method allows it to efficiently distribute data andmaoutation, resulting in ad-
ditional gains when going to 128 partitions.

Dataset size should also be taken into consideration whismndiing the appro-

priate configuration for a given problem. For smaller datsste choice of data distri-
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bution method is largely irrelevant, as all three lines exthiery similar behavior. But
for large problems the Push and especially Hybrid modelbatter suited as using the
maximum number of available partitions achieves the bedbpeance and therefore
is advisable.

Support Vector Machines. As shown in the right column of Figure 6.4, support
vector machines exhibit behavior different from the otHgoathms. Most notably, the
majority of experiments do not achieve the best executime fior the largest number
of partitions. And with SVMs this is not only due to heterogéwy in the campus grid,
but also to the strong dependency of the algorithm runtim#hercharacteristics of the
data.

Once again, the data distribution method is less of a fabim the amount of par-
allelism in determining the execution time, although th# piethod is consistently the
worst performer. In the actual executions there was also@etecy towards a smaller
number of partitions to achieve the best result than ther@lgerithms. More specifi-

cally, the best performance was achieved with 8 to 16 pamtin all configurations.

6.4.5 Accuracy

Itis generally established that ensemble learning caritri@esmproved accuracy [27].
The fundamental goal in this chapter is to work with that agstion and evaluate the
systems aspects of distributed data mining. For the expetisnthere are primarily
synthetic datasets, and therefore observe only modesbiraprents.

Figure 6.6 shows the trends for each classifier on all apipliéceatasets. In most
cases, accuracy is quite stable with an increasing numbgartifions. Exceptions are
increased accuracy for decision trees on the Alpha and $§d&asets, and decreases

for decision trees on the Beta and the 8-partition k-neareisthbor for Syn-SM.
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Figure 6.6: Trends in Accuracy with a Varying Number of Raotis.

6.4.6 Generalization

Let the evaluation conclude with Table 6.2, a set of gendvakorations about the
tradeoffs in switching from a well-controlled subset of angaus grid to the entire pool

at large.
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TABLE 6.2: EMPIRICAL ANALYSIS OF TRADEOFFS BETWEEN DIFFER¥T CRITERIA

Cluster Campus Grid
Pull - chop is necessary for large number of partitions | - chop is necessary for large number of partitions
- for large clusters, submitting node can become a | - for large clusters, submitting node can become a
bottleneck as the data server bottleneck as the data server
- worst turnaround time in most experiments - less concern about heterogeneity (fast nodes run
bigger share), reliability (data not on remote nodes)
Hybrid | - shuffle is preferred partitioning method - shuffle is preferred partitioning method
(can randomize, overlap, etc.) (can randomize, overlap, etc.)
- less risk of bottleneck in large clusters where - not reliant on central file server during execution
submitting node has limited resources - best choice for turnaround for most configurations
- sweet spot trading off parallelism for robustness (mitigates disadvantages of the other two methods)
Push - good for small runs with limited parallelism available tradeoff between partitioning robustness (chop)

- shuffle is preferred partitioning method
(can randomize, overlap, etc.)
- good for algorithms with super-linear complexity
- brittleness less concern in controlled environment

and performance (shuffle)
- tradeoff between parallelism and reliability (more
available resources but less reliable on full campus ¢

rid)



CHAPTER 7

CONCLUSIONS AND BROADER IMPACT

As distributed computing, particularly cloud and grid camipg, has become more
widespread, there has been an increase in interest in efi@ti®for scaling up repeat-
able patterns of work to larger systems for tackling largebfems. Patterson [94] has
proposed that abstractions will be the assembly languadarfye distributed systems.
This dissertation has explored how abstractions can be tosedprove the usability,
performance, and efficiency of a campus grid to scientists large, sometimes data-
intensive, computational workloads.

