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Abstract—The computing needs of high energy physics 
experiments like the Compact Muon Solenoid experiment at 
the Large Hadron Collider currently exceed the available 
dedicated computational resources, hence motivating a push to 
leverage opportunistic resources.  However, access to 
opportunistic resources faces many obstacles, not the least of 
which is making available the complex software stack typically 
associated with such computations.  This paper describes a 
framework constructed using existing software packages to 
distribute the needed software to opportunistic resources 
without the need for the job to have root-level privileges.  
Preliminary tests with this framework have demonstrated the 
feasibility of the approach and identified bottlenecks as well as 
reliability issues which must be resolved in order to make this 
approach viable for broad use. 

Keywords- grid; opportunistic computing; job eviction;  
HTCondor; CVMFS; Parrot; XROOTD; user space; remote I/O; 
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I. INTRODUCTION 

In this paper, we propose and implement a framework to 
optimally utilize opportunistic grid resources without root 
privileges (user space), in the context of supporting the 
computational component of the high energy physics (HEP) 
Compact Muon Solenoid (CMS) experiment at the Large 
Hadron Collider (LHC) at CERN [1].  

CMS is an ongoing experiment searching for rare 
physical interactions in proton collisions [2].  The rate for 
proton collisions must be extremely high (20 million to 40 
million collisions per second) due the rarity of interesting 
interactions, which occur at a rate of about 1 in a billion [3]. 
A fast trigger system selects a subset of rare events and 
discards the remainder in real time; however over the course 
of a year, the CMS experiment still generates on the order of 
2 petabytes (PB) of collision data [4,5,6]. 

In order to process all the data coming from the LHC's 
operation, the Worldwide LHC Computing Grid (WLCG) 
was formed in a tiered computational facility structure and in 
concert with existing computing grid infrastructures such as 
the Open Science Grid and European Grid Infrastructure 
[7,8,9].  

Despite the large scale of current computational 
resources dedicated to this experiment, the amount of data it 
generates each year is limited to only half of the maximum 
possible bandwidth by the available processing power. In the 
future, this problem is expected to worsen as higher collision 

rates and more energetic collisions will produce even more 
data to be analyzed. Additional processing power is thus 
needed in order to make use of the full data set. 

CMS has initiated a collaborative effort to 
opportunistically utilize computing resources. Opportunistic 
resources are those that, while not dedicated to CMS, are 
available during idle times at substantially lower cost than 
dedicated resources. Opportunistic approaches are 
particularly well suited to economically handle the spikes in 
demand that arise because of the frequent, substantial 
variations in data generation rates that normally occur during 
LHC operations. In the future, the CMS computing strategy 
will likely evolve toward using dedicated resources to handle 
the base level of need, while absorbing spikes using 
opportunistic resources. Example sources of opportunistic 
resources include idle servers and desktops on university 
campuses, lower cost excess capacity on commercial cloud 
platforms (available through spot pricing) [10,11], and 
private/public cloud infrastructures with off-peak capacity.   

Running CMS jobs in the above environments requires 
overcoming a number of fundamental challenges. These 
include the distribution of both the CMS software and data to 
clusters that have no preconfigured connection to the WLCG 
infrastructure as well as the potential for a CMS job running 
on a remote system to be terminated with little or no warning 
when the priority owner needs the resources. At the moment, 
the CMS software has no mechanism for recovering the 
partial progress of interrupted jobs [12]. 

A large variety of tools and approaches exist for 
resolving distributed systems challenges of remote data 
staging, resource-intensive I/O, runtime environment 
configuration, and job eviction [13,14,15,16]. Our research 
scope is framed from a subset of existing integrated tools 
which function within the requirements and limitations of the 
complex and legacy components of the HEP community.  
We have focused on the challenges of operating efficiently in 
an opportunistic computing environment, in which large 
amounts of data must be accessed remotely via a wide area 
network (WAN), user jobs cannot make root-level 
changes/installations, and the opportunistic resources evict 
stochastically without prior warning. 

II. DATA ACCESS ON OPPORTUNISTIC RESOURCES 

Opportunistic computing requires access to data as well 
as software. CMS data is stored in several globally 
distributed data centers and provided to analyses as needed. 



 

 

The process is I/O intensive because of the extraordinary 
amount of data, typically about 400 terabytes, required to 
complete each single analysis. The I/O strategy must take 
into account the capabilities and limitations of the host, 
system software, user software, network bottlenecks, and 
priorities and policies of the available hosts. 

