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PARROT: AN APPLICATION ENVIRONMENT FOR DATA-INTENSIVE COMPUTING

DOUGLAS THAIN AND MIRON LIVNY*

Abstract. Distributed computing continues to be an alphabet-soup of services and protocols for managing computation
and storage. To live in this environment, applications require middleware that can transparently adapt standard interfaces to
new distributed systems; such middleware is known as an interposition agent. In this paper, we present several lessons learned
about interposition agents via a progressive study of design possibilities. Although performance is an important concern, we pay
special attention to less tangible issues such as portability, reliability, and compatibility. We begin with a comparison of seven
methods of interposition and select one method, the debugger trap, that is the slowest but also the most reliable. Using this
method, we implement a complete interposition agent, Parrot, that splices existing remote I/O systems into the namespace of
standard applications. The primary design problem of Parrot is the mapping of fixed application semantics into the semantics of
the available 1/O systems. We offer a detailed discussion of how errors and other unexpected conditions must be carefully managed
in order to keep this mapping intact. We conclude with a evaluation of the performance of the I/O protocols employed by Parrot,
and use an Andrew-like benchmark to demonstrate that semantic differences have consequences in performance.!
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1. Introduction. The field of distributed computing has produced countless systems for harnessing remote
processors and accessing remote data. Despite the intentions of their designers, no single system has achieved
universal acceptance or deployment. Each carries its own strengths and weakness in performance, manageability,
and reliability. Renewed interest in world-wide computational systems is increasing the number of protocols
and interfaces in play. A complex ecology of distributed systems is here to stay.

The result is an hourglass model of distributed computing,

Distributed Computing Services shown in Figure 1.1. At the center lie ordinary applications built
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atch systems that manage processors, interact with users, an
Condor| PBS | NQE | LSF Leveler deal with failures of execution. A batch system interacts with an
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Common Process I nterface with remote memory, disks, and tapes. An ordinary operating
) ) . system (OS) transforms an application’s explicit reads and writes
(main, exit, abort, kill, sleep) into the low-level block and network operations that compose a
A local or distributed file system.
T =1 e} However, attaching a new I/0 service to a traditional OS is
Application o E not a trivial task. Although the principle of an extensible OS
Process § = has received much attention in the research community [19], pro-
o |O . . . e -
v 5 duction ope‘ra‘tlng systems bave ‘hmlted fac1'11‘?1es for ex‘te'nsmn,
usually requiring kernel modifications or administrator privileges.
(open, close, read, write, |seek) Although this may be acceptable for a personal computer, this re-
Common 1/O Interface quirement makes it difficult or impossible to provide custom I/0
and naming services for applications visiting a borrowed comput-
Parrot ing environment such as a timeshared mainframe, a commodity
computing cluster, or an opportunistic workgroup.
Chirp | FTP | NeST | RFIO | DCAP To remedy this situation, we advocate the use of interposition
agents [13]. These devices transform standard interfaces into
Distributed 1/O Services remote I/O protocols not normally found in an operating system.
In effect, an agent allows an application to bring its filesystem
Fig. 1.1. The Hourglass Model and namespace along with it wherever it goes. This releases the

dependence on the details of the execution site while preserving
the use of standard interfaces. In addition, the agent can tap into naming services that transform private names
into fully-qualified names relevant in the larger system.

*Computer Sciences Department, University of Wisconsin
IThis research was supported by a L.awrence Landweber NCR fellowship in distributed systems.

9



10 D. Thain and M. Livny

internal techniques external techniques
poly. static dyn. binary debug remote kernel
exten. link link rewrite trap filesys. callout
scope library static ~ dynamic  dynamic no setuid any any
burden rewrite relink identify identify | run command superuser modify os
layer fixed any any any syscall fs ops only syscall
init /fini hard hard hard hard easy impossible easy
aff. linker no no no no yes yes yes
debug yes yes yes yes limited yes yes
secure no no no no yes yes yes
find holes easy hard hard hard easy easy easy
porting easy hard hard hard medium easy medium

Fia. 1.2. Properties of Interposition Techniques

In this paper, we present practical lessons learned from several years of building and deploying interposition
agents within the Condor project. [20, 28, 21, 22| Although the notion of such agents is not unique to Condor [13,
2, 12|, they have seen relatively little use in other production systems. This is due to a variety of technical and
semantic difficulties that arise in connecting real systems together.

