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Abstract—DeltaDB is a model for a database consisting of
records with no fixed schema whose entire history is captured
over time. It is designed to support efficient queries against
the current state of the database, any point in the history of
the database, and historical data aggregations over time. In
this paper, we present the DeltaDB data model, the associated
query algebra, and highlight the fundamental query optimization
concerns. To gain experience with the DeltaDB model, we have
created a single-node implementation of the database and used it
to collect one year’s worth of monitoring data from a distributed
software system, reducing over 5TB of snapshots into 11GB
of log data. We give examples of novel types of queries that
exploit the time-varying nature of the data and evaluate their
performance. We conclude with a discussion of how the single-
node implementation will serve as the building block for a future
distributed implementation.

I. INTRODUCTION

DeltaDB is a model for a database consisting of records with
no fixed schema whose entire history is captured over time. It
is designed to support efficient queries against the current state
of the database, any point in the history of the database, and
historical data aggregations over time. DeltaDB is suitable for
datasets such as scientific data repositories, computer system
monitoring, and sensor networks [1], where the data schema
is likely to evolve, and the time-variant nature of the data is
a primary concern.

Historically, relational databases have been implemented
using the current state as the primary storage format, relying
on fixed field widths to allow for updating of values in place.
In such a scheme, a small log is often added to improve update
performance or to implement transactions. The efficiency of
queries is improved by adding indexes in the form of additional
tables that must be updated along with the primary data.

DeltaDB takes a different approach. Because the time-
varying nature of the data is the primary concern, the log of
updates is the primary data structure in the database. Append-
ing to a log does not require fixed field widths, which enables
schema-free data with no declaration of fixed field widths in
advance. In the manner of other big-data systems, acceleration
of queries is accomplished by the liberal application of parallel
hardware, rather than by the construction of indexes against
the primary data structure.

Our design for DeltaDB begins with a description of the
data model and the logical log. We describe a time-variant
algebra that is similar to the relational algebra but adds
several operators necessary for dealing with time-variant data
and aggregating across both time and space. We follow with

examples of how common queries in the form of a calculus
are mapped to the algebra.

To gain experience with the DeltaDB data model, we have
created a single-node implementation (LibDeltaDB) and used
it in production to record the vital statistics of servers in
a distributed system over the course of one year, recording
over 193 million updates and reducing over 5.2 TB of time
variant data down to 11.2GB of logs. While the amount of data
collected by this prototype is modest compared to other big-
data systems, it has allowed us to experiment with the DeltaDB
query model and understand the performance implications of
various query forms.

We conclude with a sketch of how DeltaDB could be used
to implement a much larger distributed database system where
the single-node LibDeltaDB serves as the building block for
each node in the system. By partitioning and replicating the
records across multiple instances of LibDeltaDB, the same
update and query semantics can be achieved through the proper
application of the DeltaDB algebra.

As an aside, much recent work on big data systems has
abandoned the traditional formalities that were developed and
applied to the relational database model [2]. (See Stone-
braker [3] for a comprehensive criticism.) We believe that these
formal tools – with modifications – remain effective tools for
designing, describing and implementing big data systems. As
we show below, the relational algebra is an effective tool for
expressing how complex queries can be decomposed across
a distributed system while enabling a rational discussion of
correctness and efficiency.

II. DATA MODEL

Figure 1 shows the logical structure of a DeltaDB database.
A database consists of an unordered set of records each with
a unique key selected by the system. Each record contains
a set of attribute-value pairs with no fixed schema. JSON
is used for the external representation of records. The basic
update operations on the database are given in Figure 2.

DeltaDB is a schema-free database, by which we mean that
there are no enforced constraints upon the fields in each record.
Over time, the attributes of a record may be added or removed,
change value, or even change type from an atomic value, to
a list, then to a set. Obviously, the user of the database must
establish some degree of consistency in order to retain the
value of a dataset, but the database allows the schema to evolve
as needed.
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Attribute1 Value1

Attribute2 Value2
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Create({...}) returns 123
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Object121

Update(122, Attribute3, Value4)

Remove(122, Attribute1)

Attribute-Value Actions

Fig. 1. DeltaDB Data Model

// Create a new record, yielding the unique key.
Create( record ) returns key;

// Delete an entire record, given the unique key.
Delete( key );

// Update one attribute in an existing record.
Update( key, attribute, value );

// Remove an attribute from an existing record.
Remove( key, attribute );

Fig. 2. DeltaDB Update API

The database keeps the entire history of updates to every
record. When a record (or attribute) is removed, the removal
is noted, but the historical records remain. A snapshot is the
output of records at a specific point in time. A query against
the database can retrieve a snapshot, or a history that yields
the evolving state of selected records over time.