Unlike arbitrary workloads, abstractions are designedhhie high level structure
of a workload in mind, and it is feasible to accurately modhel performance of large
scale abstractions across a wide range of configuratiomse &t stractions will be able
to target provably optimal solutions, particularly on pdble systems. In general,
though, these models aim for an execution that avoids d@astonfigurations that
get poor performance, waste resources on unproductive,taskl potentially slow or
disable resources shared with other users. Computing widtibatraction is more likely
to result in an efficient execution that fits the data and cdatpmn requirements.

This work also examines several considerations that mushde when design-
ing any abstraction for campus grid computing. Resourcecsieh, data distribution,
memory and disk management, job size selection, recovem failure, and other

topics addressed within the context of the specific abstrasin Chapters 4-6 will be
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encountered by abstraction frameworks for almost any prablIThis work discusses in
particular some of the building blocks — and stumbling bkekor designing abstrac-
tions for computing on a campus grid. While cluster commibave been well-studied,
and grid and commercial cloud computers have recently bgmpalar field, campus
grids have emerged as an architecture available to mo#uitnshs with minimal ad-

ditional infrastructure required beyond the computingreses they already own for

various purposes.

7.1 Choosing the Right Abstraction

The All-Pairs, Sparse-Pairs, and Data-Split-Join abstmas provide high level in-
terfaces to a distributed system, improving both perforoeaand usability compared
to the conventional solutions that are likely to be devetbbeg scientists without dis-
tributed computing expertise. These are not universarattsons, however, and there
are other abstractions that satisfy other kinds of appbtoatfor which the three pre-
sented here would not suffice. For example, Wavefront [123] & an abstraction for
a recurrence relation pattern that has different propeftem these problems such as
task interdependencies. Thene problems, however, that could be solved by multiple
different abstractions: so how can a user decide which atistn to choose?

The formal relationship between different abstractioms, how to choose amongst
them, remains an open problem in the field and an opportuortjuture work. How,
then, can a user choose which one to use for a given problemfarSihe abstrac-
tions toolbox has been developed by working closely witlepbal users to choose and
develop the appropriate abstraction for their needs. Wighgrowing suite of abstrac-
tions, though, it is becoming important that users in vagitialds can select the right

abstraction from the toolbox based on their knowledge af then problem.
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The intent of providing abstractions is for the user to definarge workload in a
simple manner. The user should be able to use codes thatrgreinglar or identical
to their serial implementations. The user should be ableatogr good performance
without having to separately implement complicated reseunanagement, data man-
agement, and fault tolerance mechanisms into each appticat

Abstractions on the whole shield the user from difficult dstabout executing a
workload in a distributed environment. However, it is oftee case that the abstraction
that fits the problem best — either due to the design of theadigin or the way a user
has defined the problem — will be more efficient due to lesssfaamation required to
scale up to the cloud and because of greater possibilitrgaréilolem-specific solution
optimizations.

The general suggestion is that a user should choose thaetistrthat fits the way
he already thinks about his problem. This most easily falfitle intent of running a
workload as-is, and simply scaling up to a cloud while alusing away the messier
details of the larger scale. This also usually requires ¢lastiamount of user overhead
to handle the details of transforming his serial applicatioto an entirely different
problem before scaling it up.

An example of additional work required to transform the peob is seen when
comparing a Sparse-Pairs problem to a general DAG or Bamaslks workflow. A par-
ticular piece of a computation within the more specific adation can be referenced
simply by coordinates of the two input sets. That ordered pdien combined with the
problem definition, is sufficient to enumerate all incominglautgoing edges in the
DAG. The more general DAG abstraction would need to defingtbblem in a less
efficient manner, costing execution time to complete thastaption into the more

general definition and also the disk/memory resources te gtaEven then, when exe-
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cuting, a general abstraction would still not have the ath@es of automatically being
able to optimize disk and memory management to the rigicepattof a specific prob-
lem. Likewise, it only makes sense for a user who is alreadkitgy at his workload
as a Sparse-Pairs problem to use the abstraction that isspedfic for that problem —
because it fits with how he has already designed his appraadHiyansforming a more
general problem to an instance of the more specific pattaribeaqually as costly as
transforming the opposite direction.

