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DATA LOCALITY TECHNIQUES IN AN ACTIVE CLUSTER FILE SYSTEM

DESIGNED FOR SCIENTIFIC WORKFLOWS

Abstract

by

Patrick Joseph Donnelly

The continued exponential growth of storage capacity has catalyzed the broad

acquisition of scientific data which must be processed. While today’s large data

analysis systems are highly effective at establishing data locality and eliminating

inter-dependencies, they are not so easily incorporated into scientific workflows that

are often complex and irregular graphs of sequential programs with multiple depen-

dencies. To address the needs of scientific computing, I propose the design of an

active storage cluster file system which allows for execution of regular unmodified

applications with full data locality.

This dissertation analyzes the potential benefits of exploiting the structural in-

formation already available in scientific workflows – the explicit dependencies – to

achieve a scalable and stable system. I begin with an outline of the design of the

Confuga active storage cluster file system and its applicability to scientific computing.

The remainder of the dissertation examines the techniques used to achieve a scalable

and stable system. First, file system access by jobs is scoped to explicitly defined

dependencies resolved at job dispatch. Second, workflow’s structural information is

harnessed to direct and control necessary file transfers to enforce cluster stability and

maintain performance. Third, control of transfers is selectively relaxed to improve

performance by limiting any negative effects of centralized transfer management.



Patrick Joseph Donnelly

This work benefits users by providing a complete batch execution platform joined

with a cluster file system. The user does not need to redesign their workflow or

provide additional consideration to the management of data dependencies. System

stability and performance is managed by the cluster file system while providing jobs

with complete data locality.
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CHAPTER 1

INTRODUCTION

The continued exponential growth of storage capacity [36] has catalyzed the broad

acquisition of scientific data. Sensors, simulations, web traffic, and other sources of

raw data are now stored and must be processed to draw new conclusions that were not

before possible. Established approaches to scalable computing using combinations of

resources from clusters, the Grid [30], and clouds [5] have been forced to respond to

this data deluge [7]. This has introduced new challenges in distributed system design

where the management of data is now at the forefront of concerns.

Early efforts by computer scientists sought to organize, manage, and transfer this

data between geographically-distinct sites operated by different universities or insti-

tutions [10, 38, 46, 72]. The computation and storage of these resources were joined

together in several efforts [16, 32, 49, 63] which formed the basis for the Grid [30].

Within this environment, scientists were taught to build workflows and applications

that operated using explicit data dependencies and data transfers between sites per-

forming computation [10, 46, 59].

However, the movement of data quickly became too expensive not only between

sites but also within a local compute cluster of machines. This problem necessitated

the creation of new software systems that solved data management within a local

cluster by adopting a relatively new idea: active storage. Originally active storage

was proposed as smart disks [66] whereby small computational tasks were relocated

to the storage device for faster I/O and to harness unused processing capabilities.

The concept of moving computation to data was an attractive idea for clusters where
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moving data is expensive and spare computational resources are plentiful on machines

storing data. The web industry began the effort of embracing active storage in clusters

through the development of MapReduce [20].

MapReduce and other “Big Data” analysis systems of today [50, 95] require users

to adopt structural constraints for their workflow which allows for data-locality, data-

parallelism, and system stability. These constraints take the form of specific workflow

templates [51, 53, 93] which permit the user to perform simple transformations on a

monolithic dataset. This approach is highly effective when the objective is to compute

relatively simple functions on colossal amounts of data. The small expense of writing

or porting a small, widely known algorithm (such as k-means clustering) to these new

platforms is well worth the payoff of running at colossal scale.

Unfortunately, these limited programming models are not so easily incorporated

into scientific workflows developed for the Grid with data requirements that cannot

be efficiently processed by these abstractions. For example, the CloudBLAST [51]

bioinformatics framework is notable for using MapReduce to manage scheduling of

sequential executions of BLAST by splitting an input sequence query against a (pos-

sibly large) genome sequence database. While this approach can be made to work, the

database must still be distributed across all map tasks. This is known to not scale

for larger databases [37] as MapReduce is not designed to assist with distributing

common large data dependencies for parallel execution. Furthermore, the underlying

distributed file system developed to support the programming model (e.g. HDFS [76])

is designed to only support parallel computation on chunks of a file. In summary, nei-

ther the abstraction nor the file system offers facilities for whole-file data parallelism

required by scientific workflows.

There have been efforts to make suitable data-locality-aware abstractions [53, 93]

available to scientific workflows [15] but adoption is limited as abstractions still

impose structural constraints on the workflow. Instead, the scientific community

2



has adopted a flexible workflow model composed of standard sequential applications

chained together by data dependencies and represented as a directed acyclic graph

(DAG) of jobs. This work is based on the observation that abstractions are tools to

express data dependencies to the compute engine but scientific workflows already

express sufficient structural information for scalable dependency manage-

ment without the use of abstractions. Because each job includes its list of

dependencies, traditional workflow management systems like DAGMan [17], Make-

flow [3], or Swift [52] are able to order and parallelize the execution of jobs and to

transport dependencies with jobs. Unfortunately, the underlying compute platform

does not use this information to control data access for scalability (e.g. Condor [49])

nor does it communicate dependencies to any coupled distributed storage system (e.g.

SGE [32] on Panasas [54] or Condor with Hadoop [22, 92]).

This dissertation analyzes the potential benefits of exploiting the structural in-

formation already available in scientific workflows – the explicit dependencies – to

achieve a scalable and stable system. To accomplish this, I have developed an ac-

tive storage cluster file system named Confuga [23] which harnesses the workflow

file dependency information to allow for the efficient and controlled distribution of

files across active storage nodes and scalable file system metadata access by workflow

jobs. Confuga combines the workflow model of scientific computing with the stor-

age architecture of distributed cluster file systems. End users place their datasets

in Confuga using standard file manipulation tools and then direct their workflow

manager to submit jobs to Confuga. In this way, Confuga acts as a replacement for

existing batch execution systems. The user does not need to redesign their workflow

or provide additional consideration to the management of data dependencies used in

their workflow.

Confuga is built around the idea of leveraging the job namespace to achieve a

stable system. While typical distributed file systems [54, 73, 74, 88] must be designed
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Figure 1.1. Namespace Scoping in Confuga

to support runtime access to any file at any time, Confuga is able to scope job

visibility of the global namespace to the job’s own defined subset. This is visualized

in Figure 1.1.

Requiring the declaration of the job namespace allows Confuga to unobtrusively

perform several optimizations which were not possible in prior work:

Scope file system access. In current systems supporting scientific computing,

workflow jobs operate within a sandbox that is isolated from the larger workflow

dataset. Confuga takes advantage of this restriction by limiting access to the global

file system to the beginning and ending of a job. In fact, jobs do not interact with

the global file system at all during execution and so cannot dynamically lookup files

or read files not included in the dependency list.

Direct transfers within the cluster. Confuga uses the file dependencies for

jobs to direct transfers between storage sites. This allows Confuga to optimize trans-

fers for network and disk bandwidth.
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Selectively relax control of transfers. While storage systems must normally

react to completely unknown access patterns, Confuga is free to allow only some

transfers to proceed in an uncontrolled manner. In this way, the scheduler may avoid

work which would negatively impact the latency and performance of the cluster.

1.1 Overview

This dissertation will examine the design of an active storage batch system that

manages data dependencies at scale with an emphasis on stability. In particular, this

work evaluates mechanisms for scalable metadata access and data movement.

Chapter 2: Related Work Data management in distributed systems has been

addressed at many levels of software with the goal of shielding the scientist from the

mechanisms that make their workflow work. This chapter discusses data management

from several viewpoints from the individual devices to distributed file systems to

networked clusters and grids of computing resources.

Chapter 3: Architecture of the Confuga File System This chapter develops

the design of Confuga, an active storage cluster file system for scientific workflows.

Confuga is designed to exploit structural information available in scientific work-

flows to achieve metadata scalability and cluster stability. The challenge of data

management is met by placing novel limitations on the consistency semantics of the

distributed file system and by scoping the data access of workflow jobs to its de-

fined dependencies. I will show that Confuga works for representative bioinformatics

workflows and achieves its goal of active storage.

Chapter 4: Metadata Management Scalable metadata access in distributed

workflows is a recurring problem in system design. This chapter discusses metadata

and namespace management in scientific workflows. A mechanism for active storage

namespace management is developed and applied to a workflow manager and dis-

tributed file system. The chapter concludes with an analysis and evaluation of how
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Confuga incorporates these strategies and how metadata scalability is affected.

Chapter 5: Directed Transfers Historically, distributed file systems have sup-

ported POSIX-style dynamic and unpredictable file access by applications. Scientific

workflows are written with all data dependencies known for each job. Confuga ex-

ploits this information by centrally planning and executing transfers for the workflow.

These directed transfers are shown to improve transfer performance in the cluster and

reduce data-intensive workflow execution time.

Chapter 6: Balancing Directed and Undirected Transfers While directed

transfers can massively improve system stability and transfer performance, undirected

transfers can provide a mechanism for the scheduler to relax control in order to

improve performance. This chapter evaluates the comparative performance of these

two transfer methodologies against several workflows. It concludes by showing that

a balanced approach provides the best performance without destabilizing the cluster.

1.2 Relevant Publications

• Attaching Cloud Storage to a Campus Grid Using Parrot, Chirp, and Hadoop
at the 2010 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom) [22]. This paper explored implications of attaching
Hadoop’s HDFS file system to a campus grid. The techniques used in this paper
were also applied to Confuga by enabling the Chirp distributed file system to
export the Confuga head node.

• Fine-Grained Access Control in the Chirp Distributed File System at the 2012
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid) [24]. This paper presents authentication tickets which provide an
extended credential to authenticate with storage systems while enforcing fine-
grained access control to data. Authentication tickets are used extensively in
Confuga to provide delegated credentials with limited access to the head node
and storage nodes.

• Design of an Active Storage Cluster File System for DAGWorkflows at the 2013
International Workshop on Data-Intensive Scalable Computing Systems [25].
This workshop paper presents the proposed design of the Confuga active cluster
file system.
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• Confuga: Scalable Data Intensive Computing for POSIX Workflows at the 2015
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid) [23]. This paper presents the design of Confuga as of its first pro-
totype. The effectiveness of Confuga’s active storage computing, its scalable
metadata access mechanisms, and its directed transfer scheduler is evaluated.

• Balancing Push and Pull in Confuga, an Active Storage Cluster File System
for Scientific Workflows to appear in the Journal of Concurrency and Com-
putation: Practice and Experience. This article presents Confuga’s directed
and undirected transfer mechanisms used to control load in the cluster. The
effectiveness of the two approaches is evaluated. A balanced approach to the
two transfer methodologies is shown to most effectively limit load instability
while maintaining high transfer performance.

1.3 Cluster Hardware

The experiments in this dissertation use an on-campus cluster composed of a

single rack of 26 Dell PowerEdge R510 servers running RedHat Enterprise Linux 6.6,

kernel 2.6.32. Each server has dual Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, for

8 cores total, 32GB DDR3 1333MHz memory, a 1Gb link to a Summit X460 switch

delivering 220Gbps aggregate bandwidth. Our tests use one Seagate ST32000644NS

2TB disk on each server, with advertised 140MB/s sustained I/O bandwidth, 8.5ms

seek time. Each Confuga storage node uses a single disk formatted with the Linux

ext4 file system. For evaluation, we use one node as the head node and the 25 other

nodes as storage nodes.
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CHAPTER 2

RELATED WORK

2.1 Distributed File Systems

Early distributed file systems shared an authoritative data store for local networks

of machines. The most successful of were NFS [73] and AFS [39]. These file systems

sought to fulfill a need for a common data store which shared deployments of software

and collaboratively edited datasets in networked systems at large institutions.

However, in the realms of cluster and high-performance computing, new designs

were needed to support increased parallelism and distributed load. Within that

setting, PVFS [69], GPFS [74], Lustre [11], Ceph [88], and Panasas [54] have all been

used successfully to support scientific workflows through a global namespace with

POSIX consistency semantics.

As large datasets became common, it became necessary to expand the role of

the distributed file system to support data-intensive computing. In particular, the

file system needs to assist the job scheduler to locate jobs near data. In support of

this approach, the Google File System (GFS) [33] was developed for data processing

and web applications. GFS divides files into fixed-size 64MB chunks, each replicated

across the cluster. It is optimized for workflows which are record oriented with each

record less than the chunk size. Writes are performed by appending records to files.

Consistency requirements in GFS are relaxed so that appends are defined but may

result in inconsistent replicas for a chunk (i.e. two replicas are not bit-wise equal,

but they do have defined structure following a successful write).
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The most significant difference between Confuga and GFS is the usage of files.

GFS focuses on record-oriented files while Confuga optimizes for workflows that use

whole-files in a POSIX environment. For this reason, Confuga replicates whole files

(not chunks) and each replica must naturally be consistent and bit-wise equal. Fur-

thermore, Confuga’s head node must be more involved in cluster transfers since whole

files must be transferred between nodes to satisfy dependencies while maintaining a

balanced load on the cluster.

Many distributed file systems implement some form of content-addressable storage

(CAS) which allows for simple universal inode generation (the inode is the checksum),

deduplication, and flat namespaces which index files. For example, Venti [62] and

HydraFS [85] use block granularity for storing objects to achieve better deduplication,

especially important in an archival system. The CAS technique is also common in

distributed version control systems like Git [84] and Mercurial [55] to uniquely identify

commits and objects where remote repositories are infrequently available. Confuga

also uses CAS to allow storage nodes to assign universally unique identifiers for new

files and to deduplicate common files.

2.2 Active Storage

Originally active storage began as smart disks [1, 45, 66]. Small computational

tasks were relocated to the storage device for faster I/O and to harness unused

processing capabilities.

Object storage devices (OSD) [34] were the eventual realization of active disks.

The OSD abstraction provides an abstracted storage container which produces ob-

jects tagged with metadata. A set of operations for manipulating and searching/se-

lecting the objects on the devices is part of the standard [87]. OSD has become an

integral component of numerous file systems including Lustre [11] and Panasas [54]

with the goal of increasing I/O throughput and reducing data movement [75]. Compu-
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tation on Lustre storage servers has also been supported [26] to allow client programs

to have direct access to data, and in [60] as a user-space solution.

The idea of active storage eventually transitioned away to smart storage nodes.

Projects like Hadoop were developed for clusters built on commodity hardware that

are dedicated to performing structured computation [20, 50, 95] on large datasets.

The original use-case of Hadoop was the deployment of MapReduce [20] computations

within a cluster. MapReduce provides a mechanism for executing a job on a large

monolithic file, with the job divided into tasks that preferably execute on storage

nodes hosting a split (or block) of the file.

Confuga is a natural evolution of this approach whereby users can execute whole

applications with multiple dependencies and full data locality but do not need to

modify their workflow to fit fixed computation frameworks like MapReduce. Clients

need only specify the complete list of dependencies for each job and execute jobs

conforming to workflow consistency semantics (i.e. no run-time data dependencies).

2.3 Data-Locality Aware Scheduling

The Cplant [12] project is notable for early work in managing distribution of

certain shared dependencies (like an executable) across many nodes for parallel job

launch. This is done through a spanning tree managed by the client’s workflow

manager. Confuga’s use of push transfers is an evolution of this idea but differs

in significant ways: the file system is able to place jobs on nodes which already

have many or all of the job’s dependencies which avoids redundant effort; replication

is globally controlled across the cluster with awareness of all running workflows;

replication can be to a subset of nodes/jobs requiring a dependency rather than all

nodes; and, Confuga can push multiple dependencies in parallel without potential

long tails caused by slow nodes.

BAD-FS [8] built on Cplant’s ideas of pre-staging dependencies by joining storage
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servers which act as a cooperative cache [19] (a technique where clients use others’

caches to distribute load) with compute servers which access data on these storage

servers via interposition agents. The use of a local cache allows the workflow to avoid

accessing expensive remote or off-site resources. Like Confuga, BAD-FS uses the

declarative information from the workflow to inform a centralized scheduler how to

manage data and job dispatch. However, Confuga utilizes this information to manage

transfers between storage nodes and formalizes the workflow consistency semantics

within a file system.

Data Diffusion [64, 65] presents a technique for improving data locality by allowing

data to be cooperatively cached across all compute resources. The task dispatch

framework used, Falkon, is aware of the cache state on resources and is capable of

scheduling tasks near data. Shark [4] is another distributed file system which allows

clients to cooperatively cache data to improve scalability.

Workflow managers that operate within grids adopt a limited role for data locality.

The usual problem is harnessing execution nodes and delivering data to geograph-

ically distinct sites. Pegasus [21] and GridBLAST [47] addressed this by operating

in tandem with Globus [10] to deploy off-site dependencies to the local staging site

or shared file system. Ranganathan et al. [44] presented a framework for scheduling

decisions across a grid composed of multiple virtual organizations and geographic

locations. These scheduling decisions may include replicating needed files to local

sites.

Pegasus also schedules jobs at compute nodes hosting data otherwise at random

nodes. The Stork [46] data scheduler is designed to cooperate with the DAGMan [17]

workflow manager to manage data placement. Stork acts as a transfer job manager

between distinct sites on the grid and handles fault-tolerance and reliability of trans-

fers. Job data may be stored on numerous data nodes [82] which is discovered and

accessed via Parrot [79], a user-level virtual file I/O agent. While data placement
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between sites on the grid has been well studied, Confuga manages transfers between

active storage nodes within a cluster. Confuga also does not require the user to in-

clude data placement requests within the workflow description. Like Stork, Confuga

uses the concept of transfer jobs to achieve reliable and fault-tolerant transfers be-

tween nodes.

Hadoop has sees a lot of attention to improve its greedy näıve scheduler for

MapReduce. Delay Scheduling [94] is a work to improve the fairness of the Hadoop

scheduler in clusters with many users, which is common problem for Yahoo! and

Facebook in their Hadoop clusters. Delay Scheduling introduces a wait decision for

scheduling MapReduce jobs to improve data locality while maintaining fairness. Fis-

cher et al. [27] shows that the problem for scheduling in Hadoop is NP-Complete.

Quincy [42] is a scheduler for Dryad [41] which transforms the job scheduling

decisions into a graph based min-max flow problem. It recomputes the solution for

each scheduling event (new jobs, new resources available). This solution may result

in killing tasks running on nodes, waiting for a node to become available for a task

(an extension of Delay Scheduling), or scheduling a task away from input data. The

algorithm uses heuristics to change the flow costs on graph edges to influence the

decisions.