In the absence of systems software homogenity or a fully 
virtualized and homogeneous cloud platform, the common 
grid (distributed) computational environment requires 
accomodation for high degrees of heterogenity, fault 
tolerance, and variable performance. Opportunistic 
computing on such infrastructure layers adds the challenge of 
jobs being evicted from the system without warning and 
opportunistic users being rarely capable of making root-level 
changes.  We have architected a framework for opportunistic 
I/O-intensive computation on remote data, taking into 
account the capabilities and limitations of the resources and 
social policies of dynamically volunteered systems. 

A. CMSSW Software via CVMFS and Parrot 

To better handle the challenges of heterogeneous 
software environments, we capitalized on existing tools for 
handling remote I/O and software repositories such as Parrot 
and the CERN Virtual Machine Filesystem (CVMFS) 
respectively [17,18,19,20,21]. 

CVMFS [22,23,24] is a read-only filesystem that is 
aggressively cached and downloaded on demand, providing 
experimental analysis software to the remote host in a fast 
and scalable way. On the security side, data integrity is 
ensured via cryptographic checksums.  To increase 
reliability, the repositories can be mirrored and load 
balanced amongst different proxy servers. 

In regular operation, before a processing node can 
access a CVMFS repository, the repository has to be 
mounted through the FUSE kernel module, which requires 
root access. This presents a challenge when using 
opportunistic resources, as applications may have to run 
with restricted permissions and root access is often not 
permitted. We use Parrot to address these issues. Parrot is an 
interposition agent that transparently translates file 
operations of existing programs written for local file 
systems to remote file systems. This is done by capturing 
system calls using the ptrace debugging interface. Parrot is 
able to access CVMFS repositories without mounting them 
first, which eliminates the need for root access, at the 
expense of increased system call latency due to the 
translations. 

We have evaluated three different CVMFS cache 
modes for Parrot instances running on the same node: 
dedicated, single-lock, and single-shared. 

In dedicated mode, each Parrot instance has its own 
cache, which is always empty (i.e., "cold") at the start of the 
instance execution; dedicated mode produces the highest 
network band-width and file-system utilization, as each 
needed file has to be copied once per instance. 

In single-lock mode, there is a single cache that can be 
used only by one instance at a time. Only the first instance 

to execute will find the cache cold, as further instances can 
reuse the cache. Single-lock mode reduces network band-
width and file-system utilization, as each needed file has to 
be copied once. We recommend single-lock mode for 
debugging and testing, but not for production, as it greatly 
increases turnaround time with no two Parrot instances 
making progress concurrently. 

In single-share mode, multiple instances of Parrot 
access the single cache on each machine. and we 
recommended it for production. Single-shared mode is 
implemented on top of the CVMFS option alien-cache, thus 
it assumes that all of the Parrot instances are being run 
under the same UNIX user group (GID), and that such 
credential is enough to have read/write rights on the file-
system. If this assumption is false, we recommend the 
dedicated cache mode as a fallback. 

B. Configuring and Submitting CMSSW Jobs 

The workflow in Figure 1 was developed for the 
University of Notre Dame (ND) Condor computing resource 
pool and can be executed from any of the ND Center for 
Research Computing head nodes. 

At the start of a representative workflow execution, an 
update script is run to verify currency of a locally-installed 
copy of the grid software. Parrot access is set on user login 
via modification of the user shell startup configuration file 
to include Parrot’s path, the http proxy for Parrot to access, 
and the http address of the local CMS site. 

The CVMFS and CMSSW initialization script is more 
standard. It sources both the CMS Remote Analysis Builder 
(CRAB) startup file and the cmsset_default.sh file to give 
access to CRAB and the Source Configuration Release and 
Management (SCRAM) commands. This should be done 
inside Parrot, as SCRAM may only be accessed in the 
CMSSW repository. 

 

 
Figure 1. Software workflow 

 



 

 

For our implementation, the grid initialization script 
includes an environmental variable specifying the directory 
of the local copy of the grid repository and a command to 
source the particular version of the grid software being used. 
To make this work for a local copy of the grid software not 
residing in CVMFS, the grid-env.sh script was modified so 
that all instances of the grid path refer to the environmental 
variable set in the grid initialization script. As a note, the 
initialization of the grid environment should occur outside 
of Parrot due to security concerns. 

In Parrot, analysis software can then be checked out 
from the repository to a local setup site individual to each 
user. However, compilation cannot be performed while in a 
Parrot environment but must be performed directly on a 
local host. This is due to a current Parrot limitation when 
wrapping multithreaded applications. The software build 
step currently requires a local installation of the CMSSW 
tools. Most sites have dedicated local resources for CMS 
analyses, which include such tools. 