Conceptually, it is useful to think of a DeltaDB database
as consisting of nothing but a time-sorted log of changes or
deltas. Deltas that could be included in the log file include the
creation and deletion of objects, and the removal and update
of attribute-values. Also included in the log are timestamps
which indicate the wall clock time of following deltas until
the next timestamp. The order of events in the log is what is
causally significant – events with the same timestamp occur
when updates happened faster than the system’s clock update
interval. Figure 3 shows an example of a log consisting of four
deltas, and how the database and the corresponding snapshots
that could be viewed after each delta was applied.

By itself, a bare delta log is not an efficient query structure.
The state of any given record could potentially be spread
across the entire timespan of the log, if it was created near
the beginning, updated in the middle, then deleted at the end.
To reconstruct a snapshot of a record at any point in time, a
query would have to process the entire log from the beginning
until the desired timestamp was reached.

A realistic implementation of DeltaDB must make use of
a series of checkpoints which are simply stored snapshots.
Between each checkpoint is a delta log reflecting the sequence
of updates until the next checkpoint. This permits a query to
start at the checkpoint preceding the desired query interval,
and then end as soon as the ending timestamp is reached.
Changing the frequency of checkpoints allows one to exchange

storage space for query performance. In Figure 3, a checkpoint
frequency of 6 would only store Snapshots #1 and #3. If
Snapshot #2 were to be needed for a query, it would need
to be generated from Snapshot #1 and Delta #2.

III. QUERY ALGEBRA

To perform queries against DeltaDB, we define a query
algebra consisting of six operators, summarized in Figure 4.
While similar to Codd’s relational query algebra, the semantics
differ significantly to accommodate the time-varying nature
of the data. Each operator accepts a common data format as
input: a checkpoint giving the data state at the starting time
of the query, followed by a stream of deltas until the ending
time. The operators may be applied in any order to achieve
the desired query semantics or performance, except for τ and
ν which must be first and last, respectively.

Some operators must keep internal state, so that when a
delta arrives on the input, the rest of the corresponding record
is available to act upon. The amount of state maintained is
essential to understanding the inherent efficiency of a given
query. Reordering the operators may result in significant
gains in efficiency by reducing both state and communication
between operators.

Temporal Collector: τ(t1, t2) The temporal collector ac-
cesses the raw data on disk and emits a checkpoint of
the database state at t1 followed by a stream of all deltas
until t2. As noted above, the raw data may contain periodic
checkpoints, allowing τ to begin reading from a timestamp
preceding but close to t1.

Selection Operator: σ(expr) The selection operator eval-
utes a given expression (name=“John”) on every record in the
input stream. If the expression matches the record, it is passed
as output, otherwise it is discarded.

Two cases must be considered based on the attributes in
the expression. A static attribute is defined once at record
creation and never changes, while a dynamic attribute changes
throughout the lifetime of a record. If all attributes of interest
in the expression are static, then σ is stateless and simply
evaluates one record at a time independently. If any attribute is
dynamic, then σ must keep state equal to the input checkpoint,
apply deltas to its internal state, and re-evaluate the expression
after applying each delta.

Projection Operator: π(expr-list) For each checkpoint or
delta on the input stream, the projection operator evaluates its
expressions, deriving a respective checkpoint or delta for the
output stream. π must maintain the current state of each record
in the stream. Closely connected with the π are the reducers
φ and ψ, which summarize attribute values across time and
records respectively.