We present this paper as a progressive design study that explores these problems and explains our solutions.
We begin with a detailed study of seven methods of interposition, five of which we have experience building
and deploying. The remaining two are effective but impractical because of the privilege required. We will
compare the performance and functionality of these methods, giving particular attention to intangibles such
as portability and reliability. In particular, we will concentrate on one method that has not been explored in
detail: the debugger trap. Although this method has been employed in idealized operating systems, it requires
additional techniques in order to provide acceptable performance on popular operating systems with limited
debugging capabilities, such as Linux.

Using the debugger trap, we focus on the design of Parrot, an interposition agent that splices remote I/0O
systems into the filesystem space of ordinary applications. A central problem in the design of an I/O agent is
the semantic problem of mapping not-quite-identical interfaces to each other. The outgoing mapping is usually
quite simple: read becomes a get, write becomes a put, and so forth. The real difficulty lies in interpreting the
large space of return values from remote services. Many new kinds of failure are introduced: servers crash,
credentials expire, and disks fill. Trivial transformations into the application’s standard interface lead to a
brittle and frustrating experience for the user.

A corollary to this observation is that access to computation and storage cannot be fully divorced. Abstract
notions of design often encourage the partition of distributed systems into two activities: either computation
or storage. An interposition agent serves as a connection between these two concerns; like an operating system
kernel, it manages both types of devices and must mediate their interaction, sometimes bypassing the application
itself.

This paper is a condensed version of a workshop paper. Due to space limitations, we have omitted a number
of sections and details, indicated by footnotes. The interested reader may find further details in the original
paper [23] or in a technical report. [24]?

2. Interposition Techniques Compared. There are many techniques for interpositioning services be-
tween an application and the underlying system. Each has particular strengths and weaknesses. Figure 1.2
summarizes seven interposition techniques. They may be broken into two broad categories: internal and exter-
nal. Internal techniques modify the memory space of an application process in some fashion. These techniques
are flexible and efficient, but cannot be applied to arbitrary processes. External techniques capture and modify
operations that are visible outside an application’s address space. These techniques are less flexible and have
higher overhead, but can be applied to nearly any process. The Condor project has experience building and
deploying all of the internal techniques as well one external technique: the debugger trap. The remaining two
external techniques we describe from relevant publications.

The simplest technique is the polymorphic extension. If the application structure is amenable to extension,
we may simply add a new implementation of an existing interface. The user then must make small code changes
to invoke the appropriate constructor or factory in order to produce the new object. This technique is used in

20mitted: Example applications of interposition agents.
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Condor’s Java Universe [22] to connect an ordinary InputStream or OutputStream to a secure remote proxy. It
is also found in general purpose libraries such as SFIO [25].

The static library technique involves creating a replacement for an existing library. The user is obliged to
re-link the application with the new library. For example, Condor’s Standard Universe [20] provides a drop-in
replacement for the standard C library that provides transparent checkpointing as well as proxying of I/0
back to the submission site, fully emulating the user’s home environment. The dynamic library technique also
involves creating a replacement for an existing library. However, through the use of linker controls, the user may
direct the new library to be used in place of the old for any given dynamically linked library. This technique
is used by DCache [8], some implementations of SOCKS [15], as well as our own Bypass [21] toolkit. The
binary rewriting technique involves modifying the machine code of a process at runtime to redirect the flow of
control. This requires very detailed knowledge of the CPU architecture in use, but this can be hidden behind
an abstraction such as the Paradyn [17] toolkit. This technique has been used to “hijack” an unwitting process
at runtime [28].

Traditional debuggers make use of a specialized operating system interface for stopping, examining, and
resuming a process. The debugger trap technique uses this interface, but instead of merely examining the
process, the debugging agent traps each system call, provides an implementation, and then places the result
back in the target process while nullifying the intended system call. An example of this technique is UFO [2],
which allows access to HT'TP and ftp resources via whole-file fetching. A difficulty with the debugger trap is
that many tools compete for access to a single process’ debug interface. The Tool Daemon Protocol (TDP) [18]
provides an interface for managing such tools in a distributed system.

A remote filesystem may be used as an interposition agent by simply modifying the file server. NFS is a
popular choice for this technique, and is used by the Legion [27] object-space translator, as well the Slice [4]
microproxy. Finally, short of modifying the kernel itself, we may install a one-time kernel callout which permits
a filesystem to be serviced by a user-level process. This facility can be present from the ground up in a
microkernel [1], but can also be added as an afterthought, which is the case for most implementations of
AFS [11].