After setup of the software on the remote host, CRAB 
assembles the data and software needed for the analysis. 
However, CRAB only creates the Condor submission script 
when given the submit command. A workaround to this 
problem consists of submitting and subsequently killing the 
jobs. With the Condor submission script and the CMSSW 
shell script in hand, modifications were made so that job 
requirements are rewritten to enable Parrot running on each 
worker node. A CMSSW-fixer script (cmssw_fixer) and 
Condor job-fixer script (job_fixer) were implemented to 
facilitate this change. The cmssw_fixer script targets the 
CMSSW.sh script, which is the job control script that is 
submitted to the Condor host. The CMSSW.sh file 
undergoes a targeted change that causes Condor to be 
considered a valid middleware manager. This allows each 
node that receives a job to set up the proper environment for 
the CMSSW analysis. The rest of the script is unmodified in 
order to ensure no broken dependencies. 

The job_fixer script targets the Condor submission 
script, a .jdl file hidden in the .condor_temp folder in the 
CRAB directory. This file is modified to support Parrot as 
the executable being run on each worker node. The 
argument variable is changed so that Parrot receives the 
CMSSW.sh file as the script to run on the previous, old 
arguments. Finally, the getenv variable is set to true in order 
to make sure the Parrot shell running on the worker node 
has all proper environmental variables set. Commands to 
stream the output and errors can optionally be set as well in 
order to monitor the success or failure of the CMSSW 
analysis. Jobs can then be submitted to the Condor pool, 
where the runtime analysis proceeds normally. It should be 
noted that the Condor submission requires the user be 
running in a Parrot-free shell. Otherwise, jobs are halted 
immediately, as each worker node will receive the 
environment of host user which was running in a Parrot 
shell. An error will be thrown, as Parrot cannot be run inside 
itself. 

C. HEP Experimental Data via CRAB and XROOTD  

Unlike access to CMSSW, which can be performed by 
any user regardless of their affiliation to the CMS 
experiment, access to both collision and simulation data 
requires verified credentials from a sponsoring user group 
organization such as CMS or ATLAS. Grid credentials, 
known as certificates, grant the access needed in order to 
find and transfer data  stored in different institutions around 
the world. These certificates indicate that the user is 
trustworthy and is capable of accessing and writing back 
data that is correct. This also provides a way to monitor and 
report on which user groups are utilizing the various grid 
resources (CMS, ATLAS, etc.). 

Small complications were discovered between Parrot 
and the mechanism for obtaining and verifying grid 
credentials based on certificates. Repository switching in 
Parrot is a new, experimental feature, so for this 
implementation a local copy of only the necessary grid 
software is maintained and updated daily to ensure that all 
grid security certificates are up-to-date. 

The reason behind this requirement is that the grid 
software directory maintains a security paradigm, known as 
Certificate Revocation Lists (CRLs).  The CRLs are unique 
to CERN and are maintained at regular intervals inside the 
grid-security directory in the grid repository in CVMFS. If a 
user tries to access grid resources, such as a proxy, with old 
CRLs a security error will be thrown and the request will be 
denied.  Attempts to use the fetch-crl script to automatically 
update the CRLs were not successful. Thus, we simply copy 
the contents of the grid security directory from CVMFS to 
the local grid repository on a daily basis. This requires a 
negligible amount of time and ensures that all CRLs are up-
to-date when attempting to access grid resources. 

Despite the large size of the grid repository, only a 
fraction of the volume is needed by an institution, since the 
repository maintains multiple versions of the grid software.  
For our purpose, only version 3.2.11-1 was used along with 
the /etc directory housing the grid security and related 
subdirectories. The default directory was symbolically 
linked to this version, in order to satisfy commands that 
refer to this default setting. 

Because jobs are submitted outside of Parrot, the 
environment should be set up also outside of Parrot in order 
to make sure all job dependencies are successfully 
communicated to the Condor scheduler. The grid credentials 
are then passed through to the jobs, where they are used to 
authenticate against remote sites that store data to be 
processed. After successful authentication, these data are 
streamed to the job using the XROOTD protocol [25,26], on 
a per-file basis. The credentials are also used after a 
successful job completion to authenticate against the site to 
store output data. Output files are copied to the storage site 
(local or remote) via the SRM protocol. 



 

 

III. HANDLING EVICTION AND RUNTIME BOTTLENECKS 

In section II we detailed the numerous steps required to 
get CMSSW jobs successfully running in an opportunistic 
environment.   The next major set of challenges includes the 
study and handling of CMSSW job failures, evictions, and 
runtime resource bottlenecks on the voluntary 
heterogeneous resources. 

Figure 2 illustrates the physical infrastructure 
configuration used to test the workflow execution and 
validity of all software modifications. In addition to the 
previous software workflow, the grid software is packaged 
along with the job so that each worker node can access data 
as needed for its respective analysis. 