Temporal Reducer: φ(attr, func, time) The temporal re-
ducer summarizes the data from each record individually over
a given time-span. The first argument gives the attribute, the
second the reducing function, and the third the granularity for
partitioning time. The output of φ is a checkpoint followed
by a series of deltas at regular time intervals. If the time-span
is equal to the duration of the log, then all values would be
reduced to a single record on the output. The time granularity
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Snapshot #1
{1234:{
  “name”: “a.nd.edu”,
  “type”: “fileserver”,
  “total_memory”: 8000,
  “free_memory”: 5600,
  “client”: “h.nd.edu”
}}

Snapshot #3
{1234:{
  “name”: “a.nd.edu”,
  “type”: “fileserver”,
  “total_memory”: 8000,
  “free_memory”: 6100
}, 

1235:{
  “name”: “c.nd.edu”,
  “type”: “taskqueue”,
  “tasks_running”: 5,
  “tasks_complete”: 1
}}

Delta #4

Time: A B C D E F G H I J K L M

Snapshot #2
{1234:{
  “name”: “a.nd.edu”,
  “type”: “fileserver”,
  “total_memory”: 8000,
  “free_memory”: 5500,
  “client”: “h.nd.edu”
}, 
1235:{
  “name”: “c.nd.edu”,
  “type”: “taskqueue”,
  “tasks_running”: 1,
  “tasks_complete”: 0
}}

Delta #2
Create({
  “name”: “c.nd.edu”,
  “type”: “taskqueue”,
  “tasks_running”: 1,
  “tasks_complete”: 0
})
Update(1234, “free_memory”, 5500)

Snapshot #4
{

1235:{
  “name”: “c.nd.edu”,
  “type”: “taskqueue”,
  “tasks_complete”: 6
}}

Delta #1
Create({
  “name”: “a.nd.edu”,
  “type”: “fileserver”,
  “total_memory”: 
8000,
  “free_memory”: 5600,
  “client”: “h.nd.edu”
})

Delta #3
Update(1234, “free_memory”, 6100)
Update(1235, “tasks_running”, 5)
Update(1235, “tasks_complete”, 1)
Remove(1234,”client”)

Delete(1234)
Remove(1235, “tasks_running”)
Update(1235, “tasks_complete”, 6)

Fig. 3. Comprehensive Checkpoints and Deltas

Name Symbol Description State required
Temporal Collector τ(t1, t2) Select records in a time range. One checkpoint until start time, then one delta
Selection Operator σ(expr) Select records matching an expression. One checkpoint plus one delta
Projection Operator π(record-expr) Compute new values from input records. One checkpoint plus one delta
Temporal Reducer φ(attr, func, time) Reduce values within time spans One checkpoint plus all deltas during Time Span
Spatial Reducer ψ(attr, func) Reduce values from multiple objects One checkpoint plus one delta
Pivot Operator ν(attr-list) Convert to tabular format. One checkpoint plus one delta

Fig. 4. Time-variant Algebra Operators

is entirely independent of the frequency of deltas on the input
stream. If the output frequency is much smaller than the input
frequency, more output records will be generated than when
the output frequency is much larger.

The reducing function must be chosen with care, since
the number of deltas over a given time period could be any
arbitrary number (even zero) and are not necessarily evenly
distributed over time. Thus, COUNT and SUM are not likely
to be good temporal reduction functions, because they are
sensitive to the input delta frequency. However, functions such
as as MAX, MIN, AVERAGE, FIRST, LAST etc. are not
sensitive to update frequency.

As an example, φ(temp, PAVG, 60s) considers deltas for
the first 60 seconds. The values for temp are averaged pro-
portionally based on the percentage of seconds during which
each value was valid. That proportional average is streamed
out as a single value for temp. Then the operator considers
each following 60 second spans in order in the same manner.

Spatial Reducer: ψ(attr, func) The spatial reducer summa-
rizes all records at a given time for each time point in the input
stream. The output is a single summarized record for each
delta on the input stream. The function may be any common
reduction function such as MAX, MIN, SUM, AVERAGE,
COUNT, etc.. Because the set of objects in the database is
(spatially) unordered, the reduction function must not be order-
sensitive such as FIRST or LAST.

As an example, ψ(temp, AV G) would average the temper-
atures across all records in the database, yielding a stream of
average temperatures, computed each time any member of the
average was changed.

Pivot Operator: ν(attr-list) The pivot operator converts the
record data into a tabular form that is more readable and is
suitable for automated plotting. ν appears as the last operator
in the chain, or not at all. For example, ν(time,temp), would
produce a table with two columns – time and temperature –
with a row in the table for each delta on the input.