2.4 Transfer Management

Confuga focuses its attention on controlling transfer load once scheduling decisions

have already been made but it uses concepts which appear in distributed and central-

ized schedulers. Partitioning storage nodes into map and reduce slots in Hadoop [91]

is used to increase utilization of system resources (memory and network resources

especially). This allows multiple map tasks to run concurrently and multiple long-

running reduce tasks to accept input as map output is produced. Similarly, Hawk [58]

uses cluster partitioning with dedicated short job servers. In Confuga, transfer slots
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are used to express the demand placed on the networking and disk. In [23], optimal

push transfer performance was observed when limiting storage nodes to one transfer

slot under large transfer load.

Hawk also implements a hybrid scheduler design with a centralized scheduler for

scheduling long-running large jobs and distributed schedulers for scheduling short

jobs. The centralized scheduler improves performance by knowing the distribution of

large jobs across the cluster and the associated wait time. The centralized scheduler

is able to function under load because there are fewer large job than short jobs.

Confuga also uses a hybrid design for transfers: push transfers are directed by the

central scheduler while pull transfers are initiated in a distributed fashion by the

individual storage nodes.

Central management of transfers has recently gained traction in data center man-

agement. The IOFlow [83] project seeks to implement a software-defined storage

architecture which allows setting end-to-end policy for the storage systems. In par-

ticular, their work allowed establishing guarantees about a tenant machine’s network

link performance and the performance of routing to other destination machines.

With some success, scientific workflow abstractions have been used to manage

data distribution to compute nodes. Instead of just placing tasks near its inputs

and coordinating the data transformations, the abstraction also conducts transfers as

needed. The All-Pairs [53] abstraction is notable for using this approach: split a large

dataset and compare every pair of splits. All-Pairs will manage an efficient spanning

tree distribution of the dataset to support parallel comparisons. This approach has

been used in biometrics research [13] to perform comparison functions across every

pair of subjects.
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2.5 Batch System and Resource Acquisition

For workflows running on heterogeneous resources, the execution platform API

is not the only concern. Efforts such as OGSA (Open Grid Services Architecture)

from the OGF (Open Grid Forum) look to define capabilities services (such as exe-

cution and resource management) to guarantee interoperability across different types

of resources and systems. Such capabilities can then be provided by particular ap-

plications (such as the Globus Toolkit [29]).

There has being extensive work on studying APIs that encapsulate different ex-

ecution platforms. One of the most well-known is an API specification from the

DRMAA [57] (Distributed Resource Management Application API) working group,

sponsored by the Open Grid Forum. The goal of DRMAA is to define a set of manda-

tory API functions and job description attributes that are then implemented on top

of particular execution platforms. In this sense, DRMAA is specified as “the greatest

common denominator” across the different execution platforms. Coming from the

other end, the SAGA [71] (Simple API for Grid applications) specification focuses

on mandatory functionality on the application side. In this context, one main result

of our work is that there is a limit to the issues of execution platforms that can be

solved with an application API. That is, a lowest common denominator execution

system API cannot be built without the cooperation of the execution systems.

Common APIs have the immediate disadvantage that some of the execution sys-

tem features become unavailable to the workflow manager. Managers such as DAG-

MAN [17] for Condor, or YARN for Hadoop, tightly couple with the underlying

execution platform, and can take advantage of particular optimizations and capabil-

ities. Rather than specifying an execution system API to be used by the workflow

manager, another approach is to let an execution system provide the common inter-

face. For example, Condor-G [31] appears to the user as a local Condor pool, but it

runs on top of other execution system resources.
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2.6 Workflow Namespaces

Significant efforts have been made to explore namespaces as a solution to harness-

ing multiple machines as a single system. This first began with LOCUS [86] which

was an early UNIX-compatible system that allowed distributing computation across

a cluster of servers with fully transparent access to the file system. LOCUS had ob-

jectives of full transparency on placement of processes and data which would enable

seamless load-balancing. It accomplished these objectives by presenting a common

global namespace visible to all distributed processes for all of the distributed system

resources. This made the location of an individual process on LOCUS immaterial to

its access of resources. This single system image design has had a major influence

on later work where a single file system interface or single job submission interface is

presented for access to a cluster’s resources.

The Plan9 operating system took this a step further by abstracting many resources

normally part of the process control block and making them part of the namespace

of the process [61]. This allowed Plan9 to abstract several details such as the CPU

architecture a binary was compiled for. In this way, declaratively expressing the

resources needed to the system provided opportunities for optimization. In the same

way, Confuga uses the namespace mapping provided by jobs to optimize and manage

transfers within the cluster.

Namespace management is closely related to the scalability of metadata opera-

tions in a distributed file systems. For example, distributed file systems like NFS [73]

and AFS [39] conform to POSIX consistency semantics and provide a global names-

pace. AFS is notable for resolving certain performance issues by relaxing consistency

semantics using write-on-close. Other POSIX extensions for high-performance

computing have been proposed [90] which allow batching metadata operations and

explicitly relaxing certain consistency semantics.

Today’s highly parallel cluster file systems seek to manage metadata scalability
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through aggressive optimizations without impacting POSIX consistency semantics.

For example, the Ceph [88] cluster file system improves metadata access in the global

namespace in several ways. One aspect of this is the decoupling of file system meta-

data from the file content or replicas. Additionally, Ceph dynamically divides the

global namespace into sub-trees across metadata servers to improve spatial locality

of metadata access. Processes which access files within the same sub-tree enjoy ben-

efits of this locality and distributed lock-free metadata access. Finally, Ceph uses its

CRUSH [89] algorithm to allow storage nodes and clients to autonomously lookup

replicas without metadata server involvement.

Still, cluster file systems continue to suffer from a metadata bottleneck [2, 56].

Confuga avoids common metadata issues by designing namespace access for workflow

consistency semantics where file access is known at dispatch and visibility of changes

are only committed on task completion. By scoping access to the global namespace,

Confuga is able to batch many operations (open, close, stat, and readdir) at task

dispatch and completion and opportunistically prohibit dynamic file system access.
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CHAPTER 3

ARCHITECTURE OF THE CONFUGA FILE SYSTEM

3.1 Introduction

This chapter presents the design ofConfuga [23], an active storage cluster file sys-

tem designed for executing unmodified POSIX DAG-structured workflows. Confuga

combines the workflow model of scientific computing with the storage architecture of

distributed cluster file systems. End users place their datasets in Confuga using stan-

dard file manipulation tools and then direct their workflow manager to submit jobs

to Confuga. In this way, Confuga acts as a replacement for existing batch execution

systems. The user does not need to redesign their workflow or provide additional

consideration to the management of data dependencies used in their workflow.

Confuga sets the stage for evaluating data and metadata and management tech-

niques in the context of an active storage system supporting scientific workflows.

These techniques are explored in the following chapters.

Confuga is built with several properties that make it useful for this class of work-

flows:

Explicit namespacing for tasks and workflows. Executing jobs on a batch

system is frequently accompanied by difficulties establishing an explicit namespace

in which the job operates. In many distributed systems, tasks are executed within a

global namespace. This can be useful for establishing a consistent namespace for all

work but unfortunately may lead to challenges with strict application programs that

expect a static namespace layout during execution. Additionally, workflows composed
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of a number of sub-workflows regularly experience namespace difficulties, requiring

special handling by high-level tools like Weaver [15]. Confuga solves namespace

difficulties by requiring a mapping from the global namespace to the task namespace,

for each job. Jobs are not permitted to access the global namespace except as defined

by the mapping.

POSIX applications and workflows. Scientific workflows are typically writ-

ten for execution within a POSIX-compliant sandbox or within a common global

namespace. Because it is common for applications to be developed over several years

on a single machine environment, it is difficult to port these applications to struc-

tured distributed systems that enforce a certain API for data access. Confuga allows

applications to run within a sandbox with input file dependencies available in the

sandbox as described by a namespace mapping. Applications can execute normally

without modification.

Metadata scalability. Any file system that provides a global namespace must

have a global service to provide metadata regarding the location and status of each

file. This service can be implemented as either a centralized server or as a distributed

agreement algorithm, but either way, the service does not scale. Confuga avoids this

problem by exploiting the structural information available in the workload.

Load scalability. As workloads scale up, and the number of simultaneous users

increase, it is all too easy for concurrent transfers and tasks to degrade each other’s

performance to the point where the entire system suffers non-linear slowdowns, or

even outright task failures. For example, it is frequently observed that too many users

running on Hadoop simultaneously will cause mutual failures [94]. Confuga avoids

this problem by tracking the load placed on the system by each task or transfer, and

performing appropriate load management, resulting in a stable system.

Drop-in replacement for existing batch and file systems. Confuga is used

as a drop-in replacement for a batch system and a file system, combined into a single
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entity that can be invoked by existing workflow managers. Confuga also leverages

existing file system technologies which allowing regular interaction by normal system

utilities.

3.1.1 Origin of the Name

Confuga is a portmanteau of the Latin word con and Italian’s fuga (also Latin).

A fugue (fuga) is a contrapuntal musical composition composed of multiple voices.

Here the intended meaning is “with many voices” although it literally translates as

“with chase”.

That name no longer has any meaning for me.

– Darth Vader (Return of the Jedi)

3.2 Architecture

Confuga is a cluster file system used to coalesce multiple storage sites into a single

global namespace while enabling robust support for job execution. Users interact with

the cluster by uploading datasets for their workflow and then submitting jobs through

a workflow manager.

A Confuga cluster is composed of a single head node and multiple storage nodes.

The head node manages the global namespace, indexes file locations and metadata,

and schedules jobs on storage nodes. The individual storage nodes run as dumb

independent active storage servers. The architecture is visualized in Figure 3.1.

3.2.1 Storage Model

Just like GFS [33] and HDFS [76], the Confuga head node manages the cluster

namespace and other file system metadata. Metadata and directory hierarchy oper-

ations like stat, mkdir, and unlink only require changes to the state on the head
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Figure 3.1. Confuga Architecture

node. Confuga is designed with the expectation that external metadata operations

are infrequent and all other metadata transformations are executed by services (e.g.

the job scheduler) executing on the head node.

An open of a file by external clients is exclusively mediated by the head node.

Clients open a file for reading by requesting a file handle from the head node which

may be used for subsequent read operations and finally closed. In the background,

the head node will lookup an available replica, connect to the host storage node,

and perform read operations on the replica. In this way, the head node acts

as an intermediary for external clients for all file operations. Opening files

for writing works similarly except the head node selects an available and random

storage node for the new incomplete replica. When the client closes the file, the

head node seals the replica making it immutable and updates the global namespace

(the containing directory) with the new file and its associated replica. With these

restrictions, Confuga has only a few caveats for client operations on files: file writes

are globally visible only after closing the open file handle and files may only be written

once.

We have chosen this model of Confuga mediating replica creation and reading to
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ease development and to simplify the security domains between clients and storage

nodes. In particular, it allows external clients to browse the file system and load data

into or pull data out of the cluster by simply connecting to the head node.

Storage nodes are used as dumb storage, unaware of their role within the cluster

file system. File replicas are stored in whole on one or more storage nodes, not as

chunks as in GFS/HDFS. Each replica is managed and tracked by the head node.

Replication is performed by transfers created by the head node. This allows for

redundancy and increased data parallelism for jobs. Storage nodes and the jobs

they run do not independently interact with the head node. Instead, the head node

dictates which replicas on a storage node the job may access.

The head node tracks replicas within a flat namespace on storage nodes. Replicas

are named according to their replica identifier (RepId) that is either a universally

unique identifier (UUID) or the SHA1 hash of the replica content. Hashes are used

for basic deduplication of files. In most circumstances, a SHA1 hash is used for the

RepId except when a large output file is created by a job. Because jobs operate within

a sandbox on a local POSIX file system, storage nodes cannot compute the hash of

output files until after the job executable exits. To avoid delaying job completion in

order to hash large output files (currently >16MB), the storage node will assign a

UUID instead. The head node learns the RepId of new output files after reaping jobs.

Overall, the use of RepIds allow storage nodes to safely assign a content identifier for

new files created by jobs without head node involvement.

Externally, Confuga’s file operations largely follow POSIX consistency semantics

except new files are visible after close and files may only be written to once (just

like HDFS). We have found these semantics are sufficient for clients to upload, ma-

nipulate, and download their datasets in Confuga. We emphasize that the intended

goal of the Confuga file system is to support running jobs and not to be used as

an external file store. Job namespaces and consistency semantics are discussed in
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Figure 3.2. Confuga Job Execution Protocol

c© 2015 IEEE.

Chapter 4.

3.2.2 Execution Model

After users place workflow datasets on Confuga, they may begin running work-

flows. As shown in Figure 3.1, Confuga presents itself as a single system image [86]

which executes multiple jobs that read from and write to the cluster file system. That

is, Confuga appears as a powerful monolithic system to the user and workflow man-

ager. Each job executes an opaque executable within a private job namespace (i.e. a

sandbox) constructed from a specification of the job’s input and output files. During

execution, jobs cannot see the global file system, only the sandbox. All input files

are read atomically prior to a job starting. On job completion, the global namespace

is atomically updated with the new output files by the head node.

Jobs are submitted to Confuga using a traditional submit and wait RPC interface

with two-phase commit for reliability. The job protocol is shown in Figure 3.2. Each

job specification is encoded in JSON [18], with typical attributes like the executable

name, arguments, and environment. Confuga also requires the inclusion of the job

namespace which lists the mapping of input files from the global namespace to the

sandbox and of output files from the sandbox to the global namespace. This names-
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1 {

2 " executable ":"./ script ",

3 " arguments ":[

4 "./ script ",

5 "-a"

6 ],

7 "files ":[

8 {

9 " serv_path ":"/u/joe/bin/sim ",

10 " task_path ":" script ",

11 "type ":" INPUT"

12 },

13 {

14 " serv_path ":"/u/joe/data/db",

15 " task_path ":" data/db",

16 "type ":" INPUT"

17 },

18 {

19 " serv_path ":"/u/joe/wf/out1",

20 " task_path ":" out",

21 "type ":" OUTPUT "

22 }

23 ]

24 }

Listing 3.1: Simple Confuga Job Description in JSON

pace mapping is static and cannot be changed during job execution. Additionally, file

access is not strictly confined to files in the job sandbox to permit usage of executa-

bles (such as the shell), libraries, and other files available on the system. Namespace

management is discussed in detail in Chapter 4. Listing 3.1 shows an example job

specification.

Normally, users do not concern themselves with writing these job specifications.

Instead, Confuga expects to be invoked by a workflow manager, the user agent which

submits and manages jobs on behalf of the user. Confuga does not order job execution

by any specified dependency, this is the workflow manager’s responsibility. Jobs

are tied together through a directed acyclic graph (DAG) which orders jobs by file

dependencies: one job’s output file becomes the input of the next. Figure 3.3 shows

a typical DAG-structured workflow run by Confuga.

Our collaborators use the Makeflow [3] workflow manager that builds on the

venerable Make syntax for expressing job dependencies, which creates an implicit job

execution order. Given a Makeflow specification file, Makeflow creates a DAG of the
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Figure 3.3. A Typical DAG-structured Workflow

This comes from a bioinformatics workflow using SHRiMP [70]. Here files are
boxes, circles are tasks, and lines indicate dependencies.

c© 2015 IEEE.

entire workflow, submits jobs as dependencies become available, and handles certain

workflow fault tolerance policies. It is designed to easily switch between execution

platforms and currently supports Condor [49, 82], SGE [32], Work Queue [14], and

other systems. To programmatically create large workflows and the workflows used

in our experimental results, we use the Weaver [15] workflow compiler.

Concurrent job execution in Confuga comes from dispatching jobs to multiple

storage nodes. A scheduler on the Confuga head node handles the details of assigning

jobs to storage nodes for execution, replicating necessary dependencies, and global

namespace manipulation. The head node monitors the health of storage nodes via

heartbeat messages from storage nodes sent to a catalog service. Using the catalog,

the head node learns of unavailable storage nodes, newly available storage nodes, and

other file system statistics. When the scheduler learns of a failure because of a lost

storage node or a failed job, it will reschedule the job if the failure is transient (e.g.
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a failed transfer) or pass the failure to the workflow manager if it cannot be handled.

In Confuga, data parallelism is achieved in two ways. Firstly the user constructs

their workflow in a way that jobs use whole dependencies. (This model is often

structurally incompatible with other big data abstractions like Map-Reduce where

data parallelism is established by mapping jobs to chunks of a monolithic file while

expecting each job to largely read only the mapped chunk.) Because Confuga must

work to get all data dependencies at the site a job executes, the effort is only justified

if the job actually needs the whole dependencies. Secondly, Confuga adjusts the

replication of data to respond to needs of jobs. When a job dependency is missing

from the storage node that the job is to be executed on, Confuga will plan the

replication of the file to that storage node. This dynamically responds to demand

for hot files and allows increased replication to benefit future jobs relying on that

dependency.

Each job submitted to Confuga goes through several states. First, the scheduler

performs namespace remapping which allows the job to be executed on storage nodes.

This is a static translation that is independent of the storage node the job will execute

on. Once the new namespace mapping is constructed, it is scheduled or assigned to an

available storage node with preference towards a node with the most input file bytes

(as some files are larger than others). Next the head node decides how to replicate

missing input files since jobs must execute with all inputs files in their sandbox.

Finally, the job is submitted to the storage node for execution. After several periodic

waits, the scheduler will reap the finished job and set the job’s outputs in the global

namespace.

3.2.3 Implementation and Use

The Confuga cluster uses the Chirp [81] distributed file system for storage nodes.

Chirp was originally designed for providing remote data access to jobs running on the
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Figure 3.4. Software Stack Supporting Confuga

Grid and built for use with Parrot virtual file system adapter [79] and Condor [82].

Confuga utilizes Chirp for storage nodes due to ease of deployment by unprivileged

users and several core features including authentication and access control. Still,

while Chirp provides most features that Confuga needs to store and manipulate files,

it was missing a robust job framework. Extensions to the protocol to support jobs is

discussed in Section 3.3.

Confuga also uses Chirp to operate and export the head node for access by external

clients1. A module was added to Chirp to interface with Confuga. Normal file I/O

RPC like stat are redirected to the appropriate Confuga API call confuga stat. Ad-

ditionally, Confuga must perform several cluster upkeep operations and job schedul-

ing asynchronously with Chirp RPC handling. The job scheduler added to Chirp to

schedule and execute jobs is used to execute the Confuga daemon process. Figure 3.4

visualizes the software stack of the Confuga head node and storage nodes.