A. Workflow Execution on Opportunistic Versus Dedicated 
Computational Resources. 

To perform a comparison of the opportunistic computing 
framework and the dedicated resources, runtime analysis 
was performed on workflows run in each framework. Jobs 
submitted were typical examples of CMS analysis, i.e. 
processing of Monte Carlo-simulated events, approximately 
2500 each, and very similar to one another in nature. 
Approximately 3100 jobs were submitted in each scenario, 
all to a single Condor queue. 

Figures 3, 4, and 5 show the overhead, processing, and 
total runtime respectively for jobs submitted to the 
dedicated resources and for jobs submitted to opportunistic 
ones (split by three different Parrot cache mechanisms).  
Table 1 contains the average times in each scenario, 
showing serious performance degradation in the case of the 
single locked cache during overhead operations (which 
involve a number of I/O transactions). While results using 
separate caches are comparable to those with a single shared 
cache, the latter eliminates redundant network traffic and is 
therefore preferred. Average processing times (Fig 4) are 
comparable as Parrot is not involved in that stage. 

 

 
Figure 2. Testbed infrastructure 

Understanding eviction rates and runtime of analysis 
jobs is crucial to finding the ideal number of events to be 
processed per job.  While overhead time on opportunistic 
resources cannot be improved by the user and may only be 
reducible to a certain extent, the number of events to be 
processed by each job can be easily adjusted and optimized.  
A balance between large and small event multiplicity is 
required in order to reduce the number of evictions while 
minimizing network traffic inherent to a large number of job 
submissions.  

Typical job failure rates are on the order of 1%, mostly 
due to transient xrootd server problems when serving the 
input data files. Automatic resubmission upon identification 
of such transient issues is being studied currently. 

 

Table 1. Average job times (in minutes) 
 

 
 

Figure 3. Job overhead time 
 

 Overhead Processing Total 
Dedicated 4.5 110 110 
Opportunistic, 
single locked cache 

320 89 410 

Opportunistic, 
separate caches 

8.5 120 130 

Opportunistic, 
single shared cache 

4.2 120 130 



 

 

 
 

Figure 4. Job processing time 
 

 
 

Figure 5. Total job time (aggregate of overhead and 
processing times) 

 

IV. CONCLUSION 

The paper describes a framework to enable CMS 
software to run on opportunistic computing resources.  It 
addresses the fundamental obstacle of providing access to 
complex CMS software stack despite the lack of root 
privileges for the opportunistic job.  The solution leverages 

the existing Parrot and CVMFS software.  Initial tests 
demonstrate the feasibility of this approach, but work 
remains to reduce the overhead for starting jobs and improve 
the reliability. 

V. FUTURE WORK  

The next major obstacle to address to achieve optimal 
use of opportunistic resources involves addressing situations 
in which an opportunistic job is preempted.  Currently, the 
CMS software lacks the ability to migrate a running job to 
another available resource upon preemption or to restart the 
job from a partially completed output.  To address this, 
several improvements can be pursued. 

A. Writing Results Back to Local and Remote Repositories 

CMS jobs currently store their output locally during 
execution and only write the output to the final storage 
repository at the end of successful execution.  For preempted 
jobs, this output is lost and the job must be restarted from the 
beginning.  Alternatively, if the jobs either periodically 
copied or continuously streamed output to temporary storage 
buffer, then partial progress could be retained, allowing 
interrupted jobs to continue from the point of interruption.  
Addressing this issue would also involve developing a new 
mechanism for collecting temporary outputs from jobs and 
copying them to their final repository. 

B. Writing and Restarting from Incremental Outputs 

The CMS software currently writes out only complete 
output files.  Interruption of the program execution currently 
results in a corrupted output file.  However, there is no 
fundamental limitation preventing incremental output from 
being saved.  Due to the nature of the CMS workflow, 
sufficient information could be extracted from a partially 
completed output file and the initial job parameters to allow 
the job to be continued from the point of execution, thus 
allowing a strategy for mitigating the loss of efficiency from 
preemption. 

C. Fully Automated Complete Checkpointing 

Managing and retaining partial output files from 
preempted jobs would provide an option for addressing 
preemption in an opportunistic environment.  However, the 
solution would be specific to the CMS application and would 
have to be re-implemented for any other software.  A more 
general solution involving, for example, virtualization and 
automated virtual machine migration or checkpointing when 
in the face of preemption would provide an alternative 
solution.  A fully automated approach would require 
substantially more effort: in addition to the software 
framework described in this paper, enhancements would 
need to be made to the workflow management and batch 
scheduling tools to incorporate the migration or 
checkpointing capabilities.  This investment of additional 
effort would be worthwhile if it leads to a fully general 
solution to the problem. 
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