
S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 9�18. http://www.s
pe.org ISSN
© 2005 SWPSPARROT: AN APPLICATION ENVIRONMENT FOR DATA-INTENSIVE COMPUTINGDOUGLAS THAIN AND MIRON LIVNY∗Abstra
t. Distributed 
omputing 
ontinues to be an alphabet-soup of servi
es and proto
ols for managing 
omputationand storage. To live in this environment, appli
ations require middleware that 
an transparently adapt standard interfa
es tonew distributed systems; su
h middleware is known as an interposition agent. In this paper, we present several lessons learnedabout interposition agents via a progressive study of design possibilities. Although performan
e is an important 
on
ern, we payspe
ial attention to less tangible issues su
h as portability, reliability, and 
ompatibility. We begin with a 
omparison of sevenmethods of interposition and sele
t one method, the debugger trap, that is the slowest but also the most reliable. Using thismethod, we implement a 
omplete interposition agent, Parrot, that spli
es existing remote I/O systems into the namespa
e ofstandard appli
ations. The primary design problem of Parrot is the mapping of �xed appli
ation semanti
s into the semanti
s ofthe available I/O systems. We o�er a detailed dis
ussion of how errors and other unexpe
ted 
onditions must be 
arefully managedin order to keep this mapping inta
t. We 
on
lude with a evaluation of the performan
e of the I/O proto
ols employed by Parrot,and use an Andrew-like ben
hmark to demonstrate that semanti
 di�eren
es have 
onsequen
es in performan
e.1Key words. Adaptive middleware, error diagnosis, interposition agents, virtual ma
hines.1. Introdu
tion. The �eld of distributed 
omputing has produ
ed 
ountless systems for harnessing remotepro
essors and a

essing remote data. Despite the intentions of their designers, no single system has a
hieveduniversal a

eptan
e or deployment. Ea
h 
arries its own strengths and weakness in performan
e, manageability,and reliability. Renewed interest in world-wide 
omputational systems is in
reasing the number of proto
olsand interfa
es in play. A 
omplex e
ology of distributed systems is here to stay.
C

PU
/IO

Interaction

Common I/O Interface

Distributed I/O Services

FTP

Process

Distributed Computing Services

Condor PBS NQE LSF
Load

Leveler

Application

Local Operating System

Common Process Interface

(open, close, read, write, lseek)

(main, exit, abort, kill, sleep)

NeSTChirp RFIO

Parrot

DCAPFig. 1.1. The Hourglass Model

The result is an hourglass model of distributed 
omputing,shown in Figure 1.1. At the 
enter lie ordinary appli
ations builtto standard interfa
es su
h as POSIX. Above lie a number ofbat
h systems that manage pro
essors, intera
t with users, anddeal with failures of exe
ution. A bat
h system intera
ts with anappli
ation through simple interfa
es su
h as main and exit. Be-low lie a number of I/O servi
es that organize and 
ommuni
atewith remote memory, disks, and tapes. An ordinary operatingsystem (OS) transforms an appli
ation's expli
it reads and writesinto the low-level blo
k and network operations that 
ompose alo
al or distributed �le system.However, atta
hing a new I/O servi
e to a traditional OS isnot a trivial task. Although the prin
iple of an extensible OShas re
eived mu
h attention in the resear
h 
ommunity [19℄, pro-du
tion operating systems have limited fa
ilities for extension,usually requiring kernel modi�
ations or administrator privileges.Although this may be a

eptable for a personal 
omputer, this re-quirement makes it di�
ult or impossible to provide 
ustom I/Oand naming servi
es for appli
ations visiting a borrowed 
omput-ing environment su
h as a timeshared mainframe, a 
ommodity
omputing 
luster, or an opportunisti
 workgroup.To remedy this situation, we advo
ate the use of interpositionagents [13℄. These devi
es transform standard interfa
es intoremote I/O proto
ols not normally found in an operating system.In e�e
t, an agent allows an appli
ation to bring its �lesystemand namespa
e along with it wherever it goes. This releases thedependen
e on the details of the exe
ution site while preservingthe use of standard interfa
es. In addition, the agent 
an tap into naming servi
es that transform private namesinto fully-quali�ed names relevant in the larger system.
∗Computer S
ien
es Department, University of Wis
onsin
1This resear
h was supported by a Lawren
e Landweber NCR fellowship in distributed systems.9



10 D. Thain and M. Livnyinternal te
hniques external te
hniquespoly. stati
 dyn. binary debug remote kernelexten. link link rewrite trap �lesys. 
allouts
ope library stati
 dynami
 dynami
 no setuid any anyburden rewrite relink identify identify run 
ommand superuser modify oslayer �xed any any any sys
all fs ops only sys
allinit/�ni hard hard hard hard easy impossible easya�. linker no no no no yes yes yesdebug yes yes yes yes limited yes yesse
ure no no no no yes yes yes�nd holes easy hard hard hard easy easy easyporting easy hard hard hard medium easy mediumFig. 1.2. Properties of Interposition Te
hniquesIn this paper, we present pra
ti
al lessons learned from several years of building and deploying interpositionagents within the Condor proje
t. [20, 28, 21, 22℄ Although the notion of su
h agents is not unique to Condor [13,2, 12℄, they have seen relatively little use in other produ
tion systems. This is due to a variety of te
hni
al andsemanti
 di�
ulties that arise in 
onne
ting real systems together.We present this paper as a progressive design study that explores these problems and explains our solutions.We begin with a detailed study of seven methods of interposition, �ve of whi
h we have experien
e buildingand deploying. The remaining two are e�e
tive but impra
ti
al be
ause of the privilege required. We will
ompare the performan
e and fun
tionality of these methods, giving parti
ular attention to intangibles su
has portability and reliability. In parti
ular, we will 
on
entrate on one method that has not been explored indetail: the debugger trap. Although this method has been employed in idealized operating systems, it requiresadditional te
hniques in order to provide a

