

Opportunistic High Energy Physics Computing in User Space with Parrot

Dillon Skeehan, Paul Brenner
Center for Research Computing

University of Notre Dame
Notre Dame, IN, USA
paul.r.brenner@nd.edu

Ben Tovar, Douglas Thain
Dept. of Comp Science & Engineering

University of Notre Dame
Notre Dame, IN, USA

dthain@nd.edu

N. Valls, A. Woodard, M. Wolf, T.
Pearson, S. Lynch, K. Lannon

Dept. of Physics
University of Notre Dame

Notre Dame, IN, USA
klannon@nd.edu

Abstract—The computing needs of high energy physics
experiments like the Compact Muon Solenoid experiment at
the Large Hadron Collider currently exceed the available
dedicated computational resources, hence motivating a push to
leverage opportunistic resources. However, access to
opportunistic resources faces many obstacles, not the least of
which is making available the complex software stack typically
associated with such computations. This paper describes a
framework constructed using existing software packages to
distribute the needed software to opportunistic resources
without the need for the job to have root-level privileges.
Preliminary tests with this framework have demonstrated the
feasibility of the approach and identified bottlenecks as well as
reliability issues which must be resolved in order to make this
approach viable for broad use.

Keywords- grid; opportunistic computing; job eviction;
HTCondor; CVMFS; Parrot; XROOTD; user space; remote I/O;
high energy physics.

I. INTRODUCTION

In this paper, we propose and implement a framework to
optimally utilize opportunistic grid resources without root
privileges (user space), in the context of supporting the
computational component of the high energy physics (HEP)
Compact Muon Solenoid (CMS) experiment at the Large
Hadron Collider (LHC) at CERN [1].

CMS is an ongoing experiment searching for rare
physical interactions in proton collisions [2]. The rate for
proton collisions must be extremely high (20 million to 40
million collisions per second) due the rarity of interesting
interactions, which occur at a rate of about 1 in a billion [3].
A fast trigger system selects a subset of rare events and
discards the remainder in real time; however over the course
of a year, the CMS experiment still generates on the order of
2 petabytes (PB) of collision data [4,5,6].

In order to process all the data coming from the LHC's
operation, the Worldwide LHC Computing Grid (WLCG)
was formed in a tiered computational facility structure and in
concert with existing computing grid infrastructures such as
the Open Science Grid and European Grid Infrastructure
[7,8,9].

Despite the large scale of current computational
resources dedicated to this experiment, the amount of data it
generates each year is limited to only half of the maximum
possible bandwidth by the available processing power. In the
future, this problem is expected to worsen as higher collision

rates and more energetic collisions will produce even more
data to be analyzed. Additional processing power is thus
needed in order to make use of the full data set.

CMS has initiated a collaborative effort to
opportunistically utilize computing resources. Opportunistic
resources are those that, while not dedicated to CMS, are
available during idle times at substantially lower cost than
dedicated resources. Opportunistic approaches are
particularly well suited to economically handle the spikes in
demand that arise because of the frequent, substantial
variations in data generation rates that normally occur during
LHC operations. In the future, the CMS computing strategy
will likely evolve toward using dedicated resources to handle
the base level of need, while absorbing spikes using
opportunistic resources. Example sources of opportunistic
resources include idle servers and desktops on university
campuses, lower cost excess capacity on commercial cloud
platforms (available through spot pricing) [10,11], and
private/public cloud infrastructures with off-peak capacity.

Running CMS jobs in the above environments requires
overcoming a number of fundamental challenges. These
include the distribution of both the CMS software and data to
clusters that have no preconfigured connection to the WLCG
infrastructure as well as the potential for a CMS job running
on a remote system to be terminated with little or no warning
when the priority owner needs the resources. At the moment,
the CMS software has no mechanism for recovering the
partial progress of interrupted jobs [12].

A large variety of tools and approaches exist for
resolving distributed systems challenges of remote data
staging, resource-intensive I/O, runtime environment
configuration, and job eviction [13,14,15,16]. Our research
scope is framed from a subset of existing integrated tools
which function within the requirements and limitations of the
complex and legacy components of the HEP community.
We have focused on the challenges of operating efficiently in
an opportunistic computing environment, in which large
amounts of data must be accessed remotely via a wide area
network (WAN), user jobs cannot make root-level
changes/installations, and the opportunistic resources evict
stochastically without prior warning.

II. DATA ACCESS ON OPPORTUNISTIC RESOURCES

Opportunistic computing requires access to data as well
as software. CMS data is stored in several globally
distributed data centers and provided to analyses as needed.