This is, however, only a general suggestion, and must beakeged even when
scaling up the same workload. An example of a case in whicghishimportant was
shown above when discussing the Sparse-Pairs problem.eftstimay start with a
fairly dense set of pairs to compute between two sets, andeléa use the All-Pairs
problem. However, as the problem is scaled up and the setiif Ipacomes sparser,
even though the All-Pairs abstraction is still availabld anll still solve the problem, it
no longer is the appropriate choice. Generalizing an atyitset of computation pairs
into the superset of computation pairs will increase the @amaof work he requires
significantly. Not only will it require much more time to come all the extraneous
pairs that he isn't interested in, but the abstraction sgj\that problem will provision

more remote resources (data and worker nodes, for instémse)ve the larger version.

7.2 General Abstractions as Alternatives

As mentioned above, some abstractions can be interchangie@ach other, with
the cost as some loss of efficiency. Is it possible, thougti there are abstractions that
could perform several of these patterns with similar effick? In this section Bag-of-
Tasks and Map-Reduce are considered for the general patigacked by All-Pairs,

Sparse-Pairs, and Data-Split-Join.
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Bag-of-Tasks is a powerful abstraction for computatiommsive tasks, but ill-suited
for All-Pairs problems. If a user attempts to map an All-Bagroblem into a Bag-of-
Tasks abstraction by e.g. making each comparison into aadsk scheduled, this will
end up with all of the problems described in the naive solutd All-Pairs. Bag-of-
Tasks is insufficient for a problem in which the abstractichiaves its greatest gains
via data management, as Bag-of-Tasks does not recogniza/énarching workload
structure to exploit data patterns. Similarly, Bag-of@ass less effective for Sparse-
Pairs workloads because its model does not recognize theelatage pattern and thus
will likely read repeated data items from disk instead of mba@ining them in memory
like the specific Sparse-Pairs abstraction. Like the otherabstractions, Bag-of-Tasks
couldbe used to solve a Data-Split-Join problem, but not with Isingfficiency. Using
Bag-of-Tasks, the inherent data pipeline from the splihtod¢omputation and from the
computation to the join would be lost by treating them as detepy separate tasks
joined only by a order-of-completion dependency, and thudada would have to be
written to disk instead of pipelined directly between meynouffers.

Another common abstraction that targets a very general atatipn pattern is Map-
Reduce [37], which encapsulates both the data and computa¢ieds of a workload.
This abstraction allows the user to applyrap operator to a set of name-value pairs
to generate several intermediate sets, then applgduce operator to summarize the
intermediates into one or more final sets. Map-Reduce allbvsuser to specify a
very large computation in a simple manner, while exploisggtem knowledge of data
locality.

Hadoop [1] is a widely-used open source implementation gifRaduce. Although
Hadoop has significant fault-tolerance capabilities, & daveloped out of original as-

sumptions that it is the primary controller of a dedicateastér, so it does not thrive
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in a campus grid environment made up of volunteered resewrbere policy and pre-
emption mechanisms are a critical necessity.

Even setting aside the fundamental differences betweeateclabstraction assump-
tions and campus grid environment realities, can one egned\ll-Pairs problem using
the Map-Reduce abstraction? It is possible, but an efficreayping is neither trivial
nor obvious. A purel/ap can only draw input from one partitioned data set, so it might
itemize the Cartesian product into a set like= ((Ay, B1), (A1, By)...) then invoke
Map(F,S). Obviously, this would turn a dataset afelements into one ofi? ele-
ments, which would not be a good use of space. lf4et smaller, it would be better
to packaged with F' and definel’'™ = Map(F, A) and then computé/ap(F*, B),
relying on the system to partition B. However, this wouldulegn the sequential dis-
tribution of one set to every node, which would be highly fieéént. A more efficient
method might be to add the All-Pairs spanning tree mechafasrdata distribution
alongside Hadoop, and then use the Map-Reduce to simpligemartitions of the data
by name. However this already departs significantly frompine Map-Reduce model,
and requires running multiple abstractions developed ffierént purposes side-by-
side. While this is possible to orchestrate, this hybridisoh increases the complexity
for an end user instead of decreasing it!