eptable performan
e on popular operating systems with limiteddebugging 
apabilities, su
h as Linux.Using the debugger trap, we fo
us on the design of Parrot, an interposition agent that spli
es remote I/Osystems into the �lesystem spa
e of ordinary appli
ations. A 
entral problem in the design of an I/O agent isthe semanti
 problem of mapping not-quite-identi
al interfa
es to ea
h other. The outgoing mapping is usuallyquite simple: read be
omes a get, write be
omes a put, and so forth. The real di�
ulty lies in interpreting thelarge spa
e of return values from remote servi
es. Many new kinds of failure are introdu
ed: servers 
rash,
redentials expire, and disks �ll. Trivial transformations into the appli
ation's standard interfa
e lead to abrittle and frustrating experien
e for the user.A 
orollary to this observation is that a

ess to 
omputation and storage 
annot be fully divor
ed. Abstra
tnotions of design often en
ourage the partition of distributed systems into two a
tivities: either 
omputationor storage. An interposition agent serves as a 
onne
tion between these two 
on
erns; like an operating systemkernel, it manages both types of devi
es and must mediate their intera
tion, sometimes bypassing the appli
ationitself.This paper is a 
ondensed version of a workshop paper. Due to spa
e limitations, we have omitted a numberof se
tions and details, indi
ated by footnotes. The interested reader may �nd further details in the originalpaper [23℄ or in a te
hni
al report. [24℄22. Interposition Te
hniques Compared. There are many te
hniques for interpositioning servi
es be-tween an appli
ation and the underlying system. Ea
h has parti
ular strengths and weaknesses. Figure 1.2summarizes seven interposition te
hniques. They may be broken into two broad 
ategories: internal and exter-nal. Internal te
hniques modify the memory spa
e of an appli
ation pro
ess in some fashion. These te
hniquesare �exible and e�
ient, but 
annot be applied to arbitrary pro
esses. External te
hniques 
apture and modifyoperations that are visible outside an appli
ation's address spa
e. These te
hniques are less �exible and havehigher overhead, but 
an be applied to nearly any pro
ess. The Condor proje
t has experien
e building anddeploying all of the internal te
hniques as well one external te
hnique: the debugger trap. The remaining twoexternal te
hniques we des
ribe from relevant publi
ations.The simplest te
hnique is the polymorphi
 extension. If the appli
ation stru
ture is amenable to extension,we may simply add a new implementation of an existing interfa
e. The user then must make small 
ode 
hangesto invoke the appropriate 
onstru
tor or fa
tory in order to produ
e the new obje
t. This te
hnique is used in
2Omitted: Example appli
ations of interposition agents.



Parrot: An Appli
ation Environment for Data-Intensive Computing 11Condor's Java Universe [22℄ to 
onne
t an ordinary InputStream or OutputStream to a se
ure remote proxy. Itis also found in general purpose libraries su
h as SFIO [25℄.The stati
 library te
hnique involves 
reating a repla
ement for an existing library. The user is obliged tore-link the appli
ation with the new library. For example, Condor's Standard Universe [20℄ provides a drop-inrepla
ement for the standard C library that provides transparent 
he
kpointing as well as proxying of I/Oba
k to the submission site, fully emulating the user's home environment. The dynami
 library te
hnique alsoinvolves 
reating a repla
ement for an existing library. However, through the use of linker 
ontrols, the user maydire
t the new library to be used in pla
e of the old for any given dynami
ally linked library. This te
hniqueis used by DCa
he [8℄, some implementations of SOCKS [15℄, as well as our own Bypass [21℄ toolkit. Thebinary rewriting te
hnique involves modifying the ma
hine 
ode of a pro
ess at runtime to redire
t the �ow of
ontrol. This requires very detailed knowledge of the CPU ar
hite
ture in use, but this 
an be hidden behindan abstra
tion su
h as the Paradyn [17℄ toolkit. This te
hnique has been used to �hija
k� an unwitting pro
essat runtime [28℄.Traditional debuggers make use of a spe
ialized operating system interfa
e for stopping, examining, andresuming a pro
ess. The debugger trap te
hnique uses this interfa
e, but instead of merely examining thepro
ess, the debugging agent traps ea
h system 
all, provides an implementation, and then pla
es the resultba
k in the target pro
ess while nullifying the intended system 
all. An example of this te
hnique is UFO [2℄,whi
h allows a

ess to HTTP and ftp resour
es via whole-�le fet
hing. A di�
ulty with the debugger trap isthat many tools 
ompete for a