The process is I/O intensive because of the extraordinary
amount of data, typically about 400 terabytes, required to
complete each single analysis. The I/O strategy must take
into account the capabilities and limitations of the host,
system software, user software, network bottlenecks, and
priorities and policies of the available hosts.

In the absence of systems software homogenity or a fully
virtualized and homogeneous cloud platform, the common
grid (distributed) computational environment requires
accomodation for high degrees of heterogenity, fault
tolerance, and variable performance. Opportunistic
computing on such infrastructure layers adds the challenge of
jobs being evicted from the system without warning and
opportunistic users being rarely capable of making root-level
changes. We have architected a framework for opportunistic
I/O-intensive computation on remote data, taking into
account the capabilities and limitations of the resources and
social policies of dynamically volunteered systems.

A. CMSSW Software via CVMFS and Parrot

To better handle the challenges of heterogeneous
software environments, we capitalized on existing tools for
handling remote I/O and software repositories such as Parrot
and the CERN Virtual Machine Filesystem (CVMFS)
respectively [17,18,19,20,21].

CVMFS [22,23,24] is a read-only filesystem that is
aggressively cached and downloaded on demand, providing
experimental analysis software to the remote host in a fast
and scalable way. On the security side, data integrity is
ensured via cryptographic checksums. To increase
reliability, the repositories can be mirrored and load
balanced amongst different proxy servers.

In regular operation, before a processing node can
access a CVMFS repository, the repository has to be
mounted through the FUSE kernel module, which requires
root access. This presents a challenge when using
opportunistic resources, as applications may have to run
with restricted permissions and root access is often not
permitted. We use Parrot to address these issues. Parrot is an
interposition agent that transparently translates file
operations of existing programs written for local file
systems to remote file systems. This is done by capturing
system calls using the ptrace debugging interface. Parrot is
able to access CVMFS repositories without mounting them
first, which eliminates the need for root access, at the
expense of increased system call latency due to the
translations.

We have evaluated three different CVMFS cache
modes for Parrot instances running on the same node:
dedicated, single-lock, and single-shared.

In dedicated mode, each Parrot instance has its own
cache, which is always empty (i.e., "cold") at the start of the
instance execution; dedicated mode produces the highest
network band-width and file-system utilization, as each
needed file has to be copied once per instance.

In single-lock mode, there is a single cache that can be
used only by one instance at a time. Only the first instance

to execute will find the cache cold, as further instances can
reuse the cache. Single-lock mode reduces network band-
width and file-system utilization, as each needed file has to
be copied once. We recommend single-lock mode for
debugging and testing, but not for production, as it greatly
increases turnaround time with no two Parrot instances
making progress concurrently.

In single-share mode, multiple instances of Parrot
access the single cache on each machine. and we
recommended it for production. Single-shared mode is
implemented on top of the CVMFS option alien-cache, thus
it assumes that all of the Parrot instances are being run
under the same UNIX user group (GID), and that such
credential is enough to have read/write rights on the file-
system. If this assumption is false, we recommend the
dedicated cache mode as a fallback.

B. Configuring and Submitting CMSSW Jobs

The workflow in Figure 1 was developed for the
University of Notre Dame (ND) Condor computing resource
pool and can be executed from any of the ND Center for
Research Computing head nodes.

At the start of a representative workflow execution, an
update script is run to verify currency of a locally-installed
copy of the grid software. Parrot access is set on user login
via modification of the user shell startup configuration file
to include Parrot’s path, the http proxy for Parrot to access,
and the http address of the local CMS site.

The CVMFS and CMSSW initialization script is more
standard. It sources both the CMS Remote Analysis Builder
(CRAB) startup file and the cmsset_default.sh file to give
access to CRAB and the Source Configuration Release and
Management (SCRAM) commands. This should be done
inside Parrot, as SCRAM may only be accessed in the
CMSSW repository.

Figure 1. Software workflow

For our implementation, the grid initialization script
includes an environmental variable specifying the directory
of the local copy of the grid repository and a command to
source the particular version of the grid software being used.
To make this work for a local copy of the grid software not
residing in CVMFS, the grid-env.sh script was modified so
that all instances of the grid path refer to the environmental
variable set in the grid initialization script. As a note, the
initialization of the grid environment should occur outside
of Parrot due to security concerns.

In Parrot, analysis software can then be checked out
from the repository to a local setup site individual to each
user. However, compilation cannot be performed while in a
Parrot environment but must be performed directly on a
local host. This is due to a current Parrot limitation when
wrapping multithreaded applications. The software build
step currently requires a local installation of the CMSSW
tools. Most sites have dedicated local resources for CMS
analyses, which include such tools.