IV. QUERY OPTIMIZATION

Two main approaches can be taken in an attempt to improve
the basic operators defined above. One significant consider-
ation is the extent to which the types of arguments in the
selection operator can affect efficiency. Another consideration
is the order that operations are applied to minimize data
transfer and memory requirements. These two considerations
will be discussed below. Other optimizations are likely to exist,
but will not be addressed here.

A. Selection operator

Anticipation of attribute behavior within objects can prevent
streaming delays between operators.
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Fig. 5. Example of projection and reduction

Static attributes: These attributes are assigned a value
when the object is created and are never changed by a delta.
This property makes the selection operator more efficient
because evaluation of the expression (defining which objects to
filter) is complete when the object is first introduced. Since the
value will never change, evaluation of an expression involving
only static attributes will never change. The operator only
needs to keep track of which objects to filter.

Dynamic attributes: If the value for an attribute used
in the expression changes, the selection operator must re-
evaluate the expression for each delta. To do this, the operator
must maintain the state for each object. If the result of the
expression changed after applying the delta, the object needs
to be created or deleted in the output as appropriate.

Super-dynamic: A more expensive approach to dynamic
attributes could allow the user to eliminate an entire object if
the expression is false even once during the lifetime of the
object. This approach leaves the operator with two options:
1) Make two passes through the data, one to identify which
objects to include, and another to apply the selection, and 2)
Load all state into memory, and only start output until all
expressions have been evaluated at every delta. If this type of
query is absolutely necessary, some work might be done to
preprocess the data in order to make it possible to identify,
in advance, a list of object keys to include, thus preventing
streaming delays.

B. Order of Operations

The operators are designed to place no logical restriction
on the order in which they are applied. However, the order
in which they are applied can have a significant impact on
performance and scalability. Figure 4 enumerates the amount
of state each operator needs to store in memory.

A full projection based on only the attributes needed in
the final result could eliminate attributes needed to evaluate
later expressions. But in some cases a partial projection could
occur before a selection and the remaining fields could be
removed later on with a full projection. The projection operator
is not supported in most commercial database implementations
either [4], since the operator can be applied as needed as when
the desired output fields are specified.

The temporal reducer has a worst case when the time-span
is greater than or equal to the entire duration of the log. In this
case all state must be stored in memory. In the best case, with

a time-span of zero, this operator needs only a single snapshot
and a single delta in memory at a time.

The spatial reducer, on the other hand, is able to stream
results with every delta, so it always needs only a single
snapshot and single delta in memory at a time.

However, consideration of the example data in Figure 5
should also make it clear that reversing the order of the tempo-
ral and spatial reducers provides a different result. Therefore
the user may need control over which of these two operators
is performed first.

Figure 5 also illustrates the process of applying a pivoting
operator, temporal reduction, and spatial reduction. The piv-
oting operator would normally be applied as the last operator
in a query, but it is shown as if it was applied earlier, in this
case, to make the behavior of the reducers more clear.

V. SINGLE NODE CASE STUDY

We have created a single-node prototype of DeltaDB called
LibDeltaDB. The prototype consists of a C library which
implements the create, delete, update, and remove functions by
logging to local disk. A checkpoint file enumerates the state of
all records at the beginning of each day. The log data for each
day is stored in a separate file. We have implemented each
query operator as a separate Unix process. The various opera-
tors are piped together in order to implement complete queries.
This strategy offers acceptable performance for a single-node
implementation, and facilitates the distributed query structures
described in the following section.

To gain experience with LibDeltaDB, we have used it in
production for over a year to provide system monitoring
services for the Cooperative Computing Tools, a suite of
software developed at the University of Notre Dame. Briefly,
every service running in the distributed system sends periodic
messages to a central catalog server, recording the server
name, location, operating system resources, software version,
clients connected, and so forth. The services involved include
the Chirp [5] distributed filesystem and the Work Queue [6]
master-worker framework.

