
Robust Meta-Workflow Management with Mufasa
Ben Lyons and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame

Abstract—Workflow management systems (WMS) are
widely used to describe and execute large computational
or data intensive applications. However, when a large
ensemble of workflows is run on a cluster, new resource
management problems occur. Each WMS itself consumes
otherwise unmanaged resources, such as the shared head
node where the WMS coordinator runs, the shared filesys-
tem where intermediate data is stored, and the shared
batch queue itself. We introduce Mufasa, a meta-workflow
management system, which is designed to control the
concurrency of multiple workflows in an ensemble, by
observing and controlling the resources required by each
WMS. We show some initial results demonstrating that
Mufasa correctly handles the overcommitment of different
resource types by starting, pausing, and cancelling work-
flows with unexpected behavior.

I. INTRODUCTION

Workflow management systems (WMS) are widely
used in scientific computing to describe and execute
large computation or data intensive campaigns. A work-
flow typically consists of a large graph of tasks with
dependencies that must be completed in a specific order,
each one run on a node of a cluster. However, a single
workflow is rarely the entirety of a computational effort.
A single researcher might deploy an large ensemble
of workflows, each one exploring a different molecular
structure, or reducing a different genome, or searching
a different area of the sky. In addition, multiple users
might submit ensembles to the same cluster at once.

When a large number of workflows are deployed at
once, several resource management problems quickly
appear. Suppose that a user has 1000 workflows to
execute, each one consisting of 10K distinct batch jobs.
While each instance of the WMS may be individually
careful not to overload the batch system, all of them
operating simultaneously may result in a problem. If
each of the 1000 instances is careful to only submit 100
jobs to the batch system at a time, the batch queue itself
may not be capable of dealing with 100K queued jobs
all at once. Each WMS also consumes other resources
that are not regulated by the batch system. A WMS may
transfer files over the network, store intermediate data

Head Node

J

J J

J J

B
atch S

ystem

File System

Cluster

Submit Start

Done

Workflow
Management

Systems

cores: 4
memory: 4GB
gpus: 1

Reads/writes
Monitor 
Filesystem

jobs: 400
hn-disk: 1TB
hn-mem: 64GB

Monitor WMS

Done

Submit

Done

hn-cores: 50%
fs-load: 40%
clus-mem: 70%

M
ufasa

Data 
Sources

Reads / Writes

Fig. 1: Architecture of Mufasa
Mufasa is a meta-workflow manager that controls the
invocation of workflow management systems (WMS) on
the head node of a cluster. By controlling workflow
concurrency, it manages cluster reasources, head node
resources, and shared filesystem and network resources.

in a shared filesystem, and make use of the CPU and
RAM on the head node in order to advance the state
of the workflow. Without further control, overcommitted
resources may result in failure of the whole ensemble.

This problem can be addressed by a meta-workflow
management system. A meta-WMS accepts requests to
execute a large number of workflows, whether an en-
semble from a single user, or competing requests from
multiple users. The meta-WMS is responsible for starting
workflow instances as resources become available, mon-
itoring the resource consumption of those instances, and
controlling concurrency so as to avoid over-commitment
and failure. While a conventional batch system is re-
sponsible for the resource management of tasks on the
cluster, the meta-WMS is responsible for the resources
consumed by the WMS themselves: the number of
jobs submitted to the cluster, the usage of the shared
filesystem, network transfers, and head node resources.

We designed Mufasa as a prototype meta-WMS that
is responsible for managing these shared resources. The
basic structure of Mufasa is shown in Figure 1. When
Mufasa is started, the user provides both global and
workflow resource limits. The global limits represent an
upper bound on the cumulative resource consumption
of all WMSs, and the workflow limits represent an



estimated limit for a single WMS. Mufasa monitors
an inbox directory where users submit workflows to
be processed. As each workflow arrives, Mufasa uses
the provided limits to determine if there are enough
resources to run a WMS to process the workflow. As
each WMS runs, Mufasa monitors its resource con-
sumption to ensure that it does not exceed the allocated
individual workflow limits. In the event that any of the
resources exceed these limits, Mufasa will either kill or
pause the workflow, and then reschedule it with a larger
resource allocation. Paused workflows are effectively
”checkpointed” because the results of completed tasks
can remain in shared storage. The overall goal is to
ensure that the cumulative resource consumption of all
WMSs does not exceed the user provided global limit.
In the current implementation, Mufasa can manage the
resources of the HTCondor batch system and workflows
expressed in the Work Queue [1] framework, such as the
Coffea [4] framework for high energy physics.