ess to a single pro
ess' debug interfa
e. The Tool Daemon Proto
ol (TDP) [18℄provides an interfa
e for managing su
h tools in a distributed system.A remote �lesystem may be used as an interposition agent by simply modifying the �le server. NFS is apopular 
hoi
e for this te
hnique, and is used by the Legion [27℄ obje
t-spa
e translator, as well the Sli
e [4℄mi
roproxy. Finally, short of modifying the kernel itself, we may install a one-time kernel 
allout whi
h permitsa �lesystem to be servi
ed by a user-level pro
ess. This fa
ility 
an be present from the ground up in ami
rokernel [1℄, but 
an also be added as an afterthought, whi
h is the 
ase for most implementations ofAFS [11℄.The four internal te
hniques may only be applied to 
ertain kinds of programs. Polymorphi
 extension andstati
 linking only apply to those programs that 
an be rebuilt. The dynami
 library te
hnique requires thatthe repla
ed library be dynami
, while binary rewriting (with the Paradyn toolkit) requires the presen
e of thedynami
 loader, although no parti
ular library must be dynami
. The three external te
hniques apply to anypro
ess, with the ex
eption that the debugging trap prevents the tra
ed pro
ess from elevating its privilege levelthrough the setuid feature.The burden upon the user for ea
h of these te
hniques also varies widely. For example, polymorphi
 exten-sion requires small 
ode 
hanges while stati
 linking requires rebuilding. These te
hniques may not be possiblewith pa
kaged 
ommer
ial software. Dynami
 linking and binary rewriting require that the user understandwhi
h programs are dynami
ally linked and whi
h are not. Most standard system utilities are dynami
, butmany 
ommer
ial pa
kages are stati
. Our experien
e is that users are surprised and quite frustrated whenan (unexpe
tedly) stati
 appli
ation blithely ignores an interposition agent. The remote �lesystem and kernel
allout te
hniques impose the smallest user burden, but require a 
ooperative system administrator to makethe ne
essary 
hanges. The debugger trap imposes a small burden on the user to simply invoke the agentexe
utable.Perhaps the most signi�
ant di�eren
e between the te
hniques is the ability to trap di�erent layers ofsoftware. Ea
h of the internal te
hniques may be applied at any layer of 
ode. For example, Bypass has beenused to instrument an appli
ation's 
alls to the standard memory allo
ator, the X Window System library, andthe OpenGL library. In 
ontrast, the external te
hniques are �xed to parti
ular interfa
es. The debugger traponly operates on physi
al system 
alls, while the remote �lesystem and kernel 
allout are limited to 
ertain�lesystem operations.Di�eren
es in these te
hniques a�e
t the design of 
ode that they atta
h to. Consider the matter ofimplementing a dire
tory listing on a remote devi
e. The internal te
hniques are 
apable of inter
epting library
alls su
h as open and opendir. These are easily mapped to remote �le a

ess proto
ols, whi
h generally haveseparate pro
edures for a

essing �les and dire
tories. However, the Unix interfa
e uni�es �les and dire
tories;both are a

essed through the system 
all open. External te
hniques must a

ept an open on either a �le ordire
tory and defer the binding to a remote operation until either read or getdents is invoked. The 
hoi
e ofinterposition layer a�e
ts the design of the agent.



12 D. Thain and M. LivnyThe external te
hniques also di�er in the range of operations that they are able to trap. While the debuggertrap 
an modify any system 
all, the remote �lesystem and kernel 
allout te
hniques are limited to �lesystemoperations. A parti
ular remote �lesystem may have even further restri
tions. For example, the statelessNFS proto
ol has no representation of the system 
alls open and 
lose. Without a

ess to this information,the interposed servi
e 
annot provide semanti
s signi�
antly di�erent than those provided by NFS. Further,su
h �le system interfa
es do not express any binding between individual operations and the pro
esses thatinitiate them. That is, a remote �lesystem agent sees a read or write but not the pro
ess id that issued it.Without this information, it is di�
ult or impossible to performing a

ounting for the purposes of se
urity orperforman
e.A number of important a
tivities take pla
e during the initialization and �nalization of a pro
ess: dynami
libraries are loaded; 
onstru
tors, destru
tors, and other automati
 routines are run; I/O streams are 
reatedor �ushed. During these transitions, the libraries and other resour
es in use by a pro
ess are in a state of�ux. This 
ompli
ates the implementation of internal agents that wish to inter
ept su
h a
tivity. For example,the appli
ation may perform I/O in a global 
onstru
tor or destru
tor. Thus, an internal agent itself 
annotrely on global 
onstru
tors or destru
tors: there is no ordering enfor
ed between those of the appli
ation andthose of the agent. Likewise, a dynami
ally loaded agent 
annot interpose on the a
tions of the dynami
 linker.The programmer of su
h agents must not only exer
ise 
are in 
onstru
ting the agent, but also in sele
ting thelibraries invoked by the agent. Su
h 
ode is time 
onsuming to 
reate and debug. These a
tivities are mu
hmore easily manipulated through external te
hniques. For example, external te
hniques 
an easily trap andmodify the a
tivities of the dynami
 linker.No 
ode is ever 
omplete nor fully debugged. Produ
tion deployment of interposition agents requires thatusers be permitted to debug both appli
ations and agents. All te
hniques admit debugging of user programs,with the only 
ompli
ation arising in the debugger trap. For obvious reasons, a single pro
ess 
annot bedebugged by two pro
esses at on
e, so a debugger 
annot be atta
hed to an instrumented pro
ess. However,a debugger trap agent 
an be used to manage an entire pro
ess tree, so instead the user may use the agent toinvoke the debugger, whi
h may then invoke the appli
ation. The debugger's operations may be trapped justlike any other system 
all and passed along to the appli
ation, all under the supervision of the agent.Interposition agents may be used for se
urity as well as 
onvenien
e. An agent may provide a sandboxwhi
h prevents an untrusted appli
ation from modifying any external data that it is not permitted to a