The catalog server uses LibDeltaDB to record updates from
services and provide real-time queries to system participants.
This enables tracking of where the software is installed,
what performance is achieved, and what versions are in use.
The current snapshot is cached in memory to provide rapid
response to the most common queries on the current state,
while the historical data is available to system administrators.
DeltaDB is well suited for this task, because it accomodates
the changes in schema that come with evolving software, while
at the same time facilitating historical analysis of the deployed
services for project management.

Figure 6 highlights some vital statistics of this instance of
DeltaDB. The service has been running for over one year,
generating 11.2GB in log files. A complete query can process
about 3.26 days of log data per second. On average, each
record in the database is updated every 255 seconds. There
are only 3 globally static attributes that are never updated in
any record: name, key, and address.
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Statistic Value
Average log data per day (bytes) 29,138,676

Average updates per day 530,139
Timestamps with deltas 76%

Average snapshot size (bytes) 216,273
Total number of attributes 89

Number of attributes in an object 7-56
Average number of attributes per object 24

Fig. 6. Statistics for Single Node LibDeltaDB
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Fig. 7. Snapshot storage tradeoff

A. Storage Tradeoffs

For queries involving only a portion of the data, periodic
checkpoints can have a significant positive impact on perfor-
mance. For any query, the ideal checkpoint would be one
just before the starting time of interest. Having a snapshot
for every second when the database state changes, however,
would require approximately 5.2TB per year.

But if checkpoints are less frequent, there is more log
data in between them. A single point query will have to
parse half of that log data on average. However, checkpoint
frequency can easily be adjusted to balance performance and
disk use. Figure 7 shows that with 1 snapshot per day, both the
space consumed by snapshot data, and the log data between
snapshots is small compared to the total log size.

If many queries involve a single point or small period of
time, more frequent snapshots could help query performance.
But at about 10 minutes between time stamps, the snapshots
would take up as much space as the log data itself.

B. Example Queries

Figure 8 gives some examples of time-based queries and
the equivalent query algebra. (Note the notional examples of
how these might be expressed in SQL, but a query language
has not been implemented on top of the query algebra.)

Query #1 summarizes all task queues at 15 minute intervals
over 1 year. 1 year of data is read from disk, starting on 1
Feb 2013. Objects with attribute ‘type’ not equal to ‘queue’
are filtered out. Then for each 15 minute span after the start
time, the highest value occurring during that span is computed
for the attributes ‘workers’ and ‘tasks’. Then, in each span,
the number of objects is counted (with ‘name,CNT’), and the
maximum values for ‘workers’ and ‘tasks’ are added together.
For each 15 minute time span, a row is streamed back to the
user with the three values described previously.

Example Query #1:
List the total number of queues, workers, and tasks at 15
minute intervals over the course of one year.

SELECT COUNT(name), sSUM(tMAX(workers)),
sSUM(tMAX(tasks)) WHERE type=queue

AT ‘2013-02-01 00:00:00’ PLUS 365 DAYS
BY SPANS OF 15 MINUTES

τ 2013-02-01@00:00:00 d365 |
σ type=”queue” |
φ m15 workers,MAX tasks,MAX |
ψ name,CNT workers.MAX,SUM tasks.MAX,SUM |
ν name.CNT workers.MAX.SUM tasks.MAX.SUM
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Example Query #2:
For each month of the year, list each project run in that month,
with the owner and number of tasks dispatched.

SELECT project, owner, tMAX(workers),
tMAX(dispatched), tMAX(tasks)

WHERE type="queue"
AT ‘2013-02-01 00:00:00’ PLUS 365 DAYS
BY SPANS OF 1 DAY

τ 2013-02-01@00:00:00 d365 |
σ type=”queue” |
φ d30 workers,MAX dispatched,MAX tasks,MAX |
ν project owner workers.MAX dispatched.MAX tasks.MAX

Example Query #3:
List the names of the file servers that were in operation on
February 3rd, 2013.