Data-Split-Join also appears similar to Map-Reduce. Tlsgament of taskg”
onto D1...DN is completed by the Mapper function, a6d the collection of indepen-
dent distributed results into a final result, is the job of Reducer function. But sev-
eral components of Data-Split-Join are not strictly ac¢edrior by the Map-Reduce
abstraction — that is to say, the problem cannot be repredeag Map-Reduce in its
present form. The Map-Reduce model does not consider lloggettioning as a first-

class component of the model, rather it delegates patrititipas an implementation
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detail of physical partitioning of the underlying filesysteThe inclusion of additional
files in each partition’s computation (for example, theitegtset in the data mining en-
semble classification problem) also does not fit into the NRapluce abstraction model.

Some Map-Reduce implementations [1, 29, 106] adapt the Risghice model to
recognize logical partitioning in various ways, such aewlhg for custom partitioning
algorithms or actually including partitioning as primigiin their adjusted models. Map-
ping logical partitions onto physical partitions withiretfilesystem, however, remains
a characteristic highly dependent on the implementatidimerathan strictly defined
within the Map-Reduce abstraction.

The various Map-Reduce implementations also offer rela@tns of what data
can be computed at which stage of the workflow. But even tlisramodation means
that included files such as the testing set must either bepsuatzied in the Mapper
and Reducer functions or be stored on the distributed fitegysThe former is a rather
significant design change associated with deploying theddiapr Reducer tasks, while
the former is potentially costly in terms of performancednese of multiple replicas and
significant metadata for each instance of various spatssdygl files (many of which
have short lifetimes).

Data-Split-Join is a good fit when the key to success is chtefisideration of data
placement and access patterns, as it has been designed @lechented to consider
workflow elements relating to data placement directly as-&ifldss components of the
abstraction model. So although it may be possible to corm@etpecific ensemble
classification workload using Map-Reduce, it is difficultdo a thorough examina-
tion of the separate abstract parts of a Data-Split-Joirklwad while using a strict
Map-Reduce paradigm. Even setting this aside, when impitatiens allow users to

leverage a large number of options in setting parameteisdgvolves into the origi-

119



nal problem of requiring non-expert users to appropriatagfigure complicated dis-
tributed systems.

An overarching observation of the difference between theelabstractions pre-
sented here and the more general Bag-of-Tasks and Map-Redistractions is the
notion of task planning and allocation as the primary cdrexerted by the abstraction.
In the specific abstractions, the problem is modeled in aiwptan specific allocations
of data and computation such that they will be executed efftty. In the more general
abstractions, computations are placed into a larger syatehnun with little or no sense
of planning for logical tasks. An example where this is mdeady evident is in the
desire for an active storage computation: instead of astoege being a direct result
of the abstraction’s explicit coordination of data and caomagtion, using a the general
abstraction collocation happens more as byproduct of ggaemeters such as mirror-
ing in the underlying filesystem. Thus, though it is possiblearious implementations
to tune parameters to make the system behave more like thie o&the planning and
allocation, the model is still quite different. This makesngral abstractions prone
to suffering from high translational overhead, and lesgptalae to the differences in

where the greatest benefit of parallelization can be haegeassdifferent workloads.

7.3 Lessons Learned

In Section 3.1, a number of general challenges associatedwmputing on a cam-
pus grid were laid out, many with subtle difficulties thatde¢n elude users (both expert
and non-expert) at first glance. In this section, severaistécom the list of challenges
are revisited to discern lessons learned that proved keglting these specific issues
and may be carried on to future projects. The last part of $biion considers the

sociological and group dynamics challenges of distribstgstems research, which is
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multidisciplinary by the nature of the systems as tools faearanging applications.