Managing an entire WMS as a discrete entity is con-
ceptually similar to managing a single application, but
has a number of important differences. At a high level, a
single WMS can be viewed as a Unix process that has the
usual resources of cores, memory, file descriptors, etc. To
track external resources, we require the WMS to produce
an accurate log of jobs submitted, files transferred, etc.
More importantly, a WMS is more malleable [2], [3] than
a single job. Generally, a single job requires a specific
set of resources, and without splitting up the job it may
not be possible to change these resource requirements.
However, if a WMS is informed of resource limits,
then it may change its own scheduling policy to fit the
resource consumption within these bounds. Still, there
are lower bounds to the amount of resources required
for a WMS to complete, so it may not be possible to
process a workflow within arbitrarily small limits.

Figure 2 gives some initial results showing the re-
source management controls of Mufasa. We established
a test system with an upper limit on 1000 queued batch
jobs, 5GB head node RAM, and 75GB of shared storage
space. Then we constructed benchmark ensembles that
stress different resources available in the system. Ensem-
ble 1 consists of 100 workflows, each one consuming
100MB RAM, 6 GB disk, and generating 200 ± 40
batch jobs. Ensemble 2 consists of 100 workflows, each
one consuming 1-4GB RAM, 6GB disk, and generating
100 ± 40 batch jobs. The left column shows the jobs,
memory, and disk consumed by Ensemble 1, and the
right column shows the same consumed by Ensemble 2.
In each case, Mufasa controls the concurrency so that the

Ensemble 1 Ensemble 2

0 2500 5000 7500
0

500

1000

jo
b

s

0 2000 4000
0

1000

2000

jo
b

s

0 2500 5000 7500
0

1000

2000

m
em

u
sa

ge

0 2000 4000
0

2500

5000

7500

m
em

u
sa

ge

0 2500 5000 7500
0

25000

50000

75000

d
is

k

0 2000 4000
0

25000

50000

75000

d
is

k

Fig. 2: Workflow Resource Control
Each column shows the cluster jobs, head node memory,
and disk consumption of an ensemble of workflows. In
the left column, cluster jobs are the limiting resource.
In the right column, RAM is the limiting resource. Red
highlights shows disk used by paused workflows. Mufasa
limits concurrency to control the critical resource.

critical resource is not exceeded, and steady progress is
made throughout the entire ensemble.

ACKNOWLEDGEMENTS

We thank Ben Tovar for helping us understand and
debug software interfaces. We would also like to thank
Barry Sly-Delgado and Thanh Phung Nguyen for brain-
storming and discussing conceptual components of the
system with the authors. This work was supported in part
by NSF grant OCI-1931348.

REFERENCES

[1] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain.
Work Queue + Python: A Framework For Scalable Scientific
Ensemble Applications. In Workshop on Python for High Per-
formance and Scientific Computing (PyHPC) at the ACM/IEEE
International Conference for High Performance Computing, Net-
working, Storage, and Analysis (Supercomputing) , 2011.

[2] R. Dutton and W. Mao. Online scheduling of malleable parallel
jobs. Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, 01 2007.

[3] K. Jansen and F. Land. Scheduling monotone moldable jobs in
linear time. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 172–181, 2018.

[4] N. Smith, L. Gray, M. Cremonesi, B. Jayatilaka, O. Gutsche,
A. Hall, K. Pedro, M. A. Flechas, A. Melo, S. Belforte, and
J. Pivarski. Coffea - Columnar Object Framework For Effective
Analysis. CoRR, abs/2008.12712, 2020.