SELECT tLAST(name) WHERE type=fileserver
AT ‘2013-03-13 00:00:00’ PLUS 1 DAYS
BY SPANS OF 1 DAY

τ 2013-03-14@00:00:00 d1 | σ type=fileserver |
π name | φ d1 name,LAST | ν name.LAST

Fig. 8. Example Queries

Query #2 summarizes individual work queue status at 30
day intervals over 1 year. This query starts out the same as
the first one, but the time span is 30 days instead of 15 minutes.
Another difference is that without a spatial reducer the pivot
operator returns a row for each object before it moves on to
report the rows for the next time span.
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Query #1 Query #2 Query #3
Output Time Output Time Output Time

cat 11.2GB 1:13 11.2GB 1:13 63.8MB 0:0.30
τ 11.2GB 1:44 11.2GB 1:44 31.9MB 0:0.28
|σ 313MB 1:49 312MB 1:48 31.1MB 0:0.32
|π - - - - 34.7KB 0:0.35
|φ 40MB 1:49 56KB 1:48 29.4KB 0:0.34
|ψ 3.6MB 1:50 - - - -
|ν 1.5MB 1:51 12KB 1:52 9.3KB 0:0.35

Fig. 9. Performance of Example Queries

Query #3 simply lists file servers that were active on a
certain day. This query is no less complex than Query #2,
but faster because only one day is considered. Since the time
span is also one day, the result is a single row for each object
over a single time span.

C. Performance

Each of the three sample queries were executed on an i5-
3570 CPU at 3.4Ghz with 8GB of RAM and the data was
stored on a Seagate Barracuda ST500DM002. The size of the
checkpoints and logs (at over 11.2GB) is larger than the size of
RAM, so the data cannot be fully cached in memory. While in
this case we could procure more memory, we want to evaluate
the out of core case.

The ‘cat’ command was executed on the relevant log files
as a reference for the performance of the hard drive. Then
only the first operator was performed for each query while
space and time requirements were measured and recorded.
The results were sent to /dev/null for the time measurement,
and piped to ‘wc’ for the space measurement. Then the
following operators in each query were added one by one and
performance was again measured and recorded.

Figure 9 indicates that the bulk of each query is just
getting the data from disk. It is not unusual for Big Data
approaches to be mostly disk bound. The τ operator only
performs 44% slower than a blockwise read (using ‘cat’) with
no processing. The successive operators require a minimal
amount of additional time to perform their operations.

And so we conclude that this approach is mostly limited
by disk speed. Keeping each operator streaming to the next
one makes it so that by the time the last of the log data is
read from disk, most of the data before it has already been
processed to the end of the chain of piped operators. In this
manner, the query can be performed almost as quickly as the
necessary data can be read from disk.

VI. DISTRIBUTED DELTADB

DeltaDB can be implementation as a distributed system
in order to increase storage capacity, query load, and/or
availability beyond a single node’s capacity. We have not
yet built a distributed implementation, but in this section we
present the key design issues related to a distributed DeltaDB.

In the most straightforward implementation, a distributed
DeltaDB would consist of a head node and multiple storage
nodes. Each of the storage nodes would be implemented using
LibDeltaDB as the fundamental storage engine. Updates would
pass through the head node to the proper storage node, while
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Fig. 10. Operator distribution examples

Distributable
Operator Temporally Spatially

Selection (σ) For Static Always
Projection (π) Always Always

Temporal Reduction (φ) Partially Always
Spatial Reduction (ψ) Always Mostly

Fig. 11. Operator distributability

queries would be implemented by distributing the various
operators across the system, connected by network pipes.

The key design decision of how to distribute data across the
storage nodes naturally affects both update and query perfor-
mance. Temporal and spatial approaches may be considered.
In both cases, replication of data is necessary and desirable,
but does not affect the fundamental strategies.

As shown in Figure 10, queries against a distributed
database are implemented by distributing the query operators
across the storage nodes and the master node. The former
may be run in parallel, while the latter are serialized, so it
is clearly desirable to select a data layout that maximizes the
portion of the queries that are performed by the storage node.
An operator is considered distributable (see Figure 11) when
virtually all of the effort can be performed on storage nodes.

A. Temporal Distribution

Under temporal distribution, all data from a given time
range is stored together on a single node. (e.g. The checkpoint
and log for day 1 are stored on node 1, day 2 on node 2,
etc.) The mapping from time range to storage node could be
accomplished through consistent hashing techniques, or simply
storing a map at the master node. As the database increases
in size, capacity is easily increased by adding nodes without
requiring data redistribution.

Database updates are easily handled: the master simply
sends all updates to the currently active storage node, where
they are logged. However, this has the downside that update
performance under temporal distribution is no better than the
single node implementation.