Although seemingly obvious at face value that using the maxn available num-
ber of compute nodes is not always advisable, the datasivienperations in this work
emphasize the point. Even though All-Pairs and SparsesRa& naturally parallel,
there were significant limitations to the available patata due to factors beyond the
structure of the problem. The resource cost of data managfameéore and after com-
putation is a necessary component to any model that, if derisig only computation,
would be likely to scale — on paper — to arbitrarily many nodes

I/O patterns are one of the most natural starting points fptating a problem’s
regularity with abstractions. Because of the significaffede@nce in memory versus
disk bandwidth, exploiting I/O patterns to introduce stn@ag in and out of memory
buffers instead of between disks is critical when dealinthwata intensive tasks. This
was a critical piece in the development of the Split-MapmJabstraction, and it is an
important missing piece of Work Queue, which can manageebufh the master but
realizes data exclusively as files on worker nodes.

When disks are required, active storage is generally aacttte option for two
major reasons: computation on local data is generally muaterafficient than com-
putation on remote data; and computation is generally meshdostly to relocate than
data. In some systems and for some problems data must be nhoveelver these cases
should lean heavily on avoiding disk accesses, partitpiine work to keep as much
data in the whole of distributed memory as possible, andmgufata once it has been
moved.

Although dispatch latencies of seconds seem easy to woukdror systems of any
significant size, when combined with start latencies (palérly with contention for

resources) these delays can cripple performance. One \&blgdk worked is increasing
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job size so as to keep hold of the resource, however this lddivnside of costly

preemption. Instead, it is often advantageous to use Wodu®as a mechanism for
holding onto a resource for many successive tasks whil@itlving tasks to complete

and be archived (avoiding large costs of preemption). Isway, even problems that
require no collective communication can benefit from theterasorker paradigm.

The driving force behind this work has been the last and muogirtant of the
campus grid computing challenges, the usability of a comgutystem. Many times
during discussions of this work, colleagues have initigitpffed (or even objected)
to the characterizations of naive users. However, the raxperience that colleagues
get with designing and computational science tools intdridebe used by domain
scientists, the less often that they claim the descriptamastrawmen. Using only one
distributed system there are plenty of users who, througtiusion or rather simple
misunderstanding much more so than lack of intellect, cmatly make many similar
critical errors. Of course using multiple systems compautids. Abstractions take
away some of a user’s power, but also the user’s power to maky f the disastrous
mistakes. The ability for abstractions built atop Work Qei¢a operate seamlessly
with several rather different underlying systems is a fartstep in the right direction to
abstract away things that users easily get wrong.

The most difficult challenge of this work has not been sciamreengineering, but
communication. It is still at times jarring to note the coetel disconnect amongst
very intelligent people from different disciplines or evdifferent areas of computer
science, especially in that the disconnects often dontapeto technical details but
rather definition of what the general problems are. Commatioa is critical, and in
this work it has not been rare, by any means, for many, many dacussions to be

spent talking past each other. Collaborative researchratypen experts from disparate
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fields working together to attack a joint problem. Howevdngw experts from opposite
sides of the table fundamentally misunderstand the prablefrthe other side — or
perhaps the two sides can’t agree on a joint set of problentgllaborative progress
cannot proceed. Because distributed systems researchafigrstems from new and
innovative uses of the system by non-distributed compuérgerts, a fundamental
challenge will always be breaking a collaboration down $osiinallest pieces in order

to find initial agreements in order to begin communicatiod &ime collaboration.

7.4 Impact

Software developed as part of this work remains in use byarekers from several
groups that have scientific computing needs. Additionélisther research continues
on broadening the abstractions “toolbox” to attack newgsatt of computation.

The user group that has benefited the most from the All-Pdistraction is the
Notre Dame Computer Vision Research Laboratory (CVRL). &abes in the field of
biometrics advance the state of the art several real-wgdi@ations, including per-
sonal security (such as biometric locks on laptops or dard)national security (such
as face recognition at airports).