The four internal techniques may only be applied to certain kinds of programs. Polymorphic extension and
static linking only apply to those programs that can be rebuilt. The dynamic library technique requires that
the replaced library be dynamic, while binary rewriting (with the Paradyn toolkit) requires the presence of the
dynamic loader, although no particular library must be dynamic. The three external techniques apply to any
process, with the exception that the debugging trap prevents the traced process from elevating its privilege level
through the setuid feature.

The burden upon the user for each of these techniques also varies widely. For example, polymorphic exten-
sion requires small code changes while static linking requires rebuilding. These techniques may not be possible
with packaged commercial software. Dynamic linking and binary rewriting require that the user understand
which programs are dynamically linked and which are not. Most standard system utilities are dynamic, but
many commercial packages are static. Our experience is that users are surprised and quite frustrated when
an (unexpectedly) static application blithely ignores an interposition agent. The remote filesystem and kernel
callout techniques impose the smallest user burden, but require a cooperative system administrator to make
the necessary changes. The debugger trap imposes a small burden on the user to simply invoke the agent
executable.

Perhaps the most significant difference between the techniques is the ability to trap different layers of
software. Each of the internal techniques may be applied at any layer of code. For example, Bypass has been
used to instrument an application’s calls to the standard memory allocator, the X Window System library, and
the OpenGL library. In contrast, the external techniques are fixed to particular interfaces. The debugger trap
only operates on physical system calls, while the remote filesystem and kernel callout are limited to certain
filesystem operations.

Differences in these techniques affect the design of code that they attach to. Consider the matter of
implementing a directory listing on a remote device. The internal techniques are capable of intercepting library
calls such as open and opendir. These are easily mapped to remote file access protocols, which generally have
separate procedures for accessing files and directories. However, the Unix interface unifies files and directories;
both are accessed through the system call open. External techniques must accept an open on either a file or
directory and defer the binding to a remote operation until either read or getdents is invoked. The choice of
interposition layer affects the design of the agent.
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The external techniques also differ in the range of operations that they are able to trap. While the debugger
trap can modify any system call, the remote filesystem and kernel callout techniques are limited to filesystem
operations. A particular remote filesystem may have even further restrictions. For example, the stateless
NFS protocol has no representation of the system calls open and close. Without access to this information,
the interposed service cannot provide semantics significantly different than those provided by NFS. Further,
such file system interfaces do not express any binding between individual operations and the processes that
initiate them. That is, a remote filesystem agent sees a read or write but not the process id that issued it.
Without this information, it is difficult or impossible to performing accounting for the purposes of security or
performance.

A number of important activities take place during the initialization and finalization of a process: dynamic
libraries are loaded; constructors, destructors, and other automatic routines are run; I/O streams are created
or flushed. During these transitions, the libraries and other resources in use by a process are in a state of
flux. This complicates the implementation of internal agents that wish to intercept such activity. For example,
the application may perform I/0 in a global constructor or destructor. Thus, an internal agent itself cannot
rely on global constructors or destructors: there is no ordering enforced between those of the application and
those of the agent. Likewise, a dynamically loaded agent cannot interpose on the actions of the dynamic linker.
The programmer of such agents must not only exercise care in constructing the agent, but also in selecting the
libraries invoked by the agent. Such code is time consuming to create and debug. These activities are much
more easily manipulated through external techniques. For example, external techniques can easily trap and
modify the activities of the dynamic linker.

No code is ever complete nor fully debugged. Production deployment of interposition agents requires that
users be permitted to debug both applications and agents. All techniques admit debugging of user programs,
with the only complication arising in the debugger trap. For obvious reasons, a single process cannot be
debugged by two processes at once, so a debugger cannot be attached to an instrumented process. However,
a debugger trap agent can be used to manage an entire process tree, so instead the user may use the agent to
invoke the debugger, which may then invoke the application. The debugger’s operations may be trapped just
like any other system call and passed along to the application, all under the supervision of the agent.

Interposition agents may be used for security as well as convenience. An agent may provide a sandbox
which prevents an untrusted application from modifying any external data that it is not permitted to access.
The internal techniques are not suitable for this security purpose, because they may easily be subverted by a
program that invokes system calls directly without passing through libraries. The external techniques, however,
cannot be fooled in this way and are thus suitable for security.