After setup of the software on the remote host, CRAB
assembles the data and software needed for the analysis.
However, CRAB only creates the Condor submission script
when given the submit command. A workaround to this
problem consists of submitting and subsequently killing the
jobs. With the Condor submission script and the CMSSW
shell script in hand, modifications were made so that job
requirements are rewritten to enable Parrot running on each
worker node. A CMSSW-fixer script (cmssw_fixer) and
Condor job-fixer script (job_fixer) were implemented to
facilitate this change. The cmssw_fixer script targets the
CMSSW.sh script, which is the job control script that is
submitted to the Condor host. The CMSSW.sh file
undergoes a targeted change that causes Condor to be
considered a valid middleware manager. This allows each
node that receives a job to set up the proper environment for
the CMSSW analysis. The rest of the script is unmodified in
order to ensure no broken dependencies.

The job_fixer script targets the Condor submission
script, a .jdl file hidden in the .condor_temp folder in the
CRAB directory. This file is modified to support Parrot as
the executable being run on each worker node. The
argument variable is changed so that Parrot receives the
CMSSW.sh file as the script to run on the previous, old
arguments. Finally, the getenv variable is set to true in order
to make sure the Parrot shell running on the worker node
has all proper environmental variables set. Commands to
stream the output and errors can optionally be set as well in
order to monitor the success or failure of the CMSSW
analysis. Jobs can then be submitted to the Condor pool,
where the runtime analysis proceeds normally. It should be
noted that the Condor submission requires the user be
running in a Parrot-free shell. Otherwise, jobs are halted
immediately, as each worker node will receive the
environment of host user which was running in a Parrot
shell. An error will be thrown, as Parrot cannot be run inside
itself.

C. HEP Experimental Data via CRAB and XROOTD

Unlike access to CMSSW, which can be performed by
any user regardless of their affiliation to the CMS
experiment, access to both collision and simulation data
requires verified credentials from a sponsoring user group
organization such as CMS or ATLAS. Grid credentials,
known as certificates, grant the access needed in order to
find and transfer data stored in different institutions around
the world. These certificates indicate that the user is
trustworthy and is capable of accessing and writing back
data that is correct. This also provides a way to monitor and
report on which user groups are utilizing the various grid
resources (CMS, ATLAS, etc.).

Small complications were discovered between Parrot
and the mechanism for obtaining and verifying grid
credentials based on certificates. Repository switching in
Parrot is a new, experimental feature, so for this
implementation a local copy of only the necessary grid
software is maintained and updated daily to ensure that all
grid security certificates are up-to-date.

The reason behind this requirement is that the grid
software directory maintains a security paradigm, known as
Certificate Revocation Lists (CRLs). The CRLs are unique
to CERN and are maintained at regular intervals inside the
grid-security directory in the grid repository in CVMFS. If a
user tries to access grid resources, such as a proxy, with old
CRLs a security error will be thrown and the request will be
denied. Attempts to use the fetch-crl script to automatically
update the CRLs were not successful. Thus, we simply copy
the contents of the grid security directory from CVMFS to
the local grid repository on a daily basis. This requires a
negligible amount of time and ensures that all CRLs are up-
to-date when attempting to access grid resources.

Despite the large size of the grid repository, only a
fraction of the volume is needed by an institution, since the
repository maintains multiple versions of the grid software.
For our purpose, only version 3.2.11-1 was used along with
the /etc directory housing the grid security and related
subdirectories. The default directory was symbolically
linked to this version, in order to satisfy commands that
refer to this default setting.

Because jobs are submitted outside of Parrot, the
environment should be set up also outside of Parrot in order
to make sure all job dependencies are successfully
communicated to the Condor scheduler. The grid credentials
are then passed through to the jobs, where they are used to
authenticate against remote sites that store data to be
processed. After successful authentication, these data are
streamed to the job using the XROOTD protocol [25,26], on
a per-file basis. The credentials are also used after a
successful job completion to authenticate against the site to
store output data. Output files are copied to the storage site
(local or remote) via the SRM protocol.

III. HANDLING EVICTION AND RUNTIME BOTTLENECKS

In section II we detailed the numerous steps required to
get CMSSW jobs successfully running in an opportunistic
environment. The next major set of challenges includes the
study and handling of CMSSW job failures, evictions, and
runtime resource bottlenecks on the voluntary
heterogeneous resources.