Because Confuga is exportable by a Chirp server, Clients may interact with

1The default exported file system is the local file system on the system running the Chirp server.
Chirp also supports exporting other file systems like HDFS [22]. Confuga is itself another exported
file system.
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1 chirp_server \

2 --jobs \

3 --root=’confuga ://./ confuga .root /? nodes=file:nodes.lst&auth=unix ’

Listing 3.2: An Example Command to Start a Confuga Head Node

1 chirp :// node1 .nd.edu :9094/ users/pdonnel3 /. confuga

2 chirp :// node2 .nd.edu :9094/ home/pdonnel3 /. confuga

3 chirp :// node3 .nd.edu :9094/. confuga

Listing 3.3: nodes.lst

Confuga using a familiar POSIX-style I/O interface to interact with the file system

through convenient command line tools, Parrot [79], FUSE [78], or the Confuga API.

The user is free to organize files in a regular directory hierarchy with per-directory

access controls that enable fine-grained sharing with colleagues.

Confuga is available in the Cooperative Computing Tools 2 software package. A

Confuga cluster may be trivially started by configuring a Chirp server to act as the

head node. Listing 3.2 shows a bare-bones command to start a head node. Listing 3.3

lists the cluster storage nodes in a file.

All options specific to Confuga are communicated via the --root switch passed

to the Chirp server. The root URI includes the location of the head node state

(./confuga.root in Listing 3.2) and miscellaneous options. Each option is joined

by an ampersand (&). Listing 3.4 lists the current options Confuga accepts (from the

confuga(1) manual page).

The head node manages its state in a directory on the local file system. This is

specified in the root Confuga URI on the command line. The global cluster namespace

is completely represented within this directory as a normal hierarchy of files and

directories. Confuga stores in each file its associated RepId (corresponding to its

content).

2Confuga was merged in commit f485c6701b217180c2c4c98c0170e1469fd6191b
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1 auth <method >

2 Enable this method for Head Node to Storage Node authentication. The default

3 is to enable all available authentication mechanisms .

4

5 concurrency <limit >

6 Limits the number of concurrent jobs executed by the cluster . The default is

7 0 for l i m i t l e s s .

8

9 nodes <node -list >

10 Sets the whitespace or comma delimited list of storage nodes to use for

11 the cluster . May be specified directly as a list node:<node1 ,node2 ,...> or

12 as a file file:<node file >.

13

14 pull -threshold <bytes >

15 Sets the threshold for pull transfers . The default is 128 MB.

16

17 replication <type >

18 Sets the replication mode for satisfying job dependencies. type may be

19 push -sync or push -async -N. The default is push -async -1.

20

21 scheduler <type >

22 Sets the scheduler used to assign jobs to storage nodes. The default

23 is fifo -0.

24

25 tickets <tickets >

26 Sets tickets to use for authenticating with storage nodes. Paths must

27 be absolute .

Listing 3.4: Confuga Head Node Options

The head node also uses a SQLite database for managing the state of the cluster:

location of file replicas, storage node heartbeats and the state of jobs. Jobs and

replication are evaluated as state machines (a) to allow recovery in the event of faults

by the head node or by the storage nodes and (b) to make scheduling and replication

decisions using the complete picture of the cluster’s current activities.

3.3 Augmentations to Chirp: Job Protocol

The Chirp protocol is closely modeled after regular UNIX system calls; its design

was intended to closely correspond to the interface a regular application would use for

speaking to a file system. Much of the design of Chirp’s protocol was clearly meant

to meld cleanly with the primary Chirp client application, Parrot. In general, Parrot

directly passes intercepted system calls directly to the Chirp server with minimal

or no modification. For this reason, Chirp implements a stateful protocol. Clients

operate on opened files which eventually must be closed. The Chirp server maintains
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1 ok, id <- job_create (exe , args , env , bindings )

2 ok <- job_commit (id)

3 ok, status <- job_status (id)

4 ok, status <- job_wait (id)

5 ok, <- job_reap (id)

6 ok, <- job_kill (id)

Listing 3.5: Chirp RPC for Manipulation of Active Storage Jobs

a connection with the client, remembering all open files in use by the client.

Confuga extends the Chirp protocol by adding various job control RPC, shown

in Listing 3.5. The creation and deletion of a job may seem similar to the opening

and closing of a file, but this similarity is only superficial. Jobs, once started, occupy

resources on the Chirp server including CPU time, disk I/O bandwidth, and memory.

They also are expected to operate through temporary network hiccups where the

client’s connection to the Chirp server is lost. For this reason, there must be a

persistent job identifier associated with the job.

Creating this identifier requires a two-phase commit [35] protocol for the client.

The essential reason is due to a possible failure between when the Chirp server creates

the job and when the client securely records the job identifier. The Chirp server

continues execution of the job even though the client has no knowledge of the success.

To avoid this problem, creation of a job requires the client to acknowledge receipt of

the identifier, through a job commit RPC. Only after a job is committed will it be

ready for execution.

The job create RPC accepts a JSON [18] encoded job description. It provides an

expressive mechanism of creating a process similar to UNIX fork(3) and execve(3).

A simple example executing shell code is shown in Listing 3.6. The definition of the

job’s input and output files contrasts with UNIX as files on the Chirp server are

not dynamically accessible from the job’s sandbox. Instead, files are bound from

the server’s namespace into a transient job sandbox. The way the file is bound is

configurable but by default uses hard links to the actual server file. Jobs are also
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1 {

2 "executable ": "/bin /sh",

3 "arguments ": [

4 "sh",

5 "-c",

6 "echo Hello , world! | cat - input > output "

7 ],

8 "files ": [

9 {

10 " task_path ": "input",

11 " serv_path ": "/u/patrick /input .1",

12 "type": "INPUT"

13 },

14 {

15 " task_path ": "output ",

16 " serv_path ": "/u/patrick /output .1",

17 "type": "OUTPUT "

18 }

19 ]

20 }

Listing 3.6: Chirp Job JSON Encoding

allowed access to files that strictly-speaking exist outside of the job namespace. In

the above example, the job is using the system shell, "/bin/sh". The development

of this mechanism is explored in detail in Chapter 4.

There is also a set of RPC to wait for job completion. The job wait RPC mimics

the UNIX wait(3) system call except it also has a two-phase commit reap RPC,

job reap. Again, this is to ensure that the job submission site logs completion of

a job successfully before the Chirp server reaps the job. Job status information is

returned by the job wait RPC in JSON, as shown in Listing 3.7.

Clients may also selectively wait for jobs to finish in Chirp using a workflow

identifier. Currently, this is a simple integer that corresponds to all of the user’s

jobs. The limited expressiveness of this selection mechanism actually caused issues

for us with our workflow manager: when the workflow manager was forcibly restarted,

completed jobs for the previous instance would cause all calls to wait to immediately

return. While this did not result in incorrect behavior, it is obviously undesirable to

do a busy wait. This is resolved by a more expressive and selective wait RPC which

matches a tag associated with the running (or restarted) workflow and its jobs. This
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1 [

2 {

3 "id":3,

4 " executable ":"/ bin /sh",

5 " exit_code ":0,

6 " exit_status ":" EXITED ",

7 "status ":" FINISHED ",

8 "subject ":" unix:batrick ",

9 " time_commit ":1456326442 ,

10 " time_create ":1456326428 ,

11 " time_finish ":1456326442 ,

12 " time_start ":1456326442 ,

13 " arguments ":[

14 "sh",

15 "-c",

16 "echo Hello , world ! | cat - input > output "

17 ],

18 "files ":[

19 {

20 "binding ":" LINK",

21 "serv_path ":"/u/patrick /input .1",

22 "size":null ,

23 "tag ":null ,

24 "task_path ":" input ",

25 "type ":" INPUT"

26 },

27 {

28 "binding ":" LINK",

29 "serv_path ":"/u/patrick /output .1",

30 "size ":551 ,

31 "tag ":null ,

32 "task_path ":" output ",

33 "type ":" OUTPUT "

34 }

35 ]

36 }

37 ]

Listing 3.7: Chirp Job Status Following Completion

is to be implemented in future work 3.

Chirp uses a SQLite database is used for maintaining the state of jobs. This allows

for concurrent access and modification of the table of jobs by multiple instances of

the Chirp server, each serving a single client. The job framework is logically divided

into two separate systems: a job management layer which registers intents (e.g. kill

job 1) and a scheduler which actually executes jobs. The scheduler runs as a single

instance alongside the Chirp server, using the SQL database to process job intents.

This consists of scheduling and starting jobs, canceling jobs which have been killed,

and waiting for jobs to finish.

3CCTools issue: https://github.com/cooperative-computing-lab/cctools/issues/373
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3.4 Authentication

Access to storage within Confuga is protected through three authentication realms:

client to head node, head node to storage nodes, and storage node to storage node.

Client authentication with the head node is achieved through several interoperable

enterprise technologies including Kerberos and GLOBUS. Clients (via Makeflow and

the Chirp toolset) use the Chirp protocol to interact with the head node. The first

step on connection is to establish a subject credential with the client by iterating

over a number of authentication mechanisms. The head node can be configured

using chirp server options to set the client authentication mechanisms.

The head node is configured at startup to use a specific authentication mechanism

to access all storage nodes. The head node’s credential enables complete access to all

cluster state (such as replicas) located on storage nodes. For the Notre Dame campus

cluster, we use a long duration ticket credential [24] which provides the strict subset

of access the head node should have on storage nodes. Configuration is done through

Confuga’s auth URI option.

Storage nodes access other storage nodes using a separate ticket which is setup

and periodically renewed by the head node. This ticket provides an even stricter

subset of access, following the principle of least privilege, that only allows reads of

replicas and the creation of new replicas in a separate directory. The latter restriction

allows Confuga to check for successful replica creation (with consideration to myriad

failures) before moving the new replica to the flat replica namespace on the storage

node. Storage nodes must allow ticket authentication (by default this is so) to be

part of a Confuga cluster.

Table 3.1 summarizes the authentication realms.
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TABLE 3.1

CONFUGA AUTHENTICATION REALMS

Realm Where How

Client → HN HN chirp server --auth=<mechanism>

HN → SN HN chirp server --root=confuga://...?auth=<mechanism>

SN → SN SN chirp server --auth=ticket

1 unix:pdonnel3 rwlda

2 hostname :*. nd.edu rl

3 address :127.0.0.1 rl

Listing 3.8: A Chirp ACL File

3.5 Access Control

Because Confuga is meant to support cooperative use by many users, it includes

robust access controls set per-directory. This support is not actually implemented

in Confuga’s core but overlaid by the Chirp server running the head node. Chirp

augments exported file systems in a number of ways to make it better suited for

remote access in a grid or cluster. One of these augmentations is access control lists

(ACLs). Chirp’s ACLs dictate the access a credential is given in a directory and is

maintained on a per-directory basis. An ACL file is maintained as a regular file on

the underlying file system within its corresponding directory, hidden from view by

Chirp clients. Listing 3.8 shows an example ACL file.

The initial prototype of Confuga treated an ACL file as normal replicated file

like any other. This caused systemic slowdowns in all uses of Confuga as any client

initiated file access would require remotely querying a storage node hosting a replica

of the ACL. Clearly this was not a favorable situation from a design point. An ACL
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1 meta :0000000000000000000000000000000000000000:0000000000000013

2 unix:batrick rwlda

Listing 3.9: Example Metadata File Storing a Chirp ACL File

1 CONFUGA_API int

2 confuga_metadata_lookup (confuga *C,

3 const char *path ,

4 char **data ,

5 size_t *size );

6 CONFUGA_API int

7 confuga_metadata_update (confuga *C,

8 const char *path ,

9 const char *data ,

10 size_t size );

Listing 3.10: Confuga Metadata File API

file is logically metadata and should be stored with other file system metadata on

the head node, not as a regular file on a storage node; the client of the ACL file is

the metadata server, not jobs running on the storage nodes. However, Confuga itself

does not have a concept of the ACL file. The ACL is managed by the Chirp server

operating the Confuga head node. It would be improper to leak the ACL abstraction

into Confuga, so a metadata file type was designed for hosting metadata that need

not be replicated or accessed by storage nodes.

The head node distinguishes metadata files from normal files by a content header.

Normal replicated files store the RepID and file length. Metadata files have a different

header shown in Listing 3.9. A nil RepID is indicated (the second field) as the

metadata file has no replicas. Instead, the metadata is located following the header.

Normal POSIX distributed file systems constrain clients to conventional names-

pace metadata operations, such as mkdir or chmod. Confuga introduces a novel API

for creating these metadata files which are not stored as regular files to improve access

time and locality. Listing 3.10 shows the API that Chirp uses to store and lookup

metadata files (like the ACL file).

The POSIX.1e draft standard defined an API for manipulating extended attributes
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of files and directories. Each attribute is identified by a name belonging to some

namespace used to isolate system attributes (like ACLs) from general user attributes.

Attribute values are free-form blobs of (possibly binary) data. Extended attributes

were proposed to associate metadata with files such as sensor configuration data, ori-

gin website, date of acquisition, etc. Confuga’s metadata files are similar to extended

attributes but allows the file’s content to be metadata. It makes clear the intent

that the file is logically metadata and should not be stored with other file content

remotely.

3.6 Errors

Responding to errors is often the most challenging aspect in the design of a system.

The developer must typically decide whether to defer error handling up the stack

(ending at the user), retry the operation if the failure is potentially transient, or do

something else entirely. Users of Confuga may encounter several classes of errors

during the course of a workflow. Because Confuga acts as both the file store and

the execution platform, I/O errors and opaque application errors may be returned

by jobs.

3.6.1 Client File I/O Errors

For regular file I/O through the Chirp protocol, the errors which may be returned

are the same as in Chirp which loosely follows the UNIX API. Because Confuga is

built on the Chirp protocol, it must respond with errors to some operations which

are not supported by Confuga but permitted by the protocol. For example, Confuga

does not allow opening an existing file for writing (without truncation) or random

writes to open files 4. If a random write is attempted, a generic UNIX EINVAL error

4Hadoop’s HDFS also has this restriction.
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is returned indicating the offset is invalid.

File creation is performed by developing a new replica on a storage node with

mediation by the head node. The actual namespace is not modified until the open

replica is closed and sealed (i.e. becomes immutable). Because the new file is not

added to the containing directory until close, the close operation may (rarely)

fail due to out-of-space errors. This is not a failure mode unique to Confuga or even

local file systems, ZFS [43] is a well-known example which may encounter out-of-space

errors on close due to the use of copy-on-write.

Because files are created through a unknown number of writes to form a single

replica, it is possible for a new unsealed replica to be placed on a storage node with

insufficient space. The client may not learn this until late in file creation. Confuga

tries to mitigate this possibility by preferring placement on storage nodes with more

free space. The API presently has no mechanism to provide Confuga with hints on

the size of the replica for proper placement. Additionally, because replicas are stored

whole and not as blocks, there is the possibility that a replica cannot fit on any

storage node. The prototype API is missing a way to query this.

3.6.2 Job Errors

There are a number of errors jobs may encounter from creation to completion.

Among these include missing job dependencies, access control failure, transfer failure,

storage node failure, connection failure, and missing output directories. Generally,

Confuga tries to resolve most errors internally without involving the client (the work-

flow manager). The most common type of error returned to the client is due to missing

dependencies or other problems with the job file requirements. Below are the stages

of Confuga jobs and the possible errors which may occur.

Create: Creating a job involves two tasks: (1) generate a new job identifier and

record the job specification to permanent storage; and (2) check the access control
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list for each job input and output (recursively for directories). The most common

error during job creation is missing dependencies (ENOENT) or access control failures.

These errors are caught early by the Chirp server exporting the Confuga head node.

Execute: After the workflow manager commits the job, Confuga proceeds with

executing the job on the storage cluster. This involves numerous stages where errors

may occur.

1. The head node binds input files to replicas 5 which involves a lookup of each input
file name in the global namespace. Missing files will result in an unrecoverable
error. This binding of input files is performed once even when the job is rescheduled
due to later errors.

2. Once input files are bound, Confuga will schedule the job to a storage node and
replicate missing dependencies. This stage of the job’s lifetime will commonly en-
counter errors such as failed transfers and temporarily lost storage nodes. Confuga
conceals these errors by rescheduling a job when the operations cannot be tried.
Despite the usefulness of handling these errors at the head node, the workflow
manager may desire knowledge of the rescheduling or progress of replication of
dependencies. This would allow the workflow manager to give the user better
progress information to indicate stalls so the user may choose to take action. Fu-
ture work on Confuga may expose this information as part of the job’s status
which is queried by the workflow manager.

3. After job dependencies are replicated, the head node dispatches the job to the
storage node. The most common errors encountered here are network failures or
temporarily lost storage nodes. These operations are retried for a time until the
head node gives up and reschedules the job to a new storage node.

4. Finally, once the job completes execution on the storage node, the head node
updates the global namespace with the new job outputs. Errors here are only
a result of concurrent manipulation of the global namespace which prevents the
head node from adding the outputs to the global namespace. For example, if
another client removes a destination directory, inserting the job’s output is no
longer possible which results in an error (ENOTDIR).

Reap: After Confuga has completed the job, the workflow manager may re-

trieve the job status by waiting for completion via job wait and job reap. Beyond

5Atomically reading input files is explored in Chapter 4.
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transient network and database failures, there are no other errors defined for these

operations.

3.6.3 Other Errors

The most challenging errors to deal with in Confuga are those not directly related

to the task being performed. For example, if an authentication ticket has expired

or a storage node’s state has been wiped then some operations will mysteriously

fail for sometimes opaque reasons. For example, a transfer may fail because two

storage nodes cannot authenticate. The resolution to this problem is not to schedule

a new transfer on a different storage node. Instead, the head node must determine

which of the potential problems caused the authentication failure. For example, the

storage node to storage node authentication ticket may have expired or somehow

become invalid or the access controls on some directory were changed. These types

of potential (and fortunately rare) errors are numerous and require continued iterated

development on the current prototype.

3.7 Evaluation of Active Storage Capability

So far, we have introduced the Confuga cluster file system. The next chapters will

examine load control and scalability mechanisms employed by Confuga. Here, we will

present a brief evaluation of its active storage capabilities for scientific workflows.

I have used two unmodified bioinformatics workflows, BLAST and BWA, for

benchmarking Confuga. The BLAST workflow is composed of 24 jobs with a shared

8.5GB database. It is used for comparing a genomic sequence query against a refer-

ence database, yielding similar sequences meeting some threshold. The BWA work-

flow performs a genomic alignment between a reference genome and a set of query

reads. The BWA workflow is composed of 1432 jobs, starting with a 274 way split

of the 32GB query. The purpose of this alignment is to later compare how well the
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reads align and where in the reference genome they align.