ess.The internal te
hniques are not suitable for this se
urity purpose, be
ause they may easily be subverted by aprogram that invokes system 
alls dire
tly without passing through libraries. The external te
hniques, however,
annot be fooled in this way and are thus suitable for se
urity.Related to se
urity is the matter of hole dete
tion. An interposition agent may fail to trap an operationattempted by an appli
ation. This may simply be a bug in the agent, or it may be that the interfa
e hasevolved over time, and the appli
ation is using a depre
ated or newly added interfa
e that the agent is notaware of. Internal agents are espe
ially sensitive to this bug. As standard libraries develop, interfa
es areadded and deleted, and modi�ed library routines may invoke system 
alls dire
tly without passing through the
orresponding publi
 interfa
e fun
tion. For example, fopen may invoke the open system 
all without passingthrough the open fun
tion. Su
h an event 
auses general 
haos in both the appli
ation and agent, often resultingin 
rashes or (worse) silent output errors. No su
h problem o

urs in external agents. Although interfa
es still
hange, any unexpe
ted event is dete
ted as an unknown system 
all. The agent may then terminate theappli
ation and indi
ate the exa
t problem.The problem of hole dete
tion must not be underestimated. Our experien
e is that any signi�
antoperating system upgrade in
ludes 
hanges to the standard libraries, whi
h in turn require modi�
ations tointernal trapping te
hniques. Thus, internal agents are rarely forward 
ompatible. Further, identifying and�xing su
h holes is time 
onsuming. Be
ause the missed operation itself is unknown, one must spend long hourswith a debugger to see where the expe
ted 
ourse of the appli
ation di�ers from the a
tual behavior. On
edis
overed, a new entry point must be added to the agent. The treatment is simple but the diagnosis is di�
ult.We have learned this lesson the hard way by porting both the Condor remote system 
all library and the Bypasstoolkit to a wide variety of Unix-like platforms.For these reasons, we have des
ribed porting in Figure 1.2 as follows. The polymorphi
 extension and theremote �lesystem are quite easy to build on a new system. The debugger trap and the kernel 
allout havesigni�
ant system dependent 
omponents to be ported to ea
h operating system, but the nature and stabilityof these interfa
es make this a tra
table task. The remaining three te
hniques�stati
 linking, dynami
 linking,



Parrot: An Appli
ation Environment for Data-Intensive Computing 13getpid stat open/
lose read 8KB bandwidthunmod .18±.03 µs 1.85±.09 3.18± .08 3.27± .19 282±13 MB/srewrite .21±.25 µs 1.82±.02 3.21± .05 3.26± .03 280± 7 MB/sstati
 .21±.02 µs 1.80±.17 3.59± .05 3.34± .02 280±17 MB/sdynami
 1.22±.01 µs 3.60±.10 5.53± .06 4.31± .09 278± 4 MB/s(α unmod) (6.8x) (1.9x) (1.7x) (1.3x) (0.99x)debug 10.06±.21 µs 55.41±.50 42.09± .06 30.99± .26 122± 4 MB/s(α unmod) (56x) (30x) (13x) (9x) (0.43x)Fig. 2.1. Overhead of Interposition Te
hniquesand binary rewriting�should be viewed as a signi�
ant porting 
hallenge that must be revisited at every minoroperating system upgrade.Figure 2.1 
ompares the performan
e of four transparent interposition te
hniques. We 
onstru
ted a ben
h-mark C program whi
h timed 100,000 iterations of various system 
alls on a 1545 MHz Athlon XP1800 runningLinux 2.4.18. Available bandwidth was measured by reading a 100 MB �le sequentially in 1 MB blo
ks. Themean and standard deviation of 1000 
y
les of ea
h ben
hmark are shown. File operations were performed on anexisting �le in a temporary �le system. The unmod 
ase gives the performan
e of this ben
hmark without anyagent atta
hed, while the remaining �ve show the same ben
hmark modi�ed by ea
h interposition te
hnique.In ea
h 
ase, we 
onstru
ted a very minimal agent to trap system 
alls and invoke them without modi�
ation.As 
an be seen, the binary rewriting and stati
 linking methods add no signi�
ant 
ost to the appli
ation.The dynami
 method has overhead on the order of mi
rose
onds, as it must manage the stru
ture of (potentially)multiple agents and invoke a fun
tion pointer. However, these overheads are qui
kly dominated by the 
ostof moving data in and out of the pro
ess. The debugger trap has the greatest overhead of all the te
hniques,ranging from a 56x slowdown for getpid to a 6x slowdown for writing 8 KB. Most importantly, the bandwidthmeasurement demonstrates that the debugger trap a
hieves less than half of the unmodi�ed I/O bandwidth.It should be fairly noted that this laten
y and bandwidth will be dominated by the laten
y and bandwidth ofa

essing remote servi
es on 
ommodity networks. Se
urity and reliability 
ome at a measurable 
ost.3

Fig. 3.1. Intera
tive Browsing with Parrot3. Parrot. The Parrot interposition agent atta
hes standard appli
ations to a variety of distributed I/Osystems by way of the debugger trap, des
ribed above. Ea
h I/O proto
ol is presented as a normal �lesystementry under a new top-level dire
tory bearing the name of the proto
ol. In addition, an optional mountlist maybe given, whi
h redire
ts parts of the �lesystem namespa
e to external paths. Figure 3.1 shows Parrot beingused with standard tools to manipulate �les stored at the Mass Storage Server (MSS) at the National Center forSuper
omputing Appli
ations (NCSA) via the Grid Se
urity Infrastru
ture (GSI) [9℄ variant of the File TransferProto
ol (FTP).Parrot is equipped with a variety of drivers for 
ommuni
ating with external storage systems; ea
h hasparti
ular features and limitations. The simplest is the Lo
al driver, whi
h simply passes operations on tothe underlying operating system. The Chirp proto
ol was designed by the authors in an earlier work [22℄
3Omitted: a detailed des
ription of the debugger trap.