An initial prototype for All-Pairs was used to evaluate negaaithms for 3D face
image identification and feature detection [45]. This aliitomparison served to create
a single set of results on a completed algorithm, which wasitrmal mode of opera-
tion. However later work using the complete All-Pairs aéstion engine integrated the
same large-scale comparison as a core evaluation withitkethelopment and enhance-
ment of new algorithms [81]. Thus, access to this computbggraction fundamentally
changed the pattern of research. Instead of being consttamtesting experimental

versions of algorithms on small subsets of the intendecetadlgta (waiting to run a
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lengthy full workload with the final version), the biomesicesearcher could complete
the more informative full workload on each successive tteraalong the way. This
developmental process, akin to a parameter sweep, consuoredhan 2 million CPU
hours on the Notre Dame campus grid over more than two yeagsening the largest
user of the campus grid resources (and in one year consuna@rgp0% of the cycles
individually).

All-Pairs has also been used by the CVRL to study iris congpais, as discussed
in Section 4.5. The All-Pairs comparison of 58,639 irisessgnted here is believed to
be the largest complete comparison on a publicly-availdhtaset, and the final result
yielded knowledge of ranges of Hamming distances that aeedaboth matching and
non-matching pairs. This knowledge, which has repercasso the efficacy of setting
a particular cutoff for judging a match, would not have beesgible on a less-than-
complete set of comparisons.

Work Queue is a core tool for the BioCompute [19] project atid®ame, which is
a web-portal-based tool that uses campus grid resourcssliong large bioinformatics
problems. Work Queue is also an underlying infrastructoreMakeflow [133], which
is used in BioCompute and other workflow applications.

All-Pairs is an example of an abstraction that can be used Wikaver [23], a
Python-based high-level framework for data processindfl@ws in Makeflow. Emerg-
ing work such as Weaver may further increase campus gridilitgdiy providing an
interface to use several optimized abstractions workiggtieer within a single work-
flow. All-Pairs is also used by BXGrid [22], which is a very dgg@r online repository
for biometrics data that can also facilitate computationih@t data through web portals
and command line tools.

The Sparse-Pairs abstraction has been used as part of wadsembly and valida-
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tion of large genomes [92], and currently bioinformaticse@rchers at Notre Dame are

applying the SAND tools to complete comparisons of mosog#ioomes.

7.4.1 Publications and Software

A precursor to the All-Pairs work was published at PCGRID83][ The All-
Pairs abstraction was introduced in a poster at GRID 200}, fg@blished at the 2008
IEEE/ACM International Parallel and Distributed Procegsbymposium [84], and ex-
panded for thdEEE Transactions on Parallel and Distributed SystdBig. Sparse-
Pairs was first published in the 2009 Workshop on Many-Task@ding on Grids and
Supercomputers [86]. The implementation of Sparse-Paimg\w released as an open-
source package as part of the SAND project. Data-Split\d@is originally presented

at the IEEE International Conference on Data Mining [85].

7.5 Conclusion

The opening chapter observes that scientists who are nettsxp distributed com-
puting are often faced with the dilemma of completely regesig their applications to
fit the often complicated and system-specific requiremelitage parallel resources or
giving up on scaling their applications to larger and moteti@sting problems. Finding
the former too difficult or too time-consuming, some opt foe tatter option — limiting
themselves to problems within their current grasp. Othelisiethe help of a distributed
computing expert who can complete the redesign, but are libpnlden to repeating
this process every time they need to adapt to a new or diffesetnof resources. Ab-
stractions are a guide away from this inefficient cycle.

Abstractions are manageable for scientists to use, and @ftek with their un-

modified serial applications. Abstractions can use serfdDUprocesses and can run
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on commodity hardware generally found in campus grids. G#maiddleware APIs
that abstract away the messy details of campus grid systesaglp a set of tools that
allow capable users to program their own abstractions (thighexperts still there for
guidance in design).

This more equitable cycle can also be more sustainableubedhe user who is
most interested in these problems has more resources attbatel/elop improved
solutions to them. And these implementations can last faegaions of systems up-
grades seamlessly hidden by the middleware (which is musierefor the expert to
update than many separate implementations).

With the ability for countless users to add useful contiidms to the campus grid
computing “toolbox”, the number of such tools will grow. Blieaves a real opportunity
for researchers to repeat the process at the next level sthahen: identifying common

patterns that connect these building-blocks together ébkemew forms of discovery.
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