On the query side, temporal distribution is most effective for
supporting queries that scan the entire time range supported
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by the database. In that case, a temporal selector can run
on every storage node of the system in parallel. If a query
only addresses a short time range, only the storage node(s)
representing that time will be addressed.

Selection Operator (σ): A selection operator is fully
distributable to individual nodes as long as the super dynamic
situation described in section 4.1 can be avoided. In that case,
storage nodes might be able to reduce network traffic by
applying the selection operator, but the head node would have
to perform the operation again to see if additional objects need
to be filtered. This underscores the importance of avoiding this
situation if possible.

Projection Operator (π): Projection is fully distributable
because it only needs to consider immediate attribute names.
It does not require knowledge outside of each creation of an
object or the update/removal of an attribute.

Temporal Operator (φ): If the time span boundaries in the
query happen to line up with the time period boundaries on
the storage nodes, then the temporal operator is distributable.
Otherwise inner time spans could be processed by the storage
nodes, but the partial time spans split across nodes must be
combined by the head node and processed there. In the worst
case, where the time span is infinite, no work can be performed
by the storage nodes.

Spatial Operator (ψ): This operator can be fully completed
on the storage node as long as all the previous operators were
performed on the storage node also.

B. Spatial Distribution
Alternatively, data could be spatially distributed across

nodes within the constraint that all updates to a given record
must be logged at the same node, so that operators applied to
that log have the entire history. The simplest spatial distribu-
tion strategy would be to hash on the unique key. Alternatively,
the master could hash on a static property of a record, such
as name or address in order to partition the data by content.
As with temporal distribution, consistent hashing techniques
applied in the master would allow for reconfiguration of the
system without data redistribution.

With spatial distribution, update traffic is distributed across
the system, offering the potential for increased update through-
put by multiple clients.

Under this distribution, the temporal range of queries no
longer has an effect on which storage nodes are needed for a
query. If the record key is used to distribute records, then all
nodes must participate in all queries. If the data is partitioned
by content, then the presence of a selection operator on a static
attribute will limit the set of nodes accordingly.

Selection Operator (σ): Because all the data for each object
is stored on a single node, the selection operator has access
to all the data it needs on the storage nodes.

Projection Operator (π): Projection is again fully dis-
tributable because it only needs to consider immediate attribute
names. It does not require knowledge outside of each creation
of an object or the update/removal of an attribute.

Temporal Operator (φ): Temporal reduction is fully dis-
tributable. Even for an infinite time span, all data for a given
object is available on a single storage node.

Spatial Operator (ψ): This operator is the most complex.
Take, for example, a situation where one node has only one
object matching the selection criteria, and another node has
many objects. Some of the spatial reduction operators are
clearly fully distributable, such as MIN, MAX, SUM, and
COUNT. For each of these operators, once the work has been
done on the storage nodes, the remaining work of combining
the results is trivial.

Performing an averaging reduction is a little more complex,
but can still be performed with minimal work after the
initial results. Sum and count operators can be pushed to the
individual nodes, aggregated on a master node, and then the
final result can be obtained simply by dividing the sum by the
count. A weighted average or some other specialized reducers
might not be as distributable however.

C. Implementation on MapReduce

The DeltaDB operators could be implemented in the
MapReduce framework to operate on these files. The same dis-
tributability of operators would apply as shown in Figure 11.
Using a single reducer in the final output would maintain the
time sensitive order of the results.

A few adjustments would need to be made to the file
structure of LibDeltaDB. Hadoop divides files into blocks for
distributed storage and processing. LibDeltaDB could keep
files below 64MB and put a checkpoint at the beginning of
each file to preserve consistency.

For the case study with temporal distribution, up to 2.189
days worth of log data would fit into each file with the
checkpoint data. This would make each file self contained and
capable of being processed completely in parallel.

With spatial distribution, the checkpoint would be smaller
because the state of fewer objects must be declared. For
the case study, the checkpoint is already insignificant in size
compared to the log data, but in a situation where there are
more objects and fewer updates, this difference would become
more pronounced. This points to spatial distribution as having
more potential for scalability.

VII. RELATED WORK

The concepts used to design DeltaDB and