14 D. Thain and M. Livnyto provide remote I/O with semanti
s very similar to POSIX. A standalone 
hirp server is distributed withParrot. The venerable File Transfer Proto
ol (FTP) has been in heavy use sin
e the early days of theInternet. Its simpli
ity allows for a wide variety of of implementations, whi
h, for our purposes, results in anunfortunate degree of impre
ision whi
h we will expand upon below. Parrot supports the se
ure GSI [3℄ variantof ftp. The NeST proto
ol is the native language of the NeST storage applian
e [6℄, whi
h provides an array ofauthenti
ation, allo
ation, and a

ounting me
hanisms for storage that may be shared among multiple transientusers. The RFIO and DCAP proto
ols were designed in the high-energy physi
s 
ommunity to provide a

essto hierar
hi
al mass storage devi
es su
h as Castor [5℄ and DCa
he [8℄.Be
ause Parrot must preserve POSIX semanti
s for the sake of the appli
ation, our foremost 
on
ern isthe ability of ea
h of these proto
ols to provide the ne
essary semanti
s. Performan
e is a se
ondary 
on
ern,although it is a�e
ted signi�
antly by semanti
 issues. A summary of the semanti
s of ea
h of these proto
olsis given in Figure 3.2.4name binding dis
ipline dirs metadata symlinks 
onne
tionsposix open/
lose random yes dire
t yes -
hirp open/
lose random yes dire
t yes per 
lientftp get/put sequential varies indire
t no per �lenest get/put random yes indire
t yes per 
lientr�o open/
lose random yes dire
t no per �le/opd
ap open/
lose random no dire
t no per 
lientFig. 3.2. Proto
ol Compatibility with POSIX4. Errors and Boundary Conditions. Error handling has not been a pervasive problem in the designof traditional operating systems. As new models of �le intera
tion have developed, attending error modes havebeen added to existing systems by expanding the software interfa
e at every level. For example, the additionof distributed �le systems to the Unix kernel 
reated the new possibility of a stale �le handle, represented bythe ESTALE error. As this error mode was dis
overed at the very lowest layers of the kernel, the value wasadded to the devi
e driver interfa
e, the �le system interfa
e, the standard library, and expe
ted to be handleddire
tly by appli
ations.We have no su
h luxury in an interposition agent. Appli
ations use the existing interfa
e, and we haveneither the desire nor the ability to 
hange it. Sometimes, if we are lu
ky, we may re-use an error su
h asESTALE for an analogous, if not identi
al purpose. Yet, the underlying devi
e drivers generate errors rangingfrom the vague ��le system error� to the mi
ros
opi
ally pre
ise �server's 
erti�
ation authority is not trusted.�How should the unlimited spa
e of errors in the lower layers be transformed into the �xed spa
e of errorsavailable to the appli
ation?5For example, several devi
e drivers have the ne
essary ma
hinery to 
arry out all of a user's possible requests,but provide vague errors when a supported operation fails. The FTP driver allows an appli
ation to read a �levia the GET 
ommand. However, if the GET 
ommand fails, the only available information is the error 
ode550, whi
h en
ompasses almost any sort of �le system error in
luding �no su
h �le,� �a

ess denied,� and �is adire
tory.� The POSIX interfa
e does not permit a 
at
h-all error value; it requires a spe
i�
 reason. Whi
herror 
ode should be returned to the appli
ation?One te
hnique for dealing with this problem is to interview the servi
e in order to narrow down the 
auseof the error, in a manner similar to that of an expert system. Suppose that we attempt to retrieve a �le usingan FTP GET operation. If the GET should fail, we may hypothesize that the named �le is a
tually a dire
tory.The hypothesis may be tested with a 
hange dire
tory (CWD) 
ommand. If that su

eeds, the hypothesis istrue, and we may return the pre
ise error �not a �le.� If that fails, we must propose another hypothesis andtest it. Parrot performs a number of two- and three-step interviews in response to a variety of FTP errors.The 
onne
tion stru
ture of a remote I/O proto
ol also has impli
ations for semanti
s as well as performan
e.Chirp, NeST, and DCAP require one TCP 
onne
tion between ea
h 
lient and server. FTP and RFIO requirea new 
onne
tion made for ea
h �le opened. In addition, RFIO requires a new 
onne
tion for ea
h operationperformed on a non-open �le. Be
ause most �le system operations are metadata queries, this 
an result in an
4Omitted: Details of the various proto
ols supported by Parrot.
5Omitted: Several more examples of error transformation.