Related to security is the matter of hole detection. An interposition agent may fail to trap an operation
attempted by an application. This may simply be a bug in the agent, or it may be that the interface has
evolved over time, and the application is using a deprecated or newly added interface that the agent is not
aware of. Internal agents are especially sensitive to this bug. As standard libraries develop, interfaces are
added and deleted, and modified library routines may invoke system calls directly without passing through the
corresponding public interface function. For example, fopen may invoke the open system call without passing
through the open function. Such an event causes general chaos in both the application and agent, often resulting
in crashes or (worse) silent output errors. No such problem occurs in external agents. Although interfaces still
change, any unexpected event is detected as an unknown system call. The agent may then terminate the
application and indicate the exact problem.

The problem of hole detection must not be underestimated. Our experience is that any significant
operating system upgrade includes changes to the standard libraries, which in turn require modifications to
internal trapping techniques. Thus, internal agents are rarely forward compatible. Further, identifying and
fixing such holes is time consuming. Because the missed operation itself is unknown, one must spend long hours
with a debugger to see where the expected course of the application differs from the actual behavior. Once
discovered, a new entry point must be added to the agent. The treatment is simple but the diagnosis is difficult.
We have learned this lesson the hard way by porting both the Condor remote system call library and the Bypass
toolkit to a wide variety of Unix-like platforms.

For these reasons, we have described porting in Figure 1.2 as follows. The polymorphic extension and the
remote filesystem are quite easy to build on a new system. The debugger trap and the kernel callout have
significant system dependent components to be ported to each operating system, but the nature and stability
of these interfaces make this a tractable task. The remaining three techniques—static linking, dynamic linking,
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getpid stat open/close read 8KB bandwidth

unmod 18+.03 ps 1.85+.09 3.18+ .08 3.27+ .19 282413 MB/s
rewrite 21425 ps 1.82+.02 3.21+ .05 3.26+ .03 280+ 7 MB/s
static .214+.02 ps 1.80+£.17 3.59+ .05 3.34+ .02 280+17 MB/s
dynamic 1.22+.01 ps 3.60£.10 5.53f .06 4.31+ .09 278+ 4 MB/s

(a unmod) (6.8x) (1.9x%) (1.7x) (1.3x) (0.99x)
debug 10.06+.21 us 55.41+.50 42.09+ .06 30.99+ .26 1224+ 4 MB/s
(o unmod) (56x) (30x) (13x) (9x) (0.43x)

Fia. 2.1. Overhead of Interposition Techniques

and binary rewriting should be viewed as a significant porting challenge that must be revisited at every minor
operating system upgrade.

Figure 2.1 compares the performance of four transparent interposition techniques. We constructed a bench-
mark C program which timed 100,000 iterations of various system calls on a 1545 MHz Athlon XP1800 running
Linux 2.4.18. Available bandwidth was measured by reading a 100 MB file sequentially in 1 MB blocks. The
mean and standard deviation of 1000 cycles of each benchmark are shown. File operations were performed on an
existing file in a temporary file system. The unmod case gives the performance of this benchmark without any
agent attached, while the remaining five show the same benchmark modified by each interposition technique.
In each case, we constructed a very minimal agent to trap system calls and invoke them without modification.

As can be seen, the binary rewriting and static linking methods add no significant cost to the application.
The dynamic method has overhead on the order of microseconds, as it must manage the structure of (potentially)
multiple agents and invoke a function pointer. However, these overheads are quickly dominated by the cost
of moving data in and out of the process. The debugger trap has the greatest overhead of all the techniques,
ranging from a 56x slowdown for getpid to a 6x slowdown for writing 8 KB. Most importantly, the bandwidth
measurement demonstrates that the debugger trap achieves less than half of the unmodified I/O bandwidth.
It should be fairly noted that this latency and bandwidth will be dominated by the latency and bandwidth of
accessing remote services on commodity networks. Security and reliability come at a measurable cost.?

= |

% parrot tcsh

% cd /fgsifTtp/mss.ncsa.uiuc.edufufac/thain

% 1s -la

total 3

druxruxrux 1 thain thain 0 Aug 26 15:00 .trash
“TWXTWXFWX 1 thain thain 15057 fug 26 15:00 condor.gif
“TUXTWXFWX 1 thain thain 68 fug 26 15:00 hello.c
—TWXFWXFWX 1 thain thain 132921 Aug 26 15:00 lessons.pdf
% cp lessons.pdf /tmp

% mkdir datadir

% vi hello.c

% xv condor.gif

1]

L

Fia. 3.1. Interactive Browsing with Parrot

3. Parrot. The Parrot interposition agent attaches standard applications to a variety of distributed I/0
systems by way of the debugger trap, described above. Each 1/O protocol is presented as a normal filesystem
entry under a new top-level directory bearing the name of the protocol. In addition, an optional mountlist may
be given, which redirects parts of the filesystem namespace to external paths. Figure 3.1 shows Parrot being
used with standard tools to manipulate files stored at the Mass Storage Server (MSS) at the National Center for
Supercomputing Applications (NCSA) via the Grid Security Infrastructure (GSI) [9] variant of the File Transfer
Protocol (FTP).

Parrot is equipped with a variety of drivers for communicating with external storage systems; each has
particular features and limitations. The simplest is the Local driver, which simply passes operations on to
the underlying operating system. The Chirp protocol was designed by the authors in an earlier work [22]

3Omitted: a detailed description of the debugger trap.
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to provide remote I/O with semantics very similar to POSIX. A standalone chirp server is distributed with
Parrot. The venerable File Transfer Protocol (FTP) has been in heavy use since the early days of the
Internet. Its simplicity allows for a wide variety of of implementations, which, for our purposes, results in an
unfortunate degree of imprecision which we will expand upon below. Parrot supports the secure GSI [3] variant
of ftp. The NeST protocol is the native language of the NeST storage appliance [6], which provides an array of
authentication, allocation, and accounting mechanisms for storage that may be shared among multiple transient
users. The RFIO and DCAP protocols were designed in the high-energy physics community to provide access
to hierarchical mass storage devices such as Castor [5] and DCache [8].

Because Parrot must preserve POSIX semantics for the sake of the application, our foremost concern is
the ability of each of these protocols to provide the necessary semantics. Performance is a secondary concern,
although it is affected significantly by semantic issues. A summary of the semantics of each of these protocols
is given in Figure 3.2.%

name binding discipline dirs metadata symlinks connections

posix open/close random yes direct yes -
chirp open/close random yes direct yes per client
ftp get/put sequential  varies indirect no per file
nest get/put random yes indirect yes per client
rfio open/close random yes direct no per file/op
dcap open/close random no direct no per client

Fia. 3.2. Protocol Compatibility with POSIX

4. Errors and Boundary Conditions. Error handling has not been a pervasive problem in the design
of traditional operating systems. As new models of file interaction have developed, attending error modes have
been added to existing systems by expanding the software interface at every level. For example, the addition
of distributed file systems to the Unix kernel created the new possibility of a stale file handle, represented by
the ESTALE error. As this error mode was discovered at the very lowest layers of the kernel, the value was
added to the device driver interface, the file system interface, the standard library, and expected to be handled
directly by applications.

We have no such luxury in an interposition agent. Applications use the existing interface, and we have
neither the desire nor the ability to change it. Sometimes, if we are lucky, we may re-use an error such as
ESTALEFE for an analogous, if not identical purpose. Yet, the underlying device drivers generate errors ranging
from the vague “file system error” to the microscopically precise “server’s certification authority is not trusted.”
How should the unlimited space of errors in the lower layers be transformed into the fixed space of errors
available to the application?®

For example, several device drivers have the necessary machinery to carry out all of a user’s possible requests,
but provide vague errors when a supported operation fails. The FTP driver allows an application to read a file
via the GET command. However, if the GET command fails, the only available information is the error code
550, which encompasses almost any sort of file system error including ‘“no such file,” “access denied,” and “is a
directory.” The POSIX interface does not permit a catch-all error value; it requires a specific reason. Which
error code should be returned to the application?

One technique for dealing with this problem is to interview the service in order to narrow down the cause
of the error, in a manner similar to that of an expert system. Suppose that we attempt to retrieve a file using
an FTP GET operation. If the GET should fail, we may hypothesize that the named file is actually a directory.
The hypothesis may be tested with a change directory (CWD) command. If that succeeds, the hypothesis is
true, and we may return the precise error “not a file.” If that fails, we must propose another hypothesis and
test it. Parrot performs a number of two- and three-step interviews in response to a variety of FTP errors.