This evaluation will examine how Confuga responds to repeatedly executing the

workflows on the same dataset. This is a particularly common scenario for workflows

which utilize a database (as with BLAST). Our design of Confuga is explicitly in-

tended to support and optimize for this class of workflows by supporting dynamic

increases in file replication to increase data-parallelism and to maintain that repli-

cation so future workflows benefit. So, the first workflow pays the cost of increasing

the number of replicas for its dataset. Subsequent workflows benefit from that prior

work by having its jobs immediately scheduled on nodes hosting that dataset, thereby

returning to the data.

Figure 3.5 shows two variations of workflows returning to the data. The hardware

used in the cluster is as described in Section 1.3. Each graph indicates the activity

on all storage nodes, both for transfers in/out and for jobs executing. For these

tests, Confuga is configured to use use a simpler synchronous transfer mechanism

for moving replicas between storage nodes. This means that the scheduler does a

blocking transfer for each replica, preventing any other work during the transfer.

Synchronous transfers are discussed further in Section 5.2.

In the first graph, we execute the same BLAST workflow twice consecutively.

An 8GB dataset is uploaded immediately prior to running the first workflow, with

replicas striped randomly across the cluster. The BLAST workflow executes with

24 long running (approx. 45 minutes) jobs that each share an 8GB dataset split

into multiple input files. The goal is to have the second run of BLAST benefit

from the prior replication work during the first run. From the graph, one can see

that Confuga is initially busy directing copies of files from multiple storage nodes to

SN12, where the first job is dispatched. Storage nodes 1 and 12 are arbitrarily chosen

as sources for replicas of the common input files for wider replication. This is shown

in the numerous transfer tic marks in the first 35 minutes of the workflow. The final
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stage of the BLAST workflow is 3 fan-in jobs which gather previous outputs, causing

several transfers at t=01:45. Because the two BLAST workflows are identical and

the outputs are small, these results were deduplicated so the second execution of

BLAST runs the 3 analysis jobs without any fan-in transfers.

For the second graph, we run the same BLAST workflow twice consecutively, as

before, but also run the BWA workflow concurrently with the first run of BLAST.

The intent of this experiment is to determine how Confuga responds to two workflows

with disjoint datasets and how data locality is affected. The BWA workflow begins

with an initial fan-out job that splits a 32GB dataset into 274 pieces at SN11. For

the duration of the BWA workflow, these splits are transferred from SN11 to 6 other

storage nodes. These transfers appear continuous and concurrent only because of

the graph’s minimum width of a transfer is 30 seconds (to ease visibility). The final

fan-in job is also run on SN11 which gather outputs from the other nodes. We can

see that the BWA workflow taxed the scheduler with the large number of jobs and

synchronous transfers, preventing complete use of the cluster. Eventually, SN8, SN9,

and SN3 (briefly) were picked up by BWA late in the run. Because SN8 was claimed

by BWA, SN6 was chosen for the next BLAST job (with some dependencies already

there).

These experiments show that Confuga is able to execute workflows with full data

locality and preserve prior work (the replication) to rapidly execute subsequent jobs

operating on the same dataset. This validates the primary goal of Confuga to provide

active storage capabilities to scientific workflows. In the case of BLAST in the first

experiment, a second run of the same BLAST is 19% faster than the original run

because its database is already distributed across the storage nodes. Finally, we have

shown that data locality is a principal consideration for the scheduler which allows the

cluster to execute workflows concurrently with disjoint datasets without significant

mutual disruption.
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Figure 3.5. Hot Active Storage Experiment

These graphs visualize the activity at each storage node during a run of workflows.
Each storage node row has two bars for activity: the top bar (small tics) shows

transfers in or out and the bottom bar (long tics) shows job execution. The width
of the bar indicates the duration of the activity. Each transfer or job also has a
minimum width of 30 seconds, to ease visibility. Additionally, dots below the job
execution bar show when a job has finished to distinguish consecutive jobs.

The top graph has two sequential runs of the same BLAST workflow, each run
colored differently. Transfers are also colored according to the workflow that
initiated them. The BLAST workflow has a shared input dataset composed of

multiple files, totaling 8GB. This graph demonstrates that Confuga benefits from
previous work replicating files by starting the second workflow’s jobs immediately

on all storage nodes.
The bottom graph also has two sequential runs of the same BLAST workflow but
additionally has a BWA workflow (light gray) running concurrently with the first

BLAST workflow. The BWA workflow has an input data set of 32GB which is split
274 times. You can see the split done by SN11 at 00:15. This graph demonstrates
that Confuga is able to run two workflows with disjoint data sets concurrently with

data locality and without significantly displacing each other.
c© 2015 IEEE.
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3.8 Conclusion

This chapter presented the design of the Confuga active storage cluster file sys-

tem. Confuga shares the perspective of other big data systems like Hadoop that

effective data-locality is achieved by joining the batch system and the file system:

the file system is able to respond to data demands through replication and place

jobs according to data-locality. We have shown that Confuga is able to schedule jobs

with full data locality and manage transfers with semantics compatible with scientific

workflows.

The next chapters will explore scalable metadata access, load stability, and trans-

fer management in Confuga.
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CHAPTER 4

METADATA MANAGEMENT

In the previous chapter, we developed the design of the Confuga cluster file system

for scientific workflows. From the beginning, Confuga was made to take advantage

of the structural information and semantics of DAG-structured workflows to achieve

metadata scalability. In this chapter, we will first discuss namespace management in

workflow managers. As we will see, traditional approaches to linking the workflow

manager with the workflow data-set either are unscalable or require unreasonable

privileges and agreement on the workflow namespace. I will discuss how the Make-

flow workflow manager was adapted to work with an active storage batch system

where these conventional methods of accessing the workflow data are not available.

I will conclude with a discussion of how Confuga utilizes the namespace information

communicated by the workflow manager to achieve scalable metadata management.

4.1 Namespace in Workflow Managers

The scalability of metadata is linked to the management of namespaces. In sys-

tems with traditional distributed POSIX file systems, how metadata scales is closely

related to the namespaces in which processes operate. This is well explored in file

systems like Ceph [88] which use dynamic sub-tree partitioning to improve the spa-

tial locality of metadata. This is done by separating the global logical namespace

into multiple smaller physical namespaces maintained by metadata servers. Pro-

cesses which access files within the same physical namespace enjoy benefits of spatial

locality and lock-free metadata access.
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We will see in this section how workflow managers function and how the workflow

namespace is defined. Then, we will take a look at how our workflow manager,

Makeflow, was enhanced to support active storage computation on Confuga.

4.1.1 Makeflow

The Makeflow [3] workflow manager builds on the venerable Make syntax for ex-

pressing job dependencies, which creates an implicit job execution order. Users of

Makeflow seek to to unify the specification of jobs to be executed on some distributed

batch execution platform, such as Condor [49], SGE [32], or Work Queue [14]. This

abstraction allows for trivial parallelism of normal UNIX programs by establishing

data dependencies. The Makeflow runtime also handles various details including the

handling of workflow fault-tolerance, execution statistics, task ordering and depen-

dencies.

Figure 4.1 shows an example Makeflow file for a bioinformatics workflow1. Like

Make, the Makeflow specification abstracts jobs into recipes. Each recipe includes

a rule shell command that takes input file dependencies and produces some target

output files. In other words, the recipe defines how to create the targets. Makeflow

organizes these recipes into a dynamic acyclic graph (DAG) in order to produce all

the desired output files. The engine will then submit the command (rule), list of

input files (dependencies), and the expected output files (targets) to the underlying

distributed batch system specified by the user in the Makeflow command invocation.

Prior to this work, Makeflow operated under the assumption that all of the work-

flow files are located on the local file system and that the batch system would return

output files for inspection by Makeflow to check for existence and non-empty outputs.

So, if the workflow indicates a dependency a, Makeflow will execute the stat system

1Normally, users do not write Makeflows manually. Instead, Weaver [15] is a common approach
to compiling workflows to the Makeflow language for execution.

45



1 input .0 input .1: input job.sched gen_submit_file_split_inputs .pl

2 ./ gen_submit_file_split_inputs .pl 3909

3

4 COMMON_INPUTS = blastx legacy_blast.pl distributed .script job.params blast_database/

5

6 output .0 error .0 total .0: input .0 $( COMMON_INPUTS)

7 ./ distributed .script 0

8

9 output .1 error .1 total .1: input .1 $( COMMON_INPUTS)

10 ./ distributed .script 1

Listing 4.1: Sample of a Bioinformatics Workflow

call to test for its existence. When Makeflow submits a new job to the batch engine,

it uses this same file name a for the job. The batch engine is responsible for sending

the file to the job, and as we will see, there are a number of ways to do this.

4.1.2 File Access

Due to the distributed nature of the complete workflow system, scientific workflow

managers and the jobs executed must have some way to agree on the state and

location of files accessed by both. The simplest mechanism to achieve this is to

have the workflow manager work on a local file system tree. This serves as the

authoritative copy of the workflow data. It is also easily accessed by the user after

workflow completion. Jobs will receive a copy of a defined sub-tree to work on during

execution. I refer to this as a local namespace Both Makeflow and Pegasus [21]

work in this way.

On the other hand, with easily deployed distributed file systems like AFS [39],

Ceph [88], Panasas [54], and PVFS [69], it can be simpler for the workflow manager

and the jobs to use a common namespace for file access, with the underlying file

system mounted in the same way. In this case, dependencies are used only for ordering

the execution of jobs. Jobs access files normally without assistance from the workflow

manager or the distributed batch execution system. Some job dependencies may also

be implicit (i.e. unspecified) because the workflow manager need not consider the

dependencies for job ordering. In this situation, the workflow manager may need to
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resolve name conflicts within the global namespace as some jobs may require static

file names as input. Joining the jobs’ namespaces in the global namespace would

cause failures and so requires special handling2. I refer to this scenario as a global

namespace.

Up to this point, Makeflow was written to (mostly) seamlessly operate within

either a global or local namespace. For a local namespace, the workflow manager

manipulates workflow files locally and assumes the batch system will distribute files

as necessary. For a global namespace, the workflow manager is executed in the

appropriate location (chdir) in the global namespace so names resolve. Or, the

workflow files are written with absolute path names to the common global namespace

(e.g. /afs/nd.edu/user31/pdonnel3/workflow). The batch system (e.g. SGE [32])

does not move the files to the workers.

4.1.3 Bound Namespaces

In a conventional multi-process setting, all processes operate within a single

namespace. This allows trivial communication and instant visibility of changes to

the file system. In a distributed batch execution system, the namespaces are often

physically and logically separate. The main challenge in these environments is how

to access these namespaces and bind required files to the execution environment. The

normal approach to solving this problem is one of avoidance: use a global namespace

that is accessible by jobs and the workflow manager.

However, requiring the use of a global namespace to execute workflows with data

located on a distributed file system is not always feasible. Users may not have

privileges to mount a global namespace on their workstation, let alone all of the

machines used to execute jobs. Furthermore, the use of a global namespace enables

the user to skip the listing of certain dependencies which do not impact job ordering.

2Of course, ideally programs would not be written to require static file names.
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This impacts the potential for data locality as the batch system cannot make locality

determinations if it lacks the full picture.

This was resolved by the development of a new namespace type, a bound names-

pace. This namespace type made the joining of the workflow namespace and the job

namespace explicit through a binding of file names between the namespaces.

So now the dependency list is used to construct a mapping between the work-

flow and job namespaces, in addition to job ordering failure detection. For many

workflows, this mapping is trivial as jobs are frequently written as though executed

with access to the workflow namespace. For example, Listing 4.2 shows a rule from

a bioinformatics workflow written with the job executing relative to the root of the

workflow namespace.

1 workflow /00000001. out : workflow /bio -kernel .py

workflow /Mosquito . FilteredPacBioSubreads .58 Cells .130905. fastq

workflow /genome .00000001 workflow /_Stash /0/0/0/0000001

2 workflow /_Stash /0/0/0/0000001 workflow /bio -kernel .py workflow /00000001. out

workflow /Mosquito .FilteredPacBioSubreads .58 Cells .130905. fastq

workflow /genome .00000001

Listing 4.2: Single Rule from the IALR Bioinformatics Workflow

For example, the dependency workflow/ Stash/0/0/0/0000001 should be mapped

into the job sandbox as workflow/ Stash/0/0/0/0000001. Unfortunately, support

for this trivial mapping is not widespread among batch systems. For example, Condor

is well-known for mapping job input files into a flat sandbox in the job. For example,

workflow/ Stash/0/0/0/0000001 would be mapped to 0000001 in the job sandbox.

Users planning to execute workflow on Condor must be write jobs to operate in a flat

sandbox and implicitly rely on Condor’s namespace mapping.

The three namespace types are shown in Figure 4.1.
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Figure 4.1. Distributed Execution System Namespaces

49



As we will soon see, explicitly defining the workflow namespace and job

namespace allows the workflow manager and batch system to trivially manipu-

late and transform the workflow namespace as needed without disrupting job file

access. Additionally, formally defining the workflow namespace allows for relocatable

workflows. This examined next in the extensions to Makeflow.

4.1.4 Extending Makeflow for Active Storage

Workflow managers require access to files in the workflow namespace for a number

of reasons: checking input file dependencies exist before dispatching a job, confirming

job outputs are created on completion, garbage collecting unneeded intermediate files,

wrapping job executables with diagnostic or monitoring code, etc. In the context of

Confuga, Makeflow must be able to manipulate workflow files which are on the storage

cluster and not locally accessible.

In early versions of Makeflow, all file access assumed a local or global names-

pace where Makeflow must simply be executed relative to the workflow namespace

(whether in /panasas/home/j/workflow or /workflow). File operations such as

stat or unlink were executed as normal system calls handled by the kernel. For

the batch systems that Makeflow supported at the time, this setup was sufficient.

However, when the workflow namespace is not locally mounted but only available

through remote RPC on a cluster, Makeflow must be extended to operate on an

explicitly defined bound namespace.

Makeflow uses a batch library which is used to multiplex between different batch

execution platforms like Condor [49, 82], SGE [32], and Work Queue [14]3. It is

responsible for scheduling and managing the job executions and files on the underlying

resources. This common abstraction is widely adopted [14, 32, 82] to mask the

3For example, the Makeflow command-line switch -Tcondor configures the batch execution li-
brary to use the Condor job driver.
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underlying complexities of the batch systems. Prior to this work, Makeflow used this

batch library to only submit jobs with a list of input and output files. Makeflow and

the batch library would separately access these files for different purposes: Makeflow

checks for file existence for pending jobs and the batch library may check these files

to perform necessary file transfers to the remote site.

In order to support active storage where the workflow namespace is not locally

mounted, it is necessary to move namespace management access at the batch library

layer4. This allows Makeflow to operate on the namespace without knowing where

workflow files are located. Figure 4.2 visualizes the transformation in workflow file

access.

The changes to Makeflow and the batch execution library were not particularly

onerous. Only 6 file system operations were identified in Makeflow that required

equivalent functions in the batch execution library. So for example, instead of using

stat("bin/blast") to determine the existence of the input file for a job, Make-

flow uses batch fs stat(Queue, "bin/blast"). These operations are shown in

Table 4.1. The table shows at which stage in the workflow the operation is executed.

Finally, it was necessary to allow the user to specify a location for the work-

flow namespace. For conventional batch systems, this is the working directory of

Makeflow. The Makeflow specification will refer to paths relative or absolute to the

working directory of Makeflow. For active storage, the workflow namespace is config-

ured to be the workflow path on the remote storage for the batch execution system.

So with a workflow namespace of "/home/john/workflow1/", "bin/blast" resolves

to "/home/john/workflow1/bin/blast". This resolution happens in the batch li-

brary layer; Makeflow continues to operate with paths as written in the Makeflow

specification file. This makes each Makeflow specification relocatable in the sense

4This functionality was added to Makeflow in commit 7aa72f27209fcac122fab6521f3dc64db871c91f.
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Figure 4.2. Makeflow and Batch Job Library with and without I/O
Extension
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TABLE 4.1

BATCH JOB FILE OPERATIONS

Operation Stage

chdir Workflow Boot

getcwd Workflow Boot

mkdir Job Setup

putfile Job Setup

stat Job Setup, Job Finish

unlink Job Finish

that the same workflow may be executed in different locations so long as the initial

dependencies are available in the new workflow namespace. This is a useful property

for workflow sharing and reproducibility.

4.2 Developing a Job Framework for Active Storage

In addition to abstracting the workflow namespace access in Confuga, it was nec-

essary to incorporate the use of bound namespaces into a job framework usable for

active storage. The framework was designed with an eye towards Confuga but was

implemented first for the Chirp [81] distributed file system5, a file system service sim-

ilar to NFS [73] which is designed to be deployed on a grid to make available data for

remote access. Chirp is attractive for deployment on grids and clusters for a number

of reasons including trivial user deployment without administrator privileges, strong

and usable authentication and access control mechanisms, and multiple mechanisms

for applications access.

5Confuga is overlaid on Chirp and supports the same job protocol.
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To be clear, the active storage we are developing for is different from the original

description. The first papers on active storage began as smart disks [66] and grew

within the HPC community to smart object stores which can harness unused CPU to

perform simple functions on data [60] with the goal of increasing I/O throughput and

reducing data movement [75]. More recently, projects like Hadoop were developed for

clusters built on commodity hardware that are dedicated to performing structured

computation on large datasets. This framework is designed to support the latter

use-case: ship executables to storage sites for execution on large data.

Chapter 3 introduced the Chirp job protocol used by Confuga in Section 3.3. Here

we will review the namespace binding aspects of the protocol.

4.2.1 Creating a Job

Jobs are created in Chirp using two-phase commit with the job create and

job commit RPC. Listing 3.6 on page 30 showed an example job specification. List-

ing 4.3 shows a reproduction of its file array.

The files array provides the namespace binding for the job. The task path

corresponds to the location in the sandbox of the job. The serv path is the location

of the file on the server. The type indicates if the file is an input or an output. Each

file is bound into the sandbox using one of a number of binding methods. By default,

files are hard linked (link(3) in UNIX) into the sandbox of the job. File copies are

also supported when the job needs to modify inputs but the cost is proportional to

the file size.