Parrot: An Appli
ation Environment for Data-Intensive Computing 15extraordinary number of 
onne
tions in a short amount of time. Ignoring the laten
y penalties of this a
tivity, alarge number of TCP 
onne
tions 
an 
onsume resour
es at 
lients, servers, and network devi
es su
h as addresstranslators.65. Performan
e. We have deferred a dis
ussion of performan
e until this point so that we may see theperforman
e e�e
ts of semanti
 
onstraints. Although it is possible to write appli
ations expli
itly to use remoteI/O proto
ols in the most e�
ient manner, Parrot must provide 
onservative and 
omplete implementations ofPOSIX operations. For example, an appli
ation may only need to know the size of a �le, but if it requests thisinformation via stat, Parrot is obliged to �ll the stru
ture with everything it 
an, possibly at great 
ost.

 0

 1

 2

 3

 4

 5

 6

 7

 8

64M16M4M1M256K64K16K4K

B
an

dw
id

th
 (

M
B

/s
)

Block Size

ftp
rfio

dcap
nest
chirpFig. 5.1. Throughput of 128 MB File Copy

The I/O servi
es dis
ussed here, with the ex
ep-tion of Chirp, are designed primarily for e�
ient high-volume data movement. This is demonstrated by Fig-ure 5.1, whi
h 
ompares the throughput of the proto-
ols at various blo
k sizes. The throughput was mea-sured by 
opying a 128 MB �le into the remote storagedevi
e with the standard 
p 
ommand equipped withParrot and a varying default blo
k size, as 
ontrolledthrough the stat emulation des
ribed above.Of 
ourse, the absolute values are an artifa
t ofour system, however, it 
an be seen that all of the pro-to
ols must be tuned for optimal performan
e. Theex
eption is Chirp, whi
h only rea
hes about one halfof the available bandwidth. This is be
ause of thestri
t RPC nature required for POSIX semanti
s; theChirp server does not extra
t from the underlying�lesystem any more data than ne
essary to supplythe immediate read. Although it is te
hni
ally feasi-ble for the server to read ahead in anti
ipation of the next operation, su
h data pulled into the server's addressspa
e might be invalidated by other a
tors on the �le in the meantime and is thus semanti
ally in
orre
t.The hi

up in throughput of DCAP at a blo
k size of 64KB is an unintended intera
tion with the defaultTCP bu�er size of 64 KB. The developers of DCAP are aware of the artifa
t and re
ommend 
hanging eitherthe blo
k size or the bu�er size to avoid it. This is reasonable advi
e, given that all of the proto
ols requiretuning of some kind.Figure 5.2 ben
hmarks the laten
y of POSIX-equivalent operations in ea
h I/O proto
ol. These measure-ments were obtained in a manner identi
al to that of Figure 2.1, with the indi
ated servers residing on thesame system as in Figure 5.1. Noti
e that the laten
ies are measured in millise
onds, whereas Figure 2.1 gavemi
rose
onds. proto stat open/
lose read 8KB write 8KB bandwidth
hirp .50± .14 ms .84± .09 2.80± .06 2.23± .04 4.1 MB/sftp .87± .09 ms 2.82± .26 (no random a

ess) 7.9 MB/snest 2.51± .05 ms 2.53± .17 4.48± .14 7.41± .32 7.9 MB/sr�o 13.41± .28 ms 23.11± 1.29 3.32± .14 2.85± .18 7.3 MB/sd
ap 152.53±16.68 ms 159.09±16.68 3.01± 0.62 3.14± .62 7.5 MB/sFig. 5.2. Performan
e of I/O Proto
ols On a Lo
al-Area NetworkWe hasten to note that this 
omparison, in a 
ertain sense, is not �fair.� These data servers provide vastlydi�erent servi
es, so the performan
e di�eren
es demonstrate the 
ost of the servi
e, not the 
leverness of theimplementation. For example, Chirp and FTP a
hieve low laten
ies be
ause they are lightweight translationlayers over an ordinary �le system. NeST has somewhat higher laten
y be
ause it provides the abstra
tionof a virtual �le system, user namespa
e, a

ess 
ontrol lists, and a storage allo
ation system, all built on anexisting �lesystem. The 
ost is due to the ne
essary metadata log that re
ords all su
h a
tivity that 
annot bestored dire
tly in the underlying �le system. Both RFIO and DCAP are designed to intera
t with mass storage
6Omitted: A dis
ussion of the interfa
e between Parrot and bat
h systems.