The connection structure of a remote I/O protocol also has implications for semantics as well as performance.
Chirp, NeST, and DCAP require one TCP connection between each client and server. FTP and RFIO require
a new connection made for each file opened. In addition, RFIO requires a new connection for each operation
performed on a non-open file. Because most file system operations are metadata queries, this can result in an

4Omitted: Details of the various protocols supported by Parrot.
50Omitted: Several more examples of error transformation.
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extraordinary number of connections in a short amount of time. Ignoring the latency penalties of this activity, a
large number of TCP connections can consume resources at clients, servers, and network devices such as address
translators.®

5. Performance. We have deferred a discussion of performance until this point so that we may see the
performance effects of semantic constraints. Although it is possible to write applications explicitly to use remote
I/0 protocols in the most efficient manner, Parrot must provide conservative and complete implementations of
POSIX operations. For example, an application may only need to know the size of a file, but if it requests this
information via stat, Parrot is obliged to fill the structure with everything it can, possibly at great cost.

The I/0 services discussed here, with the excep-
tion of Chirp, are designed primarily for efficient high-
volume data movement. This is demonstrated by Fig-
ure 5.1, which compares the throughput of the proto-
cols at various block sizes. The throughput was mea-
sured by copying a 128 MB file into the remote storage
device with the standard c¢p command equipped with
Parrot and a varying default block size, as controlled
through the stat emulation described above.

Of course, the absolute values are an artifact of
our system, however, it can be seen that all of the pro-
tocols must be tuned for optimal performance. The
exception is Chirp, which only reaches about one half
of the available bandwidth. This is because of the
strict RPC nature required for POSIX semantics; the
Chirp server does not extract from the underlying

Fia. 5.1. Throughput of 128 MB File Copy filesystem any more data than necessary to supply

the immediate read. Although it is technically feasi-

ble for the server to read ahead in anticipation of the next operation, such data pulled into the server’s address
space might be invalidated by other actors on the file in the meantime and is thus semantically incorrect.

The hiccup in throughput of DCAP at a block size of 64KB is an unintended interaction with the default
TCP buffer size of 64 KB. The developers of DCAP are aware of the artifact and recommend changing either
the block size or the buffer size to avoid it. This is reasonable advice, given that all of the protocols require
tuning of some kind.

Figure 5.2 benchmarks the latency of POSIX-equivalent operations in each I/O protocol. These measure-
ments were obtained in a manner identical to that of Figure 2.1, with the indicated servers residing on the
same system as in Figure 5.1. Notice that the latencies are measured in milliseconds, whereas Figure 2.1 gave
microseconds.

Bandwidth (MB/s)
o [l N w » (6] [o)] ~ (o]

4K 16K 64K 256K 1M 4M 16M 64M
Block Size

proto stat open/close read 8KB write 8KB bandwidth
chirp 50+ .14 ms .84+ .09 2.80+ .06 2.23+ .04 4.1 MB/s
ftp 87 .09 ms 2.82+ .26 (no random access) 7.9 MB/s
nest 2.51+ .05 ms 253+ 17 448+ 14 741+ .32 7.9 MB/s

rfio 13.41+ .28 ms 2311+ 1.29 332+ .14 285 .18 7.3 MB/s
dcap 152.53£16.68 ms 159.09+16.68 3.01+ 0.62 3.14+ .62 7.5 MB/s

Fia. 5.2. Performance of 1/O Protocols On a Local-Area Network

We hasten to note that this comparison, in a certain sense, is not “fair.” These data servers provide vastly
different services, so the performance differences demonstrate the cost of the service, not the cleverness of the
implementation. For example, Chirp and FTP achieve low latencies because they are lightweight translation
layers over an ordinary file system. NeST has somewhat higher latency because it provides the abstraction
of a virtual file system, user namespace, access control lists, and a storage allocation system, all built on an
existing filesystem. The cost is due to the necessary metadata log that records all such activity that cannot be
stored directly in the underlying file system. Both RFIO and DCAP are designed to interact with mass storage

S0Omitted: A discussion of the interface between Parrot and batch systems.
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dist. proto copy list scan make delete

local local 15+ .02 sec .09+ .20 .08+ .02 65.38+3.47 .86+ .18 sec

local chirp 1.22+ .03 sec .34% .02 .40+ .01 81.02+1.46 .79+ .01 sec
lan chirp 6.16+ .22 sec .57+ .30 1.32+ .03 144.00+£1.35 1.26£ .02 sec
lan chirp 10.674+ .90 sec .53+ .07 4.72+ .32 95.05+2.33 1.24+ .03 sec
lan ftp 34.88+1.72 sec 1.474+ .02 17.78+1.14 122.54+3.14 2.95+ .15 sec
lan mnest 52.35+4.18 sec12.924+4.87 28.14+£4.52 307.19£3.26 31.73+4.37 sec
lan  rfio (overwhelmed by repeated connections)
lan dcap (does not support directories without nfs)

Fia. 5.3. Performance of the Andrew-Like Benchmark

systems; single operations may result in gigabytes of activity within a disk cache, possibly moving files to or
from tape. In that context, low latency is not a concern.