Figure 2 illustrates the physical infrastructure
configuration used to test the workflow execution and
validity of all software modifications. In addition to the
previous software workflow, the grid software is packaged
along with the job so that each worker node can access data
as needed for its respective analysis.

A. Workflow Execution on Opportunistic Versus Dedicated
Computational Resources.

To perform a comparison of the opportunistic computing
framework and the dedicated resources, runtime analysis
was performed on workflows run in each framework. Jobs
submitted were typical examples of CMS analysis, i.e.
processing of Monte Carlo-simulated events, approximately
2500 each, and very similar to one another in nature.
Approximately 3100 jobs were submitted in each scenario,
all to a single Condor queue.

Figures 3, 4, and 5 show the overhead, processing, and
total runtime respectively for jobs submitted to the
dedicated resources and for jobs submitted to opportunistic
ones (split by three different Parrot cache mechanisms).
Table 1 contains the average times in each scenario,
showing serious performance degradation in the case of the
single locked cache during overhead operations (which
involve a number of I/O transactions). While results using
separate caches are comparable to those with a single shared
cache, the latter eliminates redundant network traffic and is
therefore preferred. Average processing times (Fig 4) are
comparable as Parrot is not involved in that stage.

Figure 2. Testbed infrastructure

Understanding eviction rates and runtime of analysis
jobs is crucial to finding the ideal number of events to be
processed per job. While overhead time on opportunistic
resources cannot be improved by the user and may only be
reducible to a certain extent, the number of events to be
processed by each job can be easily adjusted and optimized.
A balance between large and small event multiplicity is
required in order to reduce the number of evictions while
minimizing network traffic inherent to a large number of job
submissions.

Typical job failure rates are on the order of 1%, mostly
due to transient xrootd server problems when serving the
input data files. Automatic resubmission upon identification
of such transient issues is being studied currently.

Table 1. Average job times (in minutes)

Figure 3. Job overhead time

 Overhead Processing Total
Dedicated 4.5 110 110
Opportunistic,
single locked cache

320 89 410

Opportunistic,
separate caches

8.5 120 130

Opportunistic,
single shared cache

4.2 120 130

Figure 4. Job processing time

Figure 5. Total job time (aggregate of overhead and
processing times)

IV. CONCLUSION

The paper describes a framework to enable CMS
software to run on opportunistic computing resources. It
addresses the fundamental obstacle of providing access to
complex CMS software stack despite the lack of root
privileges for the opportunistic job. The solution leverages

the existing Parrot and CVMFS software. Initial tests
demonstrate the feasibility of this approach, but work
remains to reduce the overhead for starting jobs and improve
the reliability.

V. FUTURE WORK

The next major obstacle to address to achieve optimal
use of opportunistic resources involves addressing situations
in which an opportunistic job is preempted. Currently, the
CMS software lacks the ability to migrate a running job to
another available resource upon preemption or to restart the
job from a partially completed output. To address this,
several improvements can be pursued.

A. Writing Results Back to Local and Remote Repositories

CMS jobs currently store their output locally during
execution and only write the output to the final storage
repository at the end of successful execution. For preempted
jobs, this output is lost and the job must be restarted from the
beginning. Alternatively, if the jobs either periodically
copied or continuously streamed output to temporary storage
buffer, then partial progress could be retained, allowing
interrupted jobs to continue from the point of interruption.
Addressing this issue would also involve developing a new
mechanism for collecting temporary outputs from jobs and
copying them to their final repository.

B. Writing and Restarting from Incremental Outputs

The CMS software currently writes out only complete
output files. Interruption of the program execution currently
results in a corrupted output file. However, there is no
fundamental limitation preventing incremental output from
being saved. Due to the nature of the CMS workflow,
sufficient information could be extracted from a partially
completed output file and the initial job parameters to allow
the job to be continued from the point of execution, thus
allowing a strategy for mitigating the loss of efficiency from
preemption.

C. Fully Automated Complete Checkpointing

Managing and retaining partial output files from
preempted jobs would provide an option for addressing
preemption in an opportunistic environment. However, the
solution would be specific to the CMS application and would
have to be re-implemented for any other software. A more
general solution involving, for example, virtualization and
automated virtual machine migration or checkpointing when
in the face of preemption would provide an alternative
solution. A fully automated approach would require
substantially more effort: in addition to the software
framework described in this paper, enhancements would
need to be made to the workflow management and batch
scheduling tools to incorporate the migration or
checkpointing capabilities. This investment of additional
effort would be worthwhile if it leads to a fully general
solution to the problem.

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
(NSF), who sponsored Dillon Skeehan’s contributions
through a Research Experience for Undergraduates program
hosted at the ND Center for Research Computing (NSF
#1063084). The Notre Dame HEP CMS research team is
supported through NSF grants #0955765 and #1312842.
The ND Collaborative Computing Lab’s work integrating
Parrot and CVMFS was partially supported by NSF grant
#1148330. Brian Bockleman (University of Nebraska,
Lincoln) and Dan Bradley (University of Wisconsin,
Madison) provided valuable technical support relative to
OSG/Condor/Xrootd performance tuning and
troubleshooting. The authors would also like to thank ND
Center for Research Computing members Rich Sudlow and
Serguei Fedorov for technical support during the
development and testing phases.

REFERENCES
[1] R. Adolphi et al. The CMS experiment at the CERN LHC. JINST,

0803:S08004, 2008.

[2] Lyndon Evans and Philip Bryant. LHC machine. Journal of
Instrumentation, 3:S08001–S08001, August 2008.

[3] G.L. Bayatian et al. CMS technical design report, volume II: Physics
performance. J.Phys.G, G34:995–1579, 2007.

[4] S. Dasu et al. CMS. The TriDAS project. Technical design report,
vol. 1: The trigger systems. 2000.

[5] P. Sphicas et al. CMS: The TriDAS project. Technical design report,
Vol. 2: Data acquisition and high-level trigger. 2002.

[6] D. Bonacorsi. From commissioning to collisions: Preparations and
execution of CMS computing. Nucl.Phys.Proc.Suppl., 215:79–81,
2011.

[7] Worldwide LHC Computing Grid (WLCG).
http://lcg.web.cern.ch/lcg/public/.

[8] Geoff Brumfiel. High-energy physics: Down the petabyte highway.
Nature, 469:282–283, 2011

[9] Open science grid (OSG). https://www.opensciencegrid.org.

[10] Andrew Melo and Paul Sheldon. Integrating Amazon EC2 with the
CMS production frame-work. J.Phys.Conf.Ser., 368:012007, 2012.

[11] Amazon elastic compute cloud (EC2). http://aws.amazon.com/ec2/.

[12] Any data, anytime, anywhere (NSF awards 1104549, 1104447, and
1104664). http://osg-docdb.opensciencegrid.org/cgi-
bin/ShowDocument?docid=1025.

[13] Matt Mutka and Miron Livny. Profiling workstations’ available
capacity for remote execution. Performance, pages 529–544,
December 1987.

[14] Marvin Solomon and Michael Litzkow. Supporting checkpointing
and process migration outside the Unix kernel. In USENIX Winter
Technical Conference, pages 283–290, 1992.

[15] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,
Monica S. Lam, and Mendel Rosenblum. Optimizing the migration of
virtual computers. In Symposium on Operating Systems Design and
Implementation, 2002.

[16] Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clusters. In
Proceedings of SciDAC, 2006.

[17] Parrot website. http://www.nd.edu/ ~ ccl/software/parrot/.

[18] Douglas Thain and Miron Livny. Parrot: Transparent User-Level
Middleware for Data Intensive Computing. In Workshop on Adaptive
Grid Middleware at PACT, 2003.

[19] Douglas Thain and Miron Livny. Parrot: An Application
Environment for Data-Intensive Computing. Scalable Computing:
Practice and Experience, 6(3):9–18, 2005

[20] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed
Computing in Practice: The Condor Experience. Concurrency and
Computation: Practice and Experience, 17(2-4):323–356, 2005.

[21] Gabrielle Compostella, Simone Pagan Griso, Donatella Lucchesi,
Igor Sfiligoi, and Douglas Thain. CDF Software Distribution on the
Grid using Parrot. In Computing in High Energy Physics, 2009.

[22] P Buncic et al.; 2010 J. Phys.: Conf. Ser. 219 042003, CernVM – a
virtual software appliance for LHC applications

[23] J Blomer et al.; "CernVM-FS: delivering scientific software to
globally distributed computing resources"

[24] J Blomer et al.; 2012 J. Phys.: Conf. Ser. 396 052013 "Status and
future perspective of CernVM-FS"

[25] Hanushevsky, A., Furano, F., & Dorigo, A. (2004). The next
generation ROOT file server.

[26] Dorigo, A., Elmer, P., Furano, F., & Hanushevsky, A. (2005).
XROOTD-A Highly scalable architecture for data access. WSEAS
Transactions on Computers, 1(4.3).