16 D. Thain and M. Livnydist. proto 
opy list s
an make deletelo
al lo
al .15± .02 se
 .09± .20 .08± .02 65.38±3.47 .86± .18 se
lo
al 
hirp 1.22± .03 se
 .34± .02 .40± .01 81.02±1.46 .79± .01 se
lan 
hirp 6.16± .22 se
 .57± .30 1.32± .03 144.00±1.35 1.26± .02 se
lan 
hirp 10.67± .90 se
 .53± .07 4.72± .32 95.05±2.33 1.24± .03 se
lan ftp 34.88±1.72 se
 1.47± .02 17.78±1.14 122.54±3.14 2.95± .15 se
lan nest 52.35±4.18 se
12.92±4.87 28.14±4.52 307.19±3.26 31.73±4.37 se
lan r�o (overwhelmed by repeated 
onne
tions)lan d
ap (does not support dire
tories without nfs)Fig. 5.3. Performan
e of the Andrew-Like Ben
hmarksystems; single operations may result in gigabytes of a
tivity within a disk 
a
he, possibly moving �les to orfrom tape. In that 
ontext, low laten
y is not a 
on
ern.That said, several things may be observed from this table. Although FTP has bene�tted from years ofoptimizations, the 
ost of a stat is greater than that of Chirp be
ause of the need for multiple round trips to �llin the ne
essary details. The additional laten
y of open/
lose is due to the multiple round trips to name andestablish a new TCP 
onne
tion. Both RFIO and DCAP have higher laten
ies for single byte reads and writesthan for 8KB reads and writes. This is due to bu�ering whi
h delays small operations in anti
ipation of furtherdata. Most importantly, all of these remote operations ex
eed the laten
y of the debugger trap itself by severalorders of magnitude. Thus, we are 
omfortable with the previous de
ision to sa
ri�
e performan
e in favor ofreliability in the interposition te
hnique.We 
on
lude with a ma
roben
hmark similar to the Andrew ben
hmark. [11℄ This Andrew-like ben
hmark
onsists of a series of operations on the Parrot sour
e tree, whi
h 
onsists of 13 dire
tories and 296 �les totaling955 KB. To prepare, the sour
e tree is moved to the remote devi
e. In the 
opy stage, the tree is dupli
ated onthe remote devi
e. In the list stage, a detailed list (ls -lR) of the tree is made. In the s
an stage, all �les in thetree are sear
hed (grep) for a text string. In the make stage, the software is built. From an I/O perspe
tive,this involves a sequential read of every sour
e �le, a sequential write of every obje
t �le, and a series of randomreads and writes to 
reate the exe
utables. In the delete stage, the tree is deleted.Figure 5.3 
ompares the performan
e of the Andrew-like ben
hmark in a variety of 
on�gurations. In thethree 
ases above the horizontal rule, we measure the 
ost of ea
h layer of software added: �rst with Parrotonly, then with a Chirp server on the same host, then with a Chirp server a
ross the lo
al area network. Notsurprisingly, the I/O 
ost of separating 
omputation from storage is high. Copying data is mu
h slower overthe network, although the slowdown in the make stage is quite a

eptable if we intend to in
rease throughputvia remote parallelization.In the two 
ases adja
ent to the rule, the only 
hange is the enabling of 
a
hing. As might be expe
ted, the
ost of unne
essary dupli
ation 
auses an in
rease in 
opying the sour
e tree, although the di�eren
e is easilymade up in the make stage, where the 
a
he eliminates the multiple random I/O ne
essary to link exe
utables.The list and delete stages only involve dire
tory stru
ture and metadata a

ess and are thus not a�e
ted by the
a
he.In the �ve 
ases below the horizontal rule, we explore the use of various proto
ols to run the ben
hmark.In all of these 
ases, 
a
hing is enabled in order to eliminate the 
ost of random a

ess as dis
ussed. TheDCAP proto
ol is semanti
ally unable to run the ben
hmark, as it does not provide the ne
essary a

ess todire
tories. The RFIO proto
ol is semanti
ally able to run the ben
hmark, but the high frequen
y of �lesystemoperations results in a large number of TCP 
onne
tions, whi
h qui
kly exhausts networking resour
es at boththe 
lient and the server, thus preventing the ben
hmark from running. Chirp, FTP, and NeST are all able to
omplete the ben
hmark. The NeST results have a high varian
e, due to delays in
urred while the metadatalog is periodi
ally 
ompressed. The di�eren
e in performan
e between Chirp, FTP, and NeST is primarilyattributable to the 
ost of metadata lookups. All the stages make heavy use of stat; the multiple round tripsne
essary to implement this 
ompletely for FTP and NeST have a striking 
umulative e�e
t.6. Con
lusions. Interposition agents provide a stable platform for bringing old appli
ations into newenvironments. We have outlined the di�
ulties that we have en
ountered as well as the solutions we have
onstru
ted in the 
ourse of building and deploying several types of agents within the Condor proje
t. As wehave shown, the Linux debugger trap has several limitations, but 
an still be put to good use. As interest grows



Parrot: An Appli
ation Environment for Data-Intensive Computing 17in the use of virtual ma
hines in distributed systems [26℄ the need for powerful but low overhead methods ofinterposition grows. The appropriate interfa
e for this task is still an open resear
h topi
.The notion of virtualizing or multiplexing an existing interfa
e is a 
ommon te
hnique [14, 7℄, but theplague of errors and other boundary 
onditions seems to be su�ered silently by pra
titioners. Su
h problemsare rarely publi
ized, however, we are aware of two ex
ellent ex
eptions. C. Metz [16℄ des
ribes how the Berkeleyso
kets interfa
e is surprisingly hard to multiplex. T. Gar�nkel [10℄ des
ribes the subtle semanti
 problems ofsandboxing untrusted appli
ations.For more information: http://www.
s.wis
.edu/�thain/resear
h/parrot7. A
knowledgments. We thank John Bent and Sander Klous for their help deploying and debuggingParrot. Vi
tor Zandy wrote the me
hanism for binary rewriting. Alain Roy gave thoughtful 
omments on earlydrafts of this paper. REFERENCES[1℄ M. A

etta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, Ma
h: A new kernelfoundation for Unix development, in Pro
eedings of the USENIX Summer Te
hni
al Conferen
e, Atlanta, GA, 1986.[2℄ A. Alexandrov, M. Ibel, K. S
hauser, and C. S
heiman, UFO: A personal global �le system based on user-levelextensions to the operating system, ACM Transa
tions on Computer Systems, (1998), pp. 207�233.[3℄ W. All
o
k, A. Chervenak, I. Foster, C. Kesselman, and S. Tue
ke, Proto
ols and servi
es for distributed data-intensive s
ien
e, in Pro
eedings of Advan
ed Computing and Analysis Te
hniques in Physi
s Resear
h, 2000, pp. 161�163.[4℄ D. Anderson, J. Chase, and A. Vahdat, Interposed request routing for s
alable network storage, in Pro
eedings of theFourth Symposium on Operating Systems Design and Implementation, 2000.[5℄ O. Barring, J. Baud, and J. Durand, CASTOR proje
t status, in Pro
eedings of Computing in High Energy Physi
s,Padua, Italy, 2000.[6℄ J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpa
i-Dusseau, R. Arpa
i-Dusseau, andM. Livny, Flexibility, manageability, and performan
e in a grid storage applian
e, in Pro
eedings of the EleventhIEEE Symposium on High Performan
e Distributed Computing, Edinburgh, S
otland, July 2002.[7℄ D. Cheriton, UIO: A uniform I/O system interfa
e for distributed systems, ACM Transa
tions on Computer Systems, 5(1987), pp. 12�46.[8℄ M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrt
hyan, and C. Waldman, dCa
he, a distributed storage data 
a
hingsystem, in Pro
eedings of Computing in High Energy Physi
s, Beijing, China, 2001.[9℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke, A se
urity ar
hite
ture for 
omputational grids, in Pro
eedings ofthe 5th ACM Conferen
e on Computer and Communi
ations Se
urity Conferen
e, 1998, pp. 83�92.[10℄ T. Garfinkel, Traps and pitfalls: Pra
ti
al problems in in system 
all interposition based se
urity tools, in Pro
eedings ofthe Network and Distributed Systems Se
urity Symposium, February 2003.[11℄ J. Howard, M. Kazar, S. Menees, D. Ni
hols, M. Satyanarayanan, R. Sidebotham, and M. West, S
ale andperforman
e in a distributed �le system, ACM Transa
tions on Computer Systems, 6 (1988), pp. 51�81.[12℄ G. Hunt and D. Bruba
her, Detours: Binary inter
eption of Win32 fun
tions, Te
h. Report MSR-TR-98-33, Mi
rosoftResear
h, February 1999.[13℄ M. Jones, Interposition agents: Transparently interposing user 
ode at the system interfa
e, in Pro
eedings of the 14th ACMSymposium on Operating Systems Prin
iples, 1993.[14℄ S. Kleiman, Vnodes: An ar
hite
ture for multiple �le system types in Sun Unix, in Pro
eedings of the USENIX Te
hni
alConferen
e, 1986, pp. 151�163.[15℄ M. Lee
h, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, SOCKS proto
ol version 5. Internet EngineeringTask For
e, Request for Comments 1928, Mar
h 1996.[16℄ C. Metz, Proto
ol independen
e using the so
kets API, in Pro
edings of the USENIX Te
hni
al Conferen
e, June 2002.[17℄ B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. B. Irvin, K. Karavani
, K. Kun
hithapadam, andT. Newhall, The Paradyn parallel performan
e measurement tools, IEEE Computer, 28 (1995), pp. 37�46.[18℄ B. Miller, A. Cortes, M. A. Senar, and M. Livny, The tool daemon proto
ol (TDP), in Pro
eedings of Super
omputing,Phoenix, AZ, November 2003.[19℄ C. Small and M. Seltzer, A 
omparison of OS extension te
hnologies, in Pro
eedings of the USENIX Te
hni
al Conferen
e,1996, pp. 41�54.[20℄ M. Solomon and M. Litzkow, Supporting 
he
kpointing and pro
ess migration outside the Unix kernel, in Pro
eedings ofthe USENIX Winter Te
hni
al Conferen
e, 1992.[21℄ D. Thain and M. Livny, Multiple bypass: Interposition agents for distributed 
omputing, Journal of Cluster Computing, 4(2001), pp. 39�47.[22℄ , Error s
ope on a 
omputational grid, in Pro
eedings of the Eleventh IEEE Symposium on High Performan
e Dis-tributed Computing, July 2002.[23℄ , Parrot: Transparent user-level middleware for data-intensive 
omputing, in Pro
eedings of the Workshop on AdaptiveGrid Middleware, September 2003.[24℄ , Parrot: Transparent user-level middleware for data-intensive 
omputing, Te
h. Report 1493, Computer S
ien
esDepartment, University of Wis
onsin, De
ember 2003.[25℄ K.-P. Vo, The dis
ipline and method ar
hite
ture for reusable libraries, Software: Pra
ti
e and Experien
e, 30 (2000),pp. 107�128.



18 D. Thain and M. Livny[26℄ A. Whitaker, M. Shaw, and S. D. Gribble, S
ale and performan
e in the Denali isolation kernel, in Pro
eedings of theFifth Symposium on Operating System Design and Implementation, Boston, MA, De
ember 2002.[27℄ B. White, A. Grimshaw, and A. Nguyen-Tuong, Grid-Based File A

ess: The Legion I/O Model, in Pro
eedings of theNinth IEEE Symposium on High Performan
e Distributed Computing, August 2000.[28℄ V. Zandy, B. Miller, and M. Livny, Pro
ess hija
king, in Pro
eedings of the Eighth IEEE International Symposium onHigh Performan
e Distributed Computing, 1999.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 14, 2003.A

epted: September 1, 2003.