That said, several things may be observed from this table. Although FTP has benefitted from years of
optimizations, the cost of a stat is greater than that of Chirp because of the need for multiple round trips to fill
in the necessary details. The additional latency of open/close is due to the multiple round trips to name and
establish a new TCP connection. Both RFIO and DCAP have higher latencies for single byte reads and writes
than for 8KB reads and writes. This is due to buffering which delays small operations in anticipation of further
data. Most importantly, all of these remote operations exceed the latency of the debugger trap itself by several
orders of magnitude. Thus, we are comfortable with the previous decision to sacrifice performance in favor of
reliability in the interposition technique.

We conclude with a macrobenchmark similar to the Andrew benchmark. [11] This Andrew-like benchmark
consists of a series of operations on the Parrot source tree, which consists of 13 directories and 296 files totaling
955 KB. To prepare, the source tree is moved to the remote device. In the copy stage, the tree is duplicated on
the remote device. In the list stage, a detailed list (Is -IR) of the tree is made. In the scan stage, all files in the
tree are searched (grep) for a text string. In the make stage, the software is built. From an I/O perspective,
this involves a sequential read of every source file, a sequential write of every object file, and a series of random
reads and writes to create the executables. In the delete stage, the tree is deleted.

Figure 5.3 compares the performance of the Andrew-like benchmark in a variety of configurations. In the
three cases above the horizontal rule, we measure the cost of each layer of software added: first with Parrot
only, then with a Chirp server on the same host, then with a Chirp server across the local area network. Not
surprisingly, the I/O cost of separating computation from storage is high. Copying data is much slower over
the network, although the slowdown in the make stage is quite acceptable if we intend to increase throughput
via remote parallelization.

In the two cases adjacent to the rule, the only change is the enabling of caching. As might be expected, the
cost of unnecessary duplication causes an increase in copying the source tree, although the difference is easily
made up in the make stage, where the cache eliminates the multiple random I/O necessary to link executables.
The list and delete stages only involve directory structure and metadata access and are thus not affected by the
cache.

In the five cases below the horizontal rule, we explore the use of various protocols to run the benchmark.
In all of these cases, caching is enabled in order to eliminate the cost of random access as discussed. The
DCAP protocol is semantically unable to run the benchmark, as it does not provide the necessary access to
directories. The RFIO protocol is semantically able to run the benchmark, but the high frequency of filesystem
operations results in a large number of TCP connections, which quickly exhausts networking resources at both
the client and the server, thus preventing the benchmark from running. Chirp, FTP, and NeST are all able to
complete the benchmark. The NeST results have a high variance, due to delays incurred while the metadata
log is periodically compressed. The difference in performance between Chirp, FTP, and NeST is primarily
attributable to the cost of metadata lookups. All the stages make heavy use of stat; the multiple round trips
necessary to implement this completely for FTP and NeST have a striking cumulative effect.

6. Conclusions. Interposition agents provide a stable platform for bringing old applications into new
environments. We have outlined the difficulties that we have encountered as well as the solutions we have
constructed in the course of building and deploying several types of agents within the Condor project. As we
have shown, the Linux debugger trap has several limitations, but can still be put to good use. As interest grows
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in the use of virtual machines in distributed systems [26] the need for powerful but low overhead methods of
interposition grows. The appropriate interface for this task is still an open research topic.

The notion of virtualizing or multiplexing an existing interface is a common technique [14, 7], but the
plague of errors and other boundary conditions seems to be suffered silently by practitioners. Such problems
are rarely publicized, however, we are aware of two excellent exceptions. C. Metz [16] describes how the Berkeley
sockets interface is surprisingly hard to multiplex. T. Garfinkel [10] describes the subtle semantic problems of
sandboxing untrusted applications.

For more information: http://www.cs.wisc.edu/~“thain/research/parrot
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