The careful reader will notice that the executable /bin/sh is not included in the

namespace binding for the job. Normally Makeflow dictates that the user includes

all dependencies for each job but some may still go unspecified. System utilities and

libraries are generally available so the user can “get away” with leaving them out.
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1 "files ": [

2 {

3 "task_path ": "input",

4 "serv_path ": "/u/patrick /input .1",

5 "type ": "INPUT "

6 },

7 {

8 "task_path ": "output ",

9 "serv_path ": "/u/patrick /output .1",

10 "type ": "OUTPUT "

11 }

12 ]

Listing 4.3: Chirp Job File Binding

1 "files ":[

2 {

3 "binding ":" LINK",

4 " serv_path ":"/u/patrick /input .1",

5 "size":null ,

6 "tag ":null ,

7 " task_path ":" input ",

8 "type ":" INPUT"

9 },

10 {

11 "binding ":" LINK",

12 " serv_path ":"/u/patrick /output .1",

13 "size ":551 ,

14 "tag ":null ,

15 " task_path ":" output ",

16 "type ":" OUTPUT "

17 }

18 ]

Listing 4.4: Job Status Following Completion via Wait

4.2.2 Waiting for a Job

Clients wait for jobs in Chirp using the job wait and job reap RPC. Waiting

for a job returns the complete job status information detailing all job metadata.

Listing 3.7 on page 31 shows example job status return from job wait. Listing 4.4

shows a reproduction of the file array component of the job status.

After waiting for a job which has finished, the output files have been mapped into

the server namespace. In the status returned by job wait, each output file includes

its size and the finalized name in serv path. This finalized name is discussed next

in Section 4.2.3.
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TABLE 4.2

JOB OUTPUT FILE NAME INTERPOLATION

Sigil Replacement

%g A 20 byte UUID.

%h The SHA1 hash of the file content.

%j The job’s ID.

%s Like %h if file size < threshold, otherwise %g.

4.2.3 Output File Name Binding

The name for an output file of a job is not always static. It can be necessary to

compute the name dynamically after the job has completed. For example, if the file

is to placed in a Content Address Store (CAS), it is desirable to name it according

to its hash. The Chirp job protocol allows this dynamic naming of an output file via

string interpolation of the serv path. The sigils supported are shown in Table 4.2.

The variety of sigils supported were a result of an evolution in requirements for

Confuga. The jobs sent to storage nodes originally would store files in a CAS directory

using a serv path like ".../file/%h". After more extensive tests were performed,

it became obvious that always hashing the file content resulted in significant slow

downs when a job produces a large output file. The reason for this is that the storage

node must hash the entire output file once the job completes. If the file is large, this

means the entire file must be read from disk.

This cost was determined to be unacceptable. The benefits of deduplication and

deterministic naming are not justified. Instead, the use of Universally Unique Identi-

fiers (UUIDs) were incorporated to give new output files names. These identifiers can
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be generated using the %g sigil. It was observed however that both techniques could

be used depending on the file size. Confuga uses the %h sigil which allows hashing

files with size less than a threshold, currently 16MB. This technique of deduplicating

small files is similar to the interned “short string” table in the Lua programming lan-

guage version 5.2 [40]. Lua conditionally interns strings with size below a threshold.

The rationale is the same in Lua: long strings are unlikely to be duplicates and the

cost of producing a useful hash is large6.

4.2.4 Challenges

Moving the workflow namespace outside of the submission machine into an exter-

nal store exposed problems for some workflows. For example, many archived Make-

flow experiments experienced problems due to “local recipes”. These are recipes that

are to be executed by Makeflow at the submission site. The general intent is to per-

form minor or bottleneck work at the submission site rather than dispatching a job

to the execution engine. For example, it is common for an early job to split a large

input file and subsequent jobs to depend on single splits. It can be beneficial to just

perform the split in Makeflow as nothing is gained by moving the task to a remote

execution node.

Local recipes were problematic for two reasons:

• Local recipes only make sense when the submission site running Makeflow has
direct access to the workflow namespace on a locally mounted file system. When
executing jobs for active storage, this is not the case! These jobs must be
executed as normal jobs in order to access files in the workflow namespace.
To fix this, Makeflow was modified to conditionally submit local jobs to the
remote batch queue when Makeflow does not have direct access to the workflow
namespace. Because of this change, the LOCAL qualifier on recipes became a
suggestion rather than a requirement.

• Local recipes allowed unnamed dependencies in the workflow namespace. Since

6Lua was also confronting the problem of hash collisions in malicious strings causing denial-of-
service attacks on table access.
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a local job would be run with access to the workflow namespace, any depen-
dencies which are available but not named in the dependency list would cause
no problems. Had the job been remote with for example Condor, the unnamed
dependency would not have been sent along with the job and resulted in a
runtime error by the job executable. Local jobs however have access to the full
workflow namespace and can thus access any file that exists, even if it was not
listed in its dependencies.

When using a bound namespace and active storage, these (formerly) local jobs
no longer have full visibility of the workflow namespace! As stated in the
previous point, local jobs are executed as regular jobs. So all dependencies
must be bound into its job namespace or they will not be available. Many
workflows had to be corrected to include these missing dependencies in the
local recipes.

4.3 Confuga Metadata Scalability

Up to now, we have outlined the changes to necessary to make the Makeflow

scientific workflow manager work within an active storage environment. Here we

will examine how Confuga leverages the information that Makeflow gives the batch

execution system to scale metadata access for the file system.

Scalable metadata access is a persistent problem in distributed file systems which

provide a global namespace for file metadata and location. POSIX consistency seman-

tics in a distributed setting have significantly contributed to this problem. AFS [39]

is well known for relaxing certain requirements to meet scale and performance needs.

In particular, AFS introduced write-on-close so other clients will not see changes to

a file until the writer closes the file. Doing otherwise would require propagating the

update to the file’s blocks and size to the file server before any write may complete.

Confuga minimizes load on the head node by exploiting the structural information

available in the workflow. Specifically, Confuga relies on the complete description of

the input and output files available from the DAG workflow manager. Using this

information, Confuga is able to perform all metadata operations, including access

control checks and determining replica locations, prior to job dispatch to a storage
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Figure 4.3. Distributed File System Metadata Access Patterns

Large cardinality in bold arrows.
c© 2015 IEEE.

node. The job description sent to the storage node contains a complete task names-

pace mapping to immutable replicas local to the storage node. The storage node

requires no further information to execute the job. Figure 4.3 visualizes the differ-

ent models for handling metadata operations for Confuga and traditional POSIX

distributed file systems.

4.3.1 Namespace Remapping

The full description of the job namespace forms the foundation for the design and

optimizations of Confuga. In Confuga, this description is provided in the form of a

namespace mapping of the job’s namespace or sandbox to the workflow namespace

(a bound namespace). In Confuga, this workflow namespace would be a sub-tree of

the global cluster file system namespace.

Prior to scheduling a job, Confuga performs access control checks for each input

and output. These access controls are maintained per-directory. Once access control

checks are complete, Confuga will bind each input file by looking up its replica

identifier. Input files that are directories expand recursively to an equivalent input file
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Figure 4.4. Confuga Job Namespace Remapping

list. Replicas in Confuga are whole-files and immutable, so this operation effectively

causes each job to atomically read its inputs from the global namespace prior to

execution. Binding each input file to a replica is done through namespace remapping,

as shown in Figure 4.4. Each input file in the sandbox of the job is remapped to its

corresponding replica in the flat replica namespace. Similarly when a job completes,

Confuga learns the replica identifiers for each of the job’s output files and atomically

updates the global Confuga file system namespace. Directories as output files is not

permitted.

What this amounts to is a layering of consistency semantics. Individual jobs

execute within a namespace (sandbox) with normal POSIX consistency semantics.

All operations within its namespace are native accesses; the cluster file system does

not introduce any remote file operations or new mount points. At the level of the

workflow, consistency is maintained at job boundaries, start and end. I refer to these

semantics as read-on-exec and write-on-exit. Restricting consistency semantics

in this way has a number of advantages:
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1. Because each job includes its full list of data dependencies, Confuga is able to
make smarter decisions about where, and most importantly when, to schedule a
job to achieve complete data-locality and to control load on the network.

2. Since all input files can only be pulled from the workflow namespace before the
job begins execution, Confuga can eliminate dynamic/remote file operations by
a job. This is an essential aspect of Confuga’s execution model as it allows for
controlling load on the network: a job cannot dynamically open files on the cluster
which would introduce network overhead out of the head node’s control.

3. We are able to reduce metadata load on the head node by isolating storage nodes
from the global cluster namespace. Any metadata required for a job and its
files can be sent as part of job dispatch and retrieved when reaping the job. In
fact, storage nodes in Confuga are treated as dumb active storage file systems,
completely unaware of the global context.

4.3.2 Caveats

Restricting a system to a certain execution model usually has drawbacks; Confuga

is no different in this regard. While the model is flexible enough to run any type of

workflow expressed as a DAG of jobs, it will not perform optimally when the input

files are largely unused. Either because there are input files which are never opened

by the job or because a large input file is not fully utilized. Confuga also requires that

all dependencies are fully replicated on the storage node chosen for a job’s execution.

This means that all of a job’s files must fit on disk. This requirement encourages

structuring a large data set as multiple files, which is already a de facto requirement

for DAG workflows. Our experience suggests this is not a significant burden on users.

It is worth noting that using workflow information in this way to optimize meta-

data operations is not uncommon in cluster file systems. For example, because

Hadoop’s MapReduce implementation knows which blocks a Map task will work

on, it can minimize future work by isolating the Map task from the file system by

looking up file metadata and replicas for the Mapper and forwarding data blocks

directly to the Map function. Naturally, not following the MapReduce model results

in performance penalties, e.g. by opening numerous other data files in HDFS. Ad-
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ditionally, Hadoop also relies on HDFS’s immutable file blocks to reduce (eliminate)

consistency concerns.

Confuga also relies on each job operating atomically, without consistency updates

from the head node. This is a common constraint in DAG-structured workflow man-

agers that synchronize and order tasks through output files. When jobs would run on

a master/worker framework or on a cycle scavenging campus grid, it was not useful

to allow network communication between jobs because (a) jobs would need to be able

to “find” other jobs, (b) communication must get through firewalls between subnets,

and (c) communication would introduce dependencies between jobs unexpressed in

the workflow description. Confuga takes advantage of the DAG workflow model by

eliminating consistency checks and dynamic file access for jobs.

4.4 Performance

Evaluating the effectiveness of Confuga’s metadata management for scalability

requires tracking the number of metadata operations made by jobs during the course

of the workflow. This allows us to quantify the number of metadata operations made

by each job. As a way of comparison, we also can track the metadata operations

made by the head node in the course of executing jobs.

I have used the strace utility to monitor the I/O system calls made by jobs

running in the cluster. These I/O system calls will execute within the sandbox of

the job on the storage node. They do not result in communication with the head

node. The collective system calls can be used to quantify the amount of RPC traffic

Confuga avoided by batching operations prior to submitting jobs.

The Confuga head node metadata operations are shown in Table 4.3. The sched-

uler binds all input files for each job prior to scheduling. This involves a lookup of

the replica identifier for each file dependency. When a directory is named, then it is

recursively broken down into an equivalent mapping of regular files, each of which is
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TABLE 4.3

HEAD NODE METADATA OPERATIONS

Operation Stage Purpose

lookup Job Input Binding Lookup Replica ID for given file name.

opendir Job Input Binding Open a directory for reading.

readdir Job Input Binding Read single entry from directory.

update Job Output Binding Update the Replica ID for the given file name.

also requires a replica lookup. Likewise, when a job ends, each output file’s replica

identifier is written to the global namespace, the update operation.

We have used two unmodified bioinformatics workflows, BLAST and BWA, for

evaluating the effectiveness of Confuga’s metadata scaling. The BLAST workflow

is composed of 24 jobs with a shared 8.5GB database. It is used for comparing

a genomic sequence query against a reference database, yielding similar sequences

meeting some threshold. The BWA workflow performs a genomic alignment between

a reference genome and a set of queries. The BWA workflow is composed of 1432

jobs, starting with a 274 way split of the 32GB query genome. The purpose of this

alignment is to later compare how well the genomes align and where in the reference

genome they align.

The two bioinformatics workflows, BLAST and BWA, are shown in Tables 4.4

and 4.5. The tables show operations in three contexts: “Scheduler → MDS” op-

erations performed by the scheduler on the global namespace (all local on the head

node); “Scheduler → Storage Node” operations by the head node on storage

nodes; “Storage Node → File System” operations by storage node jobs on its

sandbox (“Sandbox”) and local system utilities (“All”). (So, “All” includes opera-
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tions on the “Sandbox” and other file system operations done on the entire storage

node namespace including local system files, libraries, and executables.)

Because each BLAST job (24 jobs) depends on a database of files contained in a

directory, the scheduler must resolve this directory to a number of equivalent input

files which are reconstructed as the directory for each job by the storage node. For this

reason, the scheduler performs several opendir and readdir calls for the database

directory. For each job, there were an average of 74 metadata operations the head

node needed to perform on the global namespace. On the other hand, each job

performed on average 293 metadata operations. This confirms that the head node is

able to avoid numerous metadata operations by pre-batching operations prior to job

dispatch.

The BWA workflow (1432 jobs) is notable for being very streamlined with the I/O

in its sandbox. There are approximately 10 sandbox open system calls for each job

but only 1 stat for the entire workflow. For BWA, the ratio of lookup+update to

open+stat is not as favorable as BLAST because each job would dynamically open

up only some of its input files. This result highlights that metadata operations in

Confuga are the result of the workflow description and not the job. [For this BWA

workflow, the disparity may indicate a problem with the workflow description where

jobs include more dependencies than necessary. Or, each job dtynamically selects

files to open at run-time.]

It’s worth pointing out that there is significant traffic outside the sandbox of each

job. Ideally workflows use only files within its sandbox. The reasons for this are

intuitive: implicit dependencies can cause unexpected failures as workflow execution

depends on inputs defined by the execution site. These implicit dependencies may

vary significantly between machines and impact the performance, correctness, or sta-

bility of the workflow. There has been effort to contain workflows and package all

dependencies [15] but change is slow. For Confuga’s part, it does not prevent appli-
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cations from accessing utilities outside the sandbox. [In fact, completely restricting

the namespace to the sandbox is challenging and may require root. For example,

applications regularly use /dev/null and /proc. Properly restricting these system

files requires privileges that Confuga does normally require.]
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TABLE 4.4

METADATA AND HEAD NODE OPERATIONS FOR BLAST

WORKFLOW (24 JOBS)

Scheduler → MDS Scheduler → Storage Node Storage Node → File System

Metadata Count Job Count Transfers Count All Count Sandbox Count

lookup 881 job wait 440679 thirdput 618 stat 14085 stat 4687

readdir 779 job create 30 rename 597 open 3648 open 1407

update 104 job commit 26 access 597 access 436 readlink 361

opendir 19 job reap 24 - - readlink 400 getcwd 247

- - job kill 0 - - getcwd 247 getdents 14

- - - - - - getdents 14 - -

- - - - - - statfs 7 - -
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TABLE 4.5

METADATA AND HEAD NODE OPERATIONS FOR BWA

WORKFLOW (1432 JOBS)

Scheduler → MDS Scheduler → Storage Node Storage Node → File System

Metadata Count Job Count Transfers Count All Count Sandbox Count

lookup 13170 job wait 90672 access 2350 open 17928 open 10731

update 3578 job create 1433 thirdput 1452 access 1432 stat 1

readdir 0 job reap 1432 rename 1448 stat 21 - -

opendir 0 job commit 1432 - - readlink 2 - -

- - job kill 0 - - - - - -
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4.5 Conclusion

This chapter presented the namespace management used in scientific workflow

managers and how to adapt workflows for active storage on Confuga. Confuga is also

shown to manage metadata operations in a scalable manner by exploiting workflow

semantics of read-on-exec and write-on-exit. All metadata operations are batched

and executed prior to and after a job’s execution.

While these semantics are very effective when the workflow structure permits

these restrictions, they are not applicable for workflows which operate on shared

files. For example, HPC workflows often rely on a shared store such as GPFS [74] for

consistent editing of files. However, many environments have embraced the model we

have discussed where jobs are atomic and operate without a shared file namespace

or communication mechanism (other than output files). For these cases, Confuga is

an appropriate match which can safely eliminate most metadata operations which

impede scalability.

It is suggested that workflows should be written with strict adherence to depen-

dencies. While it can be help the user in the immediate situation to be forgiving

when a workflow is incomplete, future adaptations or applications of the workflow

may fail on other systems. This is particularly troublesome when looked at from

a perspective of preservation. When archived workflows were applied to our active

storage batch system, missing dependencies caused the workflow to unexpectedly fail.

It is an ongoing subject of research in the Cooperative Computing Lab is to enforce

the scope and explicitness of dependencies to address this issue.
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CHAPTER 5

DIRECTED TRANSFERS

5.1 Introduction

So far, I have presented the general design and metadata scalability of Confuga.

This chapter will present the use of directed transfers in Confuga to control transfer

load on the cluster.

Typical cluster file systems present a POSIX interface that permit dynamic and

uncontrolled access to files stored on cluster nodes. An application program opens a

file and reads or writes an unknown quantity of data. Distributed file systems have

little information in how applications will behave and must robust performance to all

access patterns. For example, popular cluster file systems like GPFS [74], Ceph [88],

Lustre [60], and Panasas [54] all operate in this way.

Confuga uses directed transfers to address load instability in the cluster. These

are transfers which are planned and managed by a central authority (e.g. the head

node). This makes data distribution in Confuga an oddity relative to other popular

distributed file systems. Usually, the file system does not have any information about

metadata or data requests. In fact, the usual way to study file systems is to observe

how they react to unknown workloads [6, 67, 68].

The goal of directed transfers is to eliminate load instability and improve transfer

performance. As workloads scale up, and the number of simultaneous users increase,

it is all too easy for concurrent transfers and tasks to mutually degrade performance

to the point where the entire system suffers non-linear slowdowns, or even outright
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task failures. For example, it is frequently observed that too many users running on

Hadoop simultaneously will cause mutual failures [94]. Confuga avoids this problem

by tracking the load placed on the system by each job and transfer and by performing

appropriate load management which results in a stable system.

Confuga receives the information necessary to control transfer load from the work-

flow manager. The job description lists the files needed and how each file is mapped

from the workflow namespace to the job namespace (discussed in Chapter 4. Confuga

then uses this information to plan all transfers to the storage node the job is scheduled

on and to safely eliminate dynamic transfers during the job’s execution.

This chapter explores how Confuga uses directed transfers to replicate job depen-

dencies to storage nodes. These are implemented as push transfers which direct

a storage node to replicate a file to another. We will also examine mechanisms for

managing these transfers in the scheduler and how they may be used to control load

and achieve performance.

5.2 Synchronous Push Transfers

The early prototype of Confuga exclusively used a synchronous transfer mecha-

nism for moving replicas around the cluster. The head node makes a transfer request

to the source storage node directing it to copy the replica to a target storage node.

This is a stop-the-world operation that causes the scheduler to block until the trans-

fer completes. So other work by the scheduler (and other head node operations) is

halted.

Synchronous transfers are performed using the Chirp thirdput operation [80].

The purpose of thirdput is to avoid moving data through the caller as an intermediary.

Instead, data may be moved directly from the source to the target. Figure 5.1

visualizes the transfer.

The early versions of Confuga used synchronous transfers for rapid prototyping
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Figure 5.1. Synchronous Transfers in Confuga

These are blocking replication operations performed by the scheduler. The thirdput

RPC is used to have a storage node transfer its replica to another storage node.
c© 2015 IEEE.

and then later as a basis of comparison to asynchronous transfers. Because syn-

chronous transfers execute serially and so only one transfer is active at a time, there

can be no transfer parallelism. So, the head node essentially limits the cluster to

a single transfer at a given time. Naturally, this severely limits scalability and the

usefulness of this transfer type. On the other hand, there is no interference between

transfers. So there is no other competition for storage node network or disk resources.

In practical situations, synchronous transfers should be avoided. It is possible that

for smaller files a thirdput operation may actually save time versus scheduling an

asynchronous transfer. Even so, scheduling multiple file transfers in a single batched

operation would likely be preferable. Using synchronous transfers in this way has not
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been examined in this work.

In evaluating this transfer mechanism, I refer to this replication strategy as sync.

5.3 Asynchronous Push Transfers

An asynchronous push transfer is a head-node initiated replica transfer from a

source storage node to a target storage node. Unlike synchronous transfers, the

scheduler may perform other functions during the course of the transfer. This includes

scheduling or reaping other asynchronous transfers or jobs.

Confuga implements asynchronous push transfers using transfer jobs. These are

special jobs executed by storage nodes which execute file system operations within

the storage node file system instead of a user application. The head node benefits

from this logical extension of jobs through asynchronous execution, code reusability,

and reliable creation, tracking, and reaping of transfers within a distributed context.

A failed transfer job is handled by the scheduler similarly to regular jobs; the head

node will reschedule the transfer if it is a transient failure otherwise pass the fault

up to the job which scheduled the transfer.

Transfer jobs execute the putfile RPC [81] which copies a given source replica

to a temporary file on the target storage node. The head node monitors the job’s

progress through periodic job wait RPCs on the source storage node and stat RPCs

of the temporary file on the target storage node. When the transfer completes, the

head node will atomically move the temporary file to the replica namespace on the

target storage node. This prevents an incomplete replica from being used by other

jobs or left behind by a failed transfer. The entire transfer job process is visualized

in Figure 5.2.

Authentication for transfer jobs is managed through tickets which are periodically

renewed by the head node. The head node sets the ticket up periodically as described

in Section 3.4. The use of tickets enforces secure and restricted storage node to storage
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Figure 5.2. Asynchronous Transfers in Confuga

These are a series of short blocking operations that create a transfer job on the
storage node. The transfer job executes asynchronously with the head node.

Operations are numbered in order.
c© 2015 IEEE.

node authentication and access control. Unlike other distributed cluster file systems,

Confuga does not assume exclusive access to storage nodes1. For that reason, steps

are taken to limit the transfers jobs’ access to data and protect cluster data from

other users.

Listing 5.1 shows an example push transfer job specification used by Confuga.

The special executable @put is interpreted by the storage node as a Chirp file system

operation. Internally, the storage node job scheduler creates a sub-process that asyn-

1More specifically, the Chirp servers operating the storage nodes may be used by other systems
and clients.

73



1 {

2 "executable ":" @put",

3 "tag ":" confuga :D79A5D963ABEEB71B01FE2B759C38E3CBDE54F7B ",

4 "arguments ":[

5 "@put",

6 "localhost :10003" ,

7 "file",

8 "/ confuga /open /23 EC16B19AA5AAF0CC2E92E9BB849F7D "

9 ],

10 "environment ":{

11 " CHIRP_CLIENT_TICKETS ":"./ confuga .ticket "

12 },

13 "files ":[

14 {

15 "task_path ":" file",

16 "serv_path ":"/ confuga /file /74 D8F3DB0BDAF92F32B074B6740482A599F3A3E4 ",

17 "type ":" INPUT",

18 "binding ":" LINK"

19 },

20 {

21 "task_path ":"./ confuga .ticket ",

22 "serv_path ":"/ confuga /ticket ",

23 "type ":" INPUT",

24 "binding ":" LINK"

25 },

26 {

27 "task_path ":". chirp.debug",

28 "serv_path ":"/ confuga /job/debug .%j",

29 "type ":" OUTPUT ",

30 "binding ":" LINK"

31 }

32 ]

33 }

Listing 5.1: Example Push Transfer

chronously executes (like any other job) the corresponding Chirp client API call. In

this case, the job will execute the putfile RPC.

Just like other jobs, the transfer job executes within a sandbox. The replica and

authentication ticket are mapped into its sandbox as ./file and ./confuga.ticket,

respectively. The environment variable CHIRP CLIENT TICKETS is used to indicate

which ticket to use for the Chirp operation. Finally, it’s worth noting that Confuga

saves the transfer job debug information which includes the Chirp debug output.

This has been useful on numerous occasions for debugging failed or slow transfers.

5.3.1 Load Control using Transfer Slots

The Confuga head node organizes push transfer load management using transfer

slots. Each storage node has a configurable number of transfer slots which are
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Figure 5.3. Transfer Slots

Transfer slots are used to limit concurrent asynchronous push transfers.

occupied by transfer jobs. So, an active push transfer uses a transfer slot at both the

sender and the receiver. This mechanism effectively enforces load control by limiting

the number of parallel push transfers a storage node may participate in. If the head

node needs to use an occupied transfer slot, it must defer the transfer until a transfer

slot becomes available.

Transfer slots are an abstraction only known by the head node. The storage nodes

do not enforce these limits2. Instead, the scheduler keeps track of running transfers

and enforces the transfer slot limits on itself.

The idea of transfer slots is loosely based on Map and Reduce slots in Hadoop’s

version of MapReduce [20]. Hadoop uses these slots to approximately divide up

2Storage nodes only have weak limits on the number of running jobs which are configured at
start on the command-line.
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available cores, memory, and network resources among the two task types. Confuga

also uses this idea of slots to abstract the demand placed on a storage node’s network

and disk resources.

Transfer slots are not occupied by regular jobs (i.e. not transfer jobs). So a storage

node may participate in asynchronous push transfers while a regular job is executing

there. This policy was chosen so that replication may continue even while the cluster

is under load. Additionally, immediately placing a job on a storage node hosting a

replica used by other future jobs would prevent its replication until the job finishes.

Thus, having regular jobs occupy one or all transfer slots would severely hurt data

parallelism. On the other hand, resource contention may be introduced by transfer

jobs that will make requests to the storage device. Those requests could interfere

with the same requests by a regular job. This work does not study contention from

this scenario directly.

5.4 Job File Replication

Before a job can be dispatched to a storage node for execution, Confuga must

fully replicate all missing dependencies on the storage node. This is a result of

several non-orthogonal decisions:

• read-on-exec Consistency Semantics: Each dependency is read entirely
prior to execution. External modifications during the job’s execution are not
visible.

• No Dynamic Access: Jobs may only access the files given in their dependency
list.

• Uncoupled POSIX Sandbox: Jobs execute within a POSIX sandbox that
does not require special file system mounts or library use. Instead, regular files
are linked into a sandbox for the job to access.

• Whole File Access: Jobs operate under the assumption that all parts of a
whole file dependency are available with constant access cost.

Confuga performs all push transfers for a job while it is scheduled. A job in this
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state has been assigned to a storage node but its dependencies are not yet all been

replicated. The scheduler forms decisions about file transfers considering only jobs

in the scheduled state.

In this dissertation, when discussing the scheduler I am referring to the aspect

which schedules transfers to replicate job dependencies. For scheduling jobs, Confuga

uses a simple First-In-First-Out (FIFO) scheduler for all configurations. While there

has been significant effort in the community for constructing schedulers emphasizing

fairness [94] (for users), smarter placement, and rescheduling [42], this work and

dissertation is focused on how to control load on the cluster, particularly the network

load after scheduling (placing) jobs.

All transfers we analyze in this chapter are directed; the scheduler controls the

movement of all files. This allows Confuga to completely control load on the stor-

age nodes and cluster network. Storage nodes do not independently initiate any

transfers. Analyzing the potential benefits of undirected transfers by storage nodes

independently pulling job dependencies is subject of Chapter 6.

5.4.1 Constraining Concurrent Job Scheduling

In early designs of Confuga, jobs were optimistically scheduled on all available

storage nodes in one phase of the scheduler. The scheduler would then move on to

replicating necessary dependencies for all of these scheduled jobs. For some workflows,

this has not been the best default approach as workflows rarely fully utilize the cluster

(due to replication and job execution time). Instead, it can be useful to conservatively

limit the number of scheduled jobs that the Confuga scheduler considers at a time.

This allows some jobs to execute sooner and enables future jobs to possibly reuse the

same nodes that become available. Additionally, each scheduled job uses more of the

cluster network for replicating its dependencies.

We refer to this scheduling strategy as fifo-m, where m is the maximum number of
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jobs in the scheduled state at any time. The early optimistic scheduler corresponded

to fifo-inf, which practically limits the scheduler to having up to one scheduled

job for each storage node (so fifo-inf is equal to fifo-j where j is the number of

storage nodes).

Synchronous transfers (sync) always uses the fifo-1 configuration of the sched-

uler. The reason for this is that transfers in this configuration are serially performed

on one scheduled job until all of its dependencies are replicated. So, no transfer

parallelism is gained by having multiple jobs in the scheduled state.

5.4.2 Constraining Concurrent Transfer Jobs

Once a job is in the scheduled state, the scheduler attempts to replicate any

missing dependencies to the storage node it is assigned to. When using asynchronous

transfers, a greedy approach would immediately dispatch transfer jobs for all missing

dependencies. When there are several large dependencies, this would result in the

target storage becoming overloaded or in the cluster network becoming saturated. In

addition, some source storage nodes hosting many of the missing dependencies may

also become overloaded by transfers out.

As discussed in Section 5.3.1, Confuga resolves this problem through the use

of transfer slots. The head node can be configured to assign n transfer slots to

each storage node. This prevents a node from becoming the target or source of

more than n concurrent transfer jobs. So the scheduler must wait to replicate any

missing dependencies for a scheduled job until the storage node has free transfer slots

available. Likewise, a source for a popular replica cannot be overloaded by more than

n transfers. We refer to this scheduling policy as async-n.

Figure 5.4 shows the Confuga scheduler with the fifo-m and async-n configura-

tions. These configurations are set in the Confuga URI shown in Section 3.2.3.
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Figure 5.4. Confuga Job Scheduler

This diagram shows the two scheduler parameters we are manipulating in this
chapter: fifo-m and async-n. This figure shows m = 2 and n = 1. fifo-m limits
the number of jobs, m, which may be in the “scheduled” state, where the job has been

assigned a storage node for execution and may begin replicating missing
dependencies. So, J7 may not be scheduled until either J5 or J6 leaves the scheduled

state and is dispatched. async-n limits the number of transfers to and from a
storage node. Two missing dependencies of J5 need to be replicated to SN1: F3 and
F6. F3 is currently being replicated to SN1, via “Transfer Job” TJ2 (a Transfer Job
is simply a job which transfers a file). F6 will wait to be replicated until both SN1

and SN3 have a free transfer slot (n = 1).
c© 2015 IEEE.
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Figure 5.5. Directed Transfer Stress Test Workflow

This workflow is designed to stress the Confuga scheduler with several large
dependencies that must be distributed throughout the cluster.

c© 2015 IEEE.

5.5 Evaluation

This section examines the consequences of allowing asynchronous and concurrent

replication within the cluster. The goal of concurrent replication is to fully utilize

the available network and disk resources. As usual, concurrency is not a completely

positive change. The cluster may not be able to fully use the resources it allocates

or the accounting overhead of concurrency may slow down the head node.

I have evaluated Confuga’s scheduling parameters described in the previous sec-

tion using the workflow visualized in Figure 5.5. The goal of this workflow is to

stress the Confuga scheduler with short jobs and several large data dependencies.

The workflow uses 25 instances of a simple producer and consumer pipeline. (One

producer/consumer per storage node.) The consumer executes no operation (NOP) as

we are only interested in the transfers needed to move dependencies. Each consumer

receives 30GB of data from 11 producers. The hardware configuration of the cluster

is as described in Section 1.3.

Figure 5.6 shows the makespan of the workflow for varying configurations of the
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Figure 5.6. Time to complete

c© 2015 IEEE.

scheduler. The makespan includes the time to execute the producers, replicate de-

pendencies for the consumers, and execute the consumers.

This graph indicates that the most important factor in decreasing the makespan

is increasing the number of jobs in the scheduled state, i.e. fifo-0 to fifo-inf.

Arbitrarily limiting the focus of the scheduler to a smaller set of scheduled jobs

negatively impacted performance. Instead, it is better to allow the scheduler to

perform more transfers. Interestingly, from a time standpoint, this figure indicates

transfer slots have a minor impact on the performance of the workflows. However, we

will see that the use of transfer slots can have a significant impact on the bandwidth

of the cluster.

For the same workflow, Figures 5.7 and 5.8 show the bandwidth of the cluster

and individual transfers, respectively. The cluster bandwidth is the average aggregate

bandwidth of transfers. This view of the performance of transfers gives us key insights

into the ability of Confuga to replicate needed dependencies.
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Figure 5.7. Cluster Transfer Bandwidth
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Figure 5.8. Individual Transfer Bandwidth

Bars, whiskers, and stars are respectively average, standard deviation, and
maximum.
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Because the workflow is limited by the ability to transfer files between nodes, an

increase in the cluster bandwidth leads to a decrease in execution time. Increasing

the number of scheduled jobs via fifo-m has the most significant impact on the

cluster bandwidth, across all configurations of async-n, except async-inf. This

indicates that the parallelism gained by increasing the number of transfer slots (n =

1 to inf) has a strongly negative impact on transfer performance even when there

is only one scheduled job (m=1).

Individual transfer bandwidth is negatively impacted by an increase of concur-

rency of transfers on a storage node (async-n) or on the cluster (fifo-m). Despite

this, the utilization of the cluster network increases. This allows for the system as a

whole to accomplish more, even though individual transfers are slower.

Restricting the cluster to a single transfer slot per storage node, async-1, achieves

the best performance for all configurations of fifo-m. Allowing a single transfer to

saturate the link for a storage node maximizes the bandwidth of individual transfers

even as the cluster performs transfers for more scheduled jobs. This result indicates

that while transfer slots are a useful abstraction for managing transfers in the cluster,

increasing transfer parallelism at the storage node is not beneficial.

Overall, this experiment shows that a directed and controlled approach to man-

aging transfers on the cluster is essential for achieving performance. For example, en-

forcing a limit on transfers to one per storage node offered a 228% increase in average

cluster bandwidth and a 23% reduction in workflow execution time (fifo-inf/async-1

vs. fifo-inf/async-inf).

5.5.1 Reflection on Results

In our own clusters, we recommend using fifo-inf as a default. The reader may

wonder why this configuration was introduced when the early prototype already had

that behavior. Limiting the number of scheduled jobs happened to have an extremely
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positive impact on certain workflows with jobs that had large dependencies but short

execution time. Scheduling jobs on all of the storage nodes committed the head

node to distributing the dependencies to all storage nodes. When the cluster is

limited to a single scheduled job (fifo-1), the cluster makes small commitments

to replication. The time to completely copy dependencies on one storage node to

another is obviously faster than to distribute the same dependencies to the entire

cluster. Most importantly, when jobs finish more quickly than the time to replicate

the dependencies, a future job can be scheduled to replace the finished job. In effect,

the jobs are satisfied by a small working set of storage nodes.

I expect that future work will look at other mechanisms to achieve the advan-

tages of fewer scheduled jobs without limiting the cluster transfer bandwidth. Better

informed job schedulers like Quincy [42] will reschedule jobs instead of continuing

replication unnecessarily when jobs are satisfied by a smaller number of storage nodes.

Likewise, async-1 is used as a default in Confuga. The usefulness of multiple

transfer slots had limited application in numerous experiments. Some workflows

with several small files experienced better performance when the scheduler was able

to reduce latency between transfers3. A different mechanism, pull transfers, were

explored instead to reduce transfer latency in this case. This is discussed in the next

chapter.

5.6 Conclusion

I have introduced directed transfers used by Confuga to replicate files across the

cluster to fulfill job dependency requirements. Directed transfers are made possible

by Confuga exploiting the explicit job namespace descriptions from the workflow

and by Confuga limiting the consistency semantics for jobs. I have shown that this

3Recall that transfer slots also limit the number of transfers to the storage node a job is scheduled
on. So async-1 will effectively serialize all replication to that storage node.
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mechanism of replication by the file system empowers the head node to control load

on the cluster and optimize transfers for efficient disk and network utilization.

We will continue to show that the use of directed transfers has a defining impact

on Confuga to control load on the cluster in the face of many types of workflows.

The next chapter introduces pull transfers which does a comparative and cooperative

analysis of the two transfer strategies.
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CHAPTER 6

BALANCING DIRECTED AND UNDIRECTED TRANSFERS

6.1 Introduction

Next we will move on to discussion of techniques for managing transfers within

an active storage cluster file system. In the context of executing scientific workflows,

we will see that this is a first order problem that must be addressed in the design of

the system.

Confuga is built around the idea of leveraging the job namespace to achieve a

stable system. While typical distributed file systems must be designed to support

runtime access to any file at any time, Confuga is able to scope job visibility of the

global namespace to the job’s own defined subset. This idea is fundamental to the

design of Confuga. Requiring the declaration of the job namespace allows Confuga

to unobtrusively eliminate dynamic transfers by jobs and plan the replication of all

job dependencies. This management of transfers empowers Confuga to control load

on the cluster.

In this chapter, we will begin by introducing another classification of transfers.

Undirected transfers resemble more traditional file transfers where the job fetches

missing files itself. Confuga implements this using pull transfers. Pulls are used by

the head node to selectively off-load transfer scheduling and management to storage

nodes when a controlled distribution has fewer benefits.

Next, we will examine the comparative benefits of using pushes and pulls to

manage transfers within the cluster. While push transfers allow the head node to
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control network and disk load on storage nodes, pulls may be used to selectively

off-load transfer scheduling and management to storage nodes when a controlled

distribution has fewer benefits. This work finds there is a balance to strike between

pushes and pulls: the careful use of pull transfers can avoid inefficiencies introduced

by centralized management of transfers. This chapter will show:

• Pushes enable full disk and network utilization of storage nodes. Load control of
transfers can allow for an efficient spanning tree distribution that optimally dis-
tributes files in parallel. Using push transfers, Confuga achieves a 77% speedup
over unmanaged replication via pulls. (Section 6.4)

• Replicating several large dependencies reduces the mutual interference pulls
suffer but performance is still unpredictable. On the other hand, push transfers
still eliminate all load instability caused by concurrent transfers in a predictable
way. (Section 6.5)

• When jobs have several dependencies that must be pulled, it is essential that
these transfers occur in a random order to avoid hot-spots. The effects of hot-
spots are usually only visible for larger files as pull transfers are more likely to
interfere. (Section 6.6)

• While push transfers allow for fast distribution of large files through struc-
tured and high bandwidth transfers, there is room to tolerate some interference
and hot-spots from pull transfers for small files. Push transfers for smaller
files do not give a justifiable improvement to distribution time when there is
pressure to transfer other larger files. Instead using pull transfers introduces
small amounts of interference but individual pull and push transfer bandwidth
is mostly unaffected. (Section 6.7)

I conclude in Section 6.8 with two representative bioinformatics workflows eval-

uated using the push and pull transfer mechanisms. Ultimately, we show that a

balance of the two mechanisms achieves optimal file distribution leading to 48% and

77% improvements over only push or pull.

6.2 Pull Transfers

Pull transfers are replica transfers which are executed by the storage node ex-

ecuting the job and prior to the execution of the job application. Pulls allow the
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Confuga scheduler to delegate transfer management to storage nodes. This frees the

scheduler to devote resources elsewhere but pulls may introduce load instability on

storage nodes. For example, several nodes may pull from the same replica simulta-

neously, with deteriorated performance. Additionally, as with push transfers, a job

may pull a file from another storage node executing a job.

Pull transfers resemble normal whole-file sequential reads in a typical distributed

file system. For example, a job opens the file, looks up an available replica, reads parts

of the replica, and then closes the file. In Confuga, pull transfers behave similarly but

differ in several important ways. First and foremost, a storage node does not decide

which files are pulled. The Confuga scheduler is free to perform push transfers for

some files and leave remaining dependencies to be pulled by the storage node. Second,

jobs do not and cannot initiate a transfer during execution. Pulls are performed prior

to application execution. Third, because the entire namespace is known, the Confuga

scheduler is free to perform replica lookups in batch prior to job dispatch.

Figure 6.1 shows an example of a job performing pull transfers. Pulls use the

getfile RPC [81] to fetch a copy of a replica from a remote storage node. Pulls are

executed as part of setting up the job sandbox by storage nodes.

Since Confuga knows the replicas on each storage node, it is able to write the

job description so that each input binds to either a replica on the storage node or

to one or more replicas on other storage nodes. For each input file without a local

replica, Confuga will include a set of randomly chosen remote replicas specified as

a list URLs [9]. The storage node will attempt to fetch each URL for the file until

success. The result is placed within the job’s sandbox. If a pull ultimately fails to

obtain the file from any of the possible replicas, then the job will abort. This failure

is responded to by the head node when the job is reaped by either creating a new

job or passing the failure up to the workflow manager. Listing 6.1 shows an example

job specification with pull transfers.
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Figure 6.1. Pull Transfers in Confuga

These are transfers performed by the job prior to executing the application. The
getfile RPC is used to fetch a replica from another storage node and place it in
the job sandbox. Pulls may include several storage nodes (depending on the file

replication factor) to alternatively fetch from. This allows the job to robustly handle
failed transfers or storage nodes by selecting a different source.

Confuga also stores the copy of the file saved in the sandbox as a new replica once

the job completes. This is done by adding an output file with the same task path in

the job’s file list. In Listing 6.1, ./finishjob.sh is saved in the replica namespace

just like other outputs. The purpose of saving these pulled replicas is to increase the

replication factor of hot files to avoid future transfers. Listing 6.2 shows the wait

status for the same job with the output file bound. Its interpolated serv path stored

./finishjob.sh in the storage node’s replica namespace and the file size is set.

The head node records the new replica with this information.
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1 {

2 " executable ":"/ bin /sh",

3 "tag ":" confuga :48 D70B144F39860470A80DDCD6367C4333A2A7D4 ",

4 " arguments ":["sh", "-c", "./ finishjob .sh 3909"] ,

5 " environment ":{" CHIRP_CLIENT_TICKETS ":"./. confuga .ticket "},

6 "files ":[

7 {

8 "binding ":" LINK",

9 " serv_path ":"/ users/pdonnel3 /. confuga /ticket ",

10 " task_path ":"./. confuga .ticket ",

11 "type ":" INPUT",

12 },

13 {

14 "binding ":" URL",

15 " serv_path ":" chirp :// disc02 .crc.nd.edu :9155/ users/pdonnel3 /. confuga /file/

D3FD3E767446768EAB13A93E40F5369F82EE4268 ,chirp :// disc10 .crc .nd.edu

:9155/ users/pdonnel3 /. confuga /file/

D3FD3E767446768EAB13A93E40F5369F82EE4268 ",

16 " task_path ":"./ finishjob .sh",

17 "type ":" INPUT",

18 "size ":382

19 },

20 {

21 "binding ":" LINK",

22 " serv_path ":"/ users/pdonnel3 /. confuga /file/%s",

23 " task_path ":"./ finishjob .sh",

24 "tag ":" confuga -file -pull",

25 "type ":" OUTPUT ",

26 },

27 ...

28 ]

29 }

Listing 6.1: Example Job with Pull Transfers

6.3 Evaluating Transfer Management

Now we will move on to evaluating Confuga’s use of push and pull transfers in

several workflows. These experiments will explore the benefits gained by controlling

cluster load through pushes or relaxing control through pulls. To do this, the ex-

periments are structured to stress the head node’s ability to replicate dependencies

across the cluster. The cluster hardware used in this chapter is the same as described

in Section 1.3.

This effort does not scrutinize the scheduling of jobs (i.e. assigning jobs to storage

nodes for execution) which achieves certain well-studied goals like fairness. Schedul-

ing (especially rescheduling) can minimize or eliminate data transfers but that anal-

ysis is beyond the scope of this work. Our concern in these experiments is how to

efficiently manage transfers once jobs are placed to minimize distribution time and
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1 {

2 "id":8,

3 " exit_code ":0,

4 " exit_status ":" EXITED ",

5 "status ":" FINISHED ",

6 ...

7 "files ":[

8 {

9 "binding ":" URL",

10 " serv_path ":" chirp :// disc02 .crc.nd.edu :9155/ users/pdonnel3 /. confuga /file/

D3FD3E767446768EAB13A93E40F5369F82EE4268 ,chirp :// disc10 .crc .nd.edu

:9155/ users/pdonnel3 /. confuga /file/

D3FD3E767446768EAB13A93E40F5369F82EE4268 ",

11 " task_path ":"./ finishjob .sh",

12 "type ":" INPUT"

13 },

14 {

15 "binding ":" LINK",

16 " serv_path ":"/ users/pdonnel3 /. confuga /file/

D3FD3E767446768EAB13A93E40F5369F82EE4268 ",

17 "size ":382 ,

18 "tag ":" confuga -file -pull",

19 " task_path ":"./ finishjob .sh",

20 "type ":" OUTPUT "

21 },

22 ...

23 ]

24 }

Listing 6.2: Finished Status of Example Job with Pull Transfers

storage node load.

The 2-stage Producer/Consumer workflow shown in Figure 6.2 is used to evaluate

Confuga’s ability to distribute dependencies across storage nodes for various scheduler

configurations. The function of the producers is to quickly generate the pool of

dependencies randomly across all storage nodes. Each consumer is assigned by the

scheduler to one of the available storage nodes and dependencies are replicated.

I note that a variation on this workflow is not included where consumers also

access files which are unique to their execution (i.e. not shared with other consumers).

This variation is generally uninteresting when analyzing push and pull configurations

because unique files are only replicated at most once, so therefore it is unlikely for

this to introduce significant contention or load.

These experiments limit each storage node to a single transfer slot. As discussed

in the previous chapter, this restricts storage nodes to participating in a single push

transfer at any given time. Based on the last chapter’s experiments, we found this
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Figure 6.2. Push and Pull Transfer Stress Test Experiment

This producer/consumer workflow is used to stress the Confuga cluster through
transfers of several dependencies. Each of the 25 storage nodes produce 1/25 subset
of shared dependencies. The scheduler then must completely distribute these files
across the cluster for 25 consumers (1 consumer per storage node), which execute

no operation.

Workflow Shared Dependencies:
Workflow A: 1·32GB file.
Workflow B: 25·32GB files.
Workflow C: 1·64GB, 2·32GB, 4·16GB, 8·8GB, 16·4GB, 32·2GB, 64·1GB files.

limit provided the best predictable performance for push transfers without impact-

ing global file distribution time. This chapter examines the use of pull transfers to

increase parallelism in other ways which do not involve the head node.

6.4 Spanning Tree Distribution

In this section we will test our hypothesis that using push transfers can help

control load on the cluster and improve file distribution time. Confuga performs load

management by limiting concurrent push transfers for a storage node via transfer

slots. This load management will result in a tree distribution of the file. The form

of the tree is determined by the transfer load on the cluster. Under conditions where

the file may be continually replicated using new replicas as they become available, a

spanning tree file distribution [81] develops.
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Figure 6.3. Spanning Tree of Push Transfers

Each push is a Transfer Job (TJ). One transfer slot per SN (n=1).
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This process is visualized in Figure 6.3. The Confuga scheduler allocates to each

storage node a single transfer slot which limits the storage node to one incoming or

outgoing transfer. A transfer job is dispatched by the scheduler which occupies the

transfer slot of the storage node it executes on and the transfer slot of its target. The

use of transfer slots allows the scheduler to control the number of pushes executing

in the cluster and to functionally create a spanning tree distribution for files.

We examine a workflow which requires the distribution of a single large file across

all storage nodes. This is done using Workflow A described in Figure 6.2, where all

consumers require a single shared 32GB file. We look at the two cases where the file

is distributed using push transfers or pull transfers.

Figure 6.4 shows the results. For “All Push” in (c), Confuga is visibly able to

achieve a spanning tree distribution of the 32GB file using push transfers. At the

start, node 1 pushes the file to node 3. At approximately 00:07, the replication

finishes and nodes 1 and 3 begin pushing to nodes 11 and 20. And so on. This distri-

bution methodology minimizes storage node load and maximizes individual transfer

bandwidth (“All Push” in (a)). On the other hand, using pull transfers causes all of

the storage nodes to näıvely herd the single source storage node hosting the 32GB

file (“All Pull” in (c)) and thus suffer from low individual transfer bandwidth (“All

Pull” in (a)).

Conclusion: Executing push transfers allows the scheduler to efficiently dis-

tribute large files while controlling load on the cluster. Storage nodes are able to

transfer files using the full disk and network bandwidth. Ultimately, centralized

management of transfers allows for an efficient tree distribution of files that maxi-

mizes transfer parallelism and minimizes contention. In this case, the file distribution

using push transfers benefited from a 77% speedup.
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(c) Transfer Density

Figure 6.4. Workflow A: Single File Spanning Tree Distribution

(a) Average Transfer Speed Histogram groups transfers by average transfer
rate and shows the total bytes transferred for each group.

(b) Cluster Cumulative Transfer visualizes the cumulative bytes transferred
across the cluster. The bisection-bw line indicates the maximum bisection transfer
bandwidth of the cluster, without saturating the cluster switch and limited by the

140MB/s disk bandwidth.
(c) Transfer Density visualizes the ongoing transfers for each storage node for the
duration of the workflow. Each row of the y-axis is a storage node in the cluster.

The height of each tic in each row indicates the number of ongoing transfers for the
storage node. The height of a storage node row is set to 10 concurrent transfers, so

some tics exceed the height of a storage node row during heavy activity.
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6.5 Concurrent Distribution of Multiple Dependencies

Next, we test that load control from push transfers improves file distribution

time even when there are more opportunities for transfer parallelism. We look at

a workload where the cluster must fully distribute several large file dependencies

across the entire cluster. Pull transfers in the previous workflow suffered because

all of the jobs were pulling from the same replica simultaneously, allowing for no

transfer parallelism. Here, we look at file distribution in the cluster when jobs pull

from several large dependencies. We expect this to be significantly different from the

previous Workflow A for two reasons: (1) the first push transfer for each of the several

dependencies can be performed concurrently; and (2) the load on individual storage

nodes by pull transfers is reduced because not all storage nodes are attempting to

pull the same dependency simultaneously. (That is to say, the storage nodes are

pulling dependencies in a random order. We look at pull ordering in Section 6.6.)

Workflow B expands on Workflow A by increasing to 25 · 32GB shared files.

This also requires all of the 32GB files to be replicated across the entire cluster for

each consumer job. Each file is replicated 24 times so the cluster needs to transfer

approximately 20TB of data during the course of the workflow. Again, we run the

workflow with two configurations: all push and all pull transfers.

Figure 6.5 shows the results for Workflow B. The distribution time for push and

pull is virtually the same. The spanning tree distribution used by push transfers

has negligible impact because pulls also benefit from transfer parallelism via multiple

dependencies. The aggregate cluster bandwidth for both configurations is constant

except for a long tail (b). Pulls do marginally worse due to periods of storage node

contention resulting in lower transfer bandwidth (a).

On the other hand, push transfers deliver consistently higher bandwidth com-

pared to pulls by eliminating contention (a) but this does not lead to a significant

improvement in distribution time. Because of the odd number of consumer jobs (25)
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(b) Cluster Cumulative Transfer
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(c) Transfer Density

Figure 6.5. Workflow B: Multiple File Concurrent Spanning Tree
Distribution

(a) Average Transfer Speed Histogram groups transfers by average transfer
rate and shows the total bytes transferred for each group.

(b) Cluster Cumulative Transfer visualizes the cumulative bytes transferred
across the cluster. The bisection-bw line indicates the maximum bisection transfer
bandwidth of the cluster, without saturating the cluster switch and limited by the

140MB/s disk bandwidth.
(c) Transfer Density visualizes the ongoing transfers for each storage node for the
duration of the workflow. Each row of the y-axis is a storage node in the cluster.

The height of each tic in each row indicates the number of ongoing transfers for the
storage node. The height of a storage node row is set to 10 concurrent transfers, so

some tics exceed the height of a storage node row during heavy activity.
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and each storage node having a single transfer slot, only 12 transfer jobs can be

scheduled at a time. This limit on push transfers leads to the long tail at the end

of the distribution and several transfer gaps visible in “All Push” in (c). Addition-

ally, the spanning tree distributions for all of the dependencies do not progress in

lock step. Due to random factors and opportunistic scheduling, some files will finish

distribution much earlier in the workflow.

Conclusion: This workflow shows that random pulling of large dependencies

across the cluster can achieve comparable performance to structured push transfers.

Even so, the pull transfer bandwidth suffers in unpredictable ways. This makes it

more difficult for the head node to predict transfer load on storage nodes. Addition-

ally, the hot-spots on the cluster introduce more opportunities for transfer and job

failures. Altogether, this makes pull transfers less attractive for distribution of large

files.

6.6 Execution Order of Pull Transfers

We will now examine how the execution order of pull transfers order can lead to

unanticipated load, causing extreme transfer slow downs. This arises from a common

situation in workflows where a group of jobs have one or more shared input file

dependencies. These dependencies must be distributed across the cluster as new

replicas to support parallel execution of jobs. An unexpected problem is that the

order of the pull transfers has a significant impact on reducing contention. If storage

nodes perform pull transfers for common input files in the same order – frequently

the case when executing a workflow on the cluster – then the storage node hosting

the first dependency will suffer uncontrolled load.

To evaluate this, we use the same Workflow B used in Section 6.5 but with a

deterministic pull ordering (the order used by the workflow manager specifying the

jobs). So each consumer job will pull its dependencies in the same order. We are only
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interested in the behavior of the workflow and cluster for pull transfers. For com-

parison, we include the results of previous experiment which used randomly ordered

pulls, with axis ranges adjusted if appropriate.

Figure 6.6 shows the results of the experiment. The transfer density of the cluster

in (c) is the most telling figure of this experiment. It shows each storage node’s trans-

fer activity within the cluster across the duration of the workflow. For a deterministic

pull ordering, some storage nodes (beginning with node 20) suffer debilitating trans-

fer load because they host the replica first pulled by other jobs. In contrast, the

random ordering has more uniform transfer load across the duration of the workflow

with only a few relatively small hot-spots.

The deterministic ordering has the largest impact at the beginning because the

first pulls are finished incrementally, not together. Once finished pulling the first

dependency from node 20, jobs move on to pulling the next dependency from node

12. As some jobs get ahead of others in progress, there are fewer instances of extreme

load on storage nodes. This is also indicated in the aggregate cluster bandwidth

(derivative of cumulative) in (b) where there is a slower ramp up in the first 5 hours

of the workflow.

Conclusion: When jobs have several dependencies that must be pulled, it is

essential that these transfers occur in a random order to avoid hot-spots. Usually,

the negative effects of hot-spots are only visible for larger files as pull transfers are

more likely to interfere. We would expect push transfers to be preferred to avoid

this problem entirely but pull transfers may still be useful for larger files in certain

circumstances.

6.7 Scaling Pull Threshold

Our next experiment will test whether a balance of push and pull transfers can

be achieved, benefiting from load control of pushes and the increased parallelism
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(c) Transfer Density

Figure 6.6. Workflow B: Random vs. Deterministic Pull Transfer Ordering

(a) Average Transfer Speed Histogram groups transfers by average transfer
rate and shows the total bytes transferred for each group.

(b) Cluster Cumulative Transfer visualizes the cumulative bytes transferred
across the cluster. The bisection-bw line indicates the maximum bisection transfer
bandwidth of the cluster, without saturating the cluster switch and limited by the

140MB/s disk bandwidth.
(c) Transfer Density visualizes the ongoing transfers for each storage node for the
duration of the workflow. Each row of the y-axis is a storage node in the cluster.

The height of each tic in each row indicates the number of ongoing transfers for the
storage node. The height of a storage node row is set to 10 concurrent transfers, so

some tics exceed the height of a storage node row during heavy activity.
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of pulls. We use the pull threshold – the maximum file size for pull transfers – to

achieve this balance. While push transfers allow Confuga to prevent debilitating load

on storage nodes as shown in previous experiments, they come with costs. Setting

up push transfers requires several round-trip communications with the head node

and incurs the cost of setting up a transfer job. Push transfers also force a tree

distribution when the effort may not be justified (e.g. for smaller files). On the other

hand, pull transfers require minimal head node involvement because the head node

includes with the job a list of potential storage nodes to pull from for each file. In

short, pushes control load on the cluster at the cost of increased overhead and work

for the scheduler while pulls decrease work on the scheduler at the cost of potential

hot-spots.

Workflow C evaluates varying the pull threshold such that the work moved from

push transfers to pull transfers linearly increases as the pull threshold doubles. This

workflow defines shared dependencies 64 · 1GB, 32 · 2GB, ..., 2 · 32GB, 1 · 64GB.

So each job requires 448GB of data. Each file is replicated 24 times (25 replicas for

25 jobs), resulting in 10.5TB transferred over the course of the workflow. The pull

threshold is scaled from 0GB (all push transfers) to 64GB (all pull transfers). As

we double the pull threshold, the amount of data moved by pull transfers increases

by a constant 64GB per job (1.6TB for all jobs) but the number of push transfers is

halved.
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Figure 6.7. Workflow C: Average Transfer Speed Histogram

These graphs group transfers by average transfer rate and shows the total bytes
transferred for each group.
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Figure 6.8. Workflow C: Transfer Density

These graphs visualize the ongoing transfers for each storage node for the duration
of the workflow. Each row of the y-axis is a storage node in the cluster. The height
of each tic in each row indicates the number of ongoing transfers for the storage
node. The height of a storage node row is set to 10 concurrent transfers, so some

tics exceed the height of a storage node row during heavy activity.

104



 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=0MB: All Push

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=1GB: Pull <= 1GB; Push > 1GB

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=2GB: Pull <= 2GB; Push > 2GB

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=4GB: Pull <= 4GB; Push > 4GB

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=8GB: Pull <= 8GB; Push > 8GB

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=16GB: Pull <= 16GB; Push > 16GB

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=32GB: Pull <= 32GB; Push > 32GB

 1

 5

 9

 13

 17

 21

 25

00:00

01:00

02:00

03:00

04:00

05:00

06:00

S
t
o
r
a
g
e
 
N
o
d
e

Time (HH:MM)

PT=64GB: All Pull

105



Figures 6.7 and 6.8 show the results of this experiment. In general, increasing

the pull threshold causes the cluster to be more loaded with concurrent transfers. As

more pulls replace pushes, the time span of managed load arising from push transfers

(1 transfer per node) overlaps with the uncontrolled load of pulls (greater than 1

transfer per node). Despite the increased load, using pulls for the smaller files in the

workflow leads to significant distribution time improvements despite reduced transfer

bandwidth.

Figure 6.7 shows that the introduction of pull transfers can reduce the effectiveness

of push transfers. As the pull threshold increases, the push transfers begin to have

similar performance to pulls. This is caused by contention for the storage nodes’

network and disk bandwidth. Even so, with a heavily loaded cluster the push transfers

can have a positive effect on the distribution time. The controlled distribution of the

larger files benefits from the parallelism of the tree distribution as well as fewer

disk buffer cache misses because there is only ever a single transfer reading the file

sequentially.

Additionally, the time taken by the head node to manage smaller transfers may

take longer than the time to pull the files from a single source. For PT=1GB in

Figure 6.7, the bandwidth for several individual pull transfers suffers due to con-

tention and inefficient distribution of the files. Even so, using pulls for the 1GB files

avoids stalls caused by slow pushes and allows parallel distribution of the smaller files

alongside of the pushes. Consequently, the distribution time for PT=1GB gives a 12%

improvement over only push transfers.

Figure 6.8 shows the transfers executing in the cluster, visualizing hot-spots.

These graphs also help show the two transfer modes (push and pull) used to replicate

job dependencies. Generally, the beginning of the pull transfers is indicated by stor-

age nodes having increased concurrent transfer activity as jobs begin simultaneously

pulling the replicas from the same storage node. Note that jobs do not begin
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pulls in lockstep. While most jobs begin pulls at roughly the same time, some jobs

may start pulls much earlier once the scheduler has finished push transfers for the

dependencies larger than the pull threshold. This is especially noticeable for PT=32GB

because the node hosting the 64GB dependency – the only dependency which will

be pushed – can start its job without delay. The first consumer job is immediately

scheduled on and dispatched to storage node 20 hosting the 64GB file. That job

then begins by pulling all of its missing dependencies which causes the short transfer

activity visible on the other storage nodes (the small tics from 00:00 to 00:30). After

the second consumer job is scheduled to node 25, a push transfer is scheduled on

storage node 20 which replicates the 64GB dependency to storage node 25. In effect,

this transfer job is replicating the 64GB file to node 25 while the first consumer job

is pulling its dependencies. The first 64GB push transfer finishes at 00:30 and the

last at 02:21. The last 3 hours of the workflow are occupied by pulls.

As the pull threshold is increased, the head node has fewer files it needs to push.

This will cause the cluster to be underutilized because a few large pushes delay all

other transfers. This is indicated in the transfer gaps visible at the beginning of

the workflows for PT=8GB, PT=16GB, and PT=32GB. At these thresholds, there is an

increasingly smaller pool of files to push. For PT=8GB, there are 7 files which must be

pushed: 4 · 16GB, 2 · 32GB, and 1 · 64GB.

Supporting multiple large concurrent transfers also puts pressure on storage node

virtual memory. The disk buffer cache is unable to support the simultaneous access

forcing the kernel to drop pages and perform disk seeks. For our systems with 32GB of

RAM, this is especially noticeable when the pull threshold is increased from PT=16GB

to PT=32GB. The distribution time increases by 40%. During our analysis, we have

observed that pull transfers form groups riding the buffer cache as pages load from

disk. This is indicated in the below Figure 6.9 which shows the two nodes (18 and

25) hosting the 32GB files which are pulled for PT=32GB. There are several groups of
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pull transfers for both storage nodes which finish together as the last pages of the

32GB file are read. For example, storage node 25 had five pull transfers complete in

the span of a second at approximately 05:15.

 0

 2

 4

 6

 8

 10

 12

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

C
o
u
n
t

Time (HH:MM)

Active 32GB Transfers

SN 18
SN 25

Figure 6.9. Workflow C: Active 32GB Pull Transfers for 32GB Pull
Threshold

This graph shows the groups of pull transfers that are delayed together by disk seeks,
resulting in periodic sharp drops in active transfers.

When there are several transfers with reads satisfied by the kernel’s buffer cache,

we would expect a proportional sharing of network bandwidth. This would allow

transfers to progress independently but slowly. However, when the buffer cache can-

not satisfy all of the files being transferred, we observe significant slowdowns. This

suggests the buffer cache should be taken into account by the head node when plan-

ning transfers. Generally, the head node should manage this by using one-at-a-time

push transfers which benefit from sequential reads or by limiting the net file sizes of

concurrent transfers.

Conclusion: This workflow shows that while push transfers allow for fast distri-
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38GB

Figure 6.10. IALR Workflow

Jobs are circles and files are boxes. See text for workflow description.

bution of large files through structured and high bandwidth transfers, there is room

to tolerate some interference and hot-spots from pull transfers for small files. Push

transfers for smaller files do not give a justifiable improvement to distribution time

when there is pressure to transfer other larger files. Instead using pull transfers intro-

duces small amounts of interference but individual pull and push transfer bandwidth

is mostly unaffected.

6.8 Case Study: Bioinformatics

We have evaluated the performance benefits of balanced push and pull transfers

in the context of two bioinformatics workflows: iterative alignments of long reads [77]

(which we shorten to IALR in this section) and Burrows-Wheeler Aligner alignment

(BWA) [48] .

The IALR workflow is a simulation of a new method that iteratively compares

PacBio reads to improve a target genome using locality sensitive hashing for fast

updates. The workflow is composed of 26 jobs and, like BWA, begins by splitting a

genome database of 255MB size into 25 parts. This workflow also has a shared 38GB

database of PacBio reads which is required by all 25 jobs performing comparisons

because reads that do not align at the start might at completion once two reference

sequences are joined and/or updated during execution. The workflow is visualized in
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Figure 6.10.

The BWA workflow aligns a number of smaller fragments, or reads, to a reference

genome. It is composed of 826 jobs, beginning with a 274 way split of two query read

databases each 3.1GB in size. A 265MB reference database is also shared by all jobs.

The biological purpose of this specific alignment workflow was to uncover differences

in sequenced individual mosquitoes such as single nucleotide polymorphisms (SNPs)

relative to reference genomes. Full details are in [28]. The workflow is visualized in

Figure 6.11.

Table 6.1 summarizes the results of running both experiments while varying the

pull threshold. The third column “Time” is the workflow execution time including

any transfers. The fourth column “Total Transfer Time” is the cumulative time

in seconds for all transfers (push or pull) not including setup overhead or latency.

Figures 6.12 and 6.13 show the detailed graphs of transfers as with the previous

experiments.

As expected, the IALR workflow benefits greatly from centrally managed push

transfers for the 32GB dependency. This enabled a spanning tree distribution across

all the nodes and eliminates node instability, indicated by Figure 6.12b for “All Push”.

The net result is a reduction in the workflow time-to-complete by 48% from all pulls

and an order of magnitude reduction in time spent doing transfers. Because the other

transfers have such a small impact compared to the 32GB dependency, there is no

significant difference between 256MB pull threshold and all pushes.

The BWA workflow processes several hundred multi-megabyte files which must

be distributed across the cluster for parallel execution. The majority of these files

are produced from splits of the two 3.1GB queries by the first job. In this situation,

using only push transfers leads to significant slowdowns as push transfers are executed

serially on the storage node which performed the split (due to its single transfer slot).
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TABLE 6.1

BIOINFORMATICS WORKFLOWS

Experiment Transfer Method
Time

(hh:mm:ss)

Total Transfer

Time (s)
Pushes Pulls

IALR

Push All 01:52:00 8891.75 97 0

Auto; PT=256MB 01:52:13 8976.17 24 74

Pull All 03:38:16 163802.00 0 96

BWA

Push All 03:33:05 364.34 1946 0

Auto; PT=256MB 00:49:04 44713.10 25 5991

Pull All 01:11:19 77975.30 0 6244

So while the all push configuration minimized the number of transfers (1964 pushes)

and the total time executing transfers (364.34s), the serial execution of push transfers

and overheads introduced by centralized management severely impacts performance.

On the other hand, the use of pulls resulted in a significant improvement in

workflow time, despite pulls being less efficient (77975s spent doing transfers vs.

364s) and suffer poor bandwidth (Figure 6.13a for “All Pull”). Limited use of push

transfers on larger shared inputs results in a performance improvement of 31% over

only pulls and 77% over only pushes. The 256MB pull threshold allows the efficient

distribution of the 265MB shared reference genome while freeing up resources up on

the storage node which split the queries.

Conclusion: These two bioinformatics workflows show that a balanced use of

push and pull transfers reduces time to distribute dependencies for real workloads.

Indeed, the two workflows experienced different worst-case behavior depending on the

transfer method. However, a hybrid approach to managing transfers in the cluster
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achieves as-good or better performance than only using a single methodology while

eliminating common load instability.
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Figure 6.11. BWA Workflow

Jobs are circles and files are boxes. See text for workflow description.
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Figure 6.12. IALR Workflow: Push and Pull Transfer Comparison
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Figure 6.13. BWA Workflow: Push and Pull Transfer Comparison
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6.9 Conclusion

This chapter explored the performance impacts of two data distribution mecha-

nisms, push and pull, used for replicating data dependencies in scientific workflows.

It was shown that controlled distribution through push transfers can eliminate typi-

cal load instability caused by large common dependencies of workflow jobs. Despite

the success of push transfers, delegating transfer management to the storage node

through pull transfers still has application. While push transfers allow for fast distri-

bution of large files through structured and high bandwidth transfers, there is room

to tolerate some interference and hot-spots from pull transfers for small files.

Push transfers for smaller files do not give a justifiable improvement to distribution

time when there is pressure to transfer other larger files. Instead using pull transfers

introduces small amounts of interference but individual pull and push transfer band-

width is mostly unaffected. Ultimately, a balance of the two approaches achieves

optimal file distribution. This is exhibited in two bioinformatics workflows where a

careful balance of the two mechanisms leads to 48% and 77% reductions over only

push or pull.

The released version of Confuga defaults to a pull threshold of 256MB. Through-

out our experiments, this threshold offered a good balance between the two transfer

mechanisms. Still, I see this default only as a safe starting point. I expect that

some workloads may do better for other thresholds. Indeed, it may be advantageous

to allow workflows to specify a threshold for its set of jobs. Confuga may use that

threshold or, if it is not considered sane, use its own.

Future work might explore how to parallelize the push and pull transfers for a job.

Currently a job performs pull transfer prior to exec of the job’s executable. It may

be advantageous to schedule a separate transfer job which performs the pulls so that

it may execute in parallel with pushes. Additionally, executing the pull transfers

in a separate job allows the new replicas to become visible earlier and usable for
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new transfers. I believe this mechanism would work best for smaller files which can

cheaply fly under the radar of larger transfers.
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CHAPTER 7

CONCLUSION

Scientific computing continues to be inundated by “big data”. Sensors create ter-

abytes of raw data, simulations are written with finer time-scales and proportionally

sized outputs, etc. While scientists have been trained to deploy workflows on the

Grid or a cluster, today’s workflow execution frameworks have struggled to manage

large data sets that workflows increasingly depend on. Some have turned to tailored

solutions based on structured models like MapReduce [20] but not all workflows are

easily ported to these systems.

While getting and constructing large clusters is relatively easy in today’s world,

the issue of getting data to the execution site (or the reverse) remains a significant

problem. I have proposed an active storage cluster file system which considers data

distribution a first order problem. Current distributed batch execution schedulers

must confront the problem of data locality and data movement to achieve scalable

and stable systems. This work has argued that sufficient structural information

already exists in scientific workflows to make this possible and has demonstrated

a robust solution. The ultimate result is the continued applicability of scientific

workflows represented as a directed acyclic graph of tasks chained together by input

and output files.

This work introduced the design of an active storage cluster file system that takes

advantage of the structural information available in scientific workflows to achieve

system stability and high performance. Using the workflow description, it is possible

to scope the access of jobs to eliminate dynamic file access and manage transfers
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between storage nodes. The cluster is able to avoid common load instability arising

from “hot” data by replicating files as needed.

Connecting a traditional workflow manager to an active storage batch execution

platform requires careful and explicit management of namespaces. I have shown that

it is necessary to setup a mapping between the workflow namespace and the job

namespace. This mapping represents a contract between the batch system and the

workflow manager which isolates jobs from the workflow namespace. Relying on this

contract allows the batch system to perform all metadata interactions before and

after executing a job.

Unlike traditional distributed file systems which must support dynamic file access,

the use of the namespace mapping also empowers the file system to direct all transfers

within the cluster. This managed approach to transfers allows the cluster to avoid

common load instability caused by hot replicas and to limit storage node transfers

to optimize for performance. I have introduced two tuning knobs the cluster can use

to achieve these goals: transfer slots and concurrent job scheduling constraints.

This work concluded with a study of using traditional undirected transfers to

limit any negative aspects of centrally managed directed transfers. It was shown

that while directed transfers allow for timely and robust distribution of large files

through structured and high bandwidth transfers, there is room to tolerate some

interference and hot-spots from undirected transfers for smaller files. Ultimately, a

balanced approach of the two strategies allows the cluster plan the distribution of

job dependencies to achieve high performance without introducing load instability.
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7.1 Reflection

7.1.1 Scoping Access to Data

Traditionally, operating system kernels have used namespaces to join resources

into a coherent view of the system. UNIX enabled mounting multiple file systems

on a virtual file system tree. LOCUS [86] and Plan9 [61] went a step further by

placing numerous process resources into this same tree. For Plan9, this enabled the

distributed system to resolve access to resources based on where the process was.

This powerful idea of scoping the resources of a process is taking hold again in

data-intensive computing; although, its appearance looks very different and limited.

In MapReduce [20] for example, defining the file and access via a structured compu-

tation allowed powerful and specific optimizations.

On the other hand, Confuga was able to take advantage of the explicit namespace

already defined in scientific workflows. While these specifications were originally used

to define the files which must be moved from the submission site to the execution

site, they can easily be applied as a restricted namespace which scopes access to

the workflow namespace. The use of an explicit namespace for all resources allowed

Confuga to perform numerous optimizations which were the study of this work. These

optimizations include batched metadata operations, eliminated dynamic transfers,

and planned directed transfers.

7.1.2 Joining the Batch and File Systems

As with single machine software, it is often convenient to break distributed sys-

tems into pieces with dedicated responsibilities. Early on, file systems were an easy

target. This proved convenient for fast development and simpler integration but we

have unfortunately lost control of critical information and control in the process.

Finding, moving, and replicating data is a recurring problem in distributed sched-
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ulers.

Confuga shares the perspective of other big data systems like Hadoop that effec-

tive data-locality is achieved by joining the batch system and the file system: the

file system is able to respond to data demands through replication and place jobs ac-

cording to data-locality. A guiding principle of this work is that the file namespace is

part of the picture in scheduling decisions and must be considered to achieve locality.

7.1.3 Applicability in other Storage Systems

The optimizations Confuga performs are not completely limited to its architec-

ture. Other distributed file systems would benefit enforcing an explicit namespace

with workflow consistency semantics. For example, the Ceph [88] distributed file sys-

tem could benefit from batching metadata operations despite the distributed meta-

data server configurations it operates with 1. Enforcing read-on-exec and write-on-exit

consistency semantics would still eliminate most metadata access which is a persistent

problem for POSIX-compatible distributed file systems.

Managing locality of multiple dependencies remains a challenging problem for

existing distributed file systems but it is solvable. The preferred mechanism for

resolving concurrent access to large files is through reactive caching [4, 19]. However,

I would suggest it is also possible to manage this cache in a more controlled way by

allowing a scheduler direct control over transfers within the cluster. The benefits of

directed transfers are clear when there are large dependencies required by jobs.

1Although, currently Ceph suggests limiting metadata servers to one due to certain bugs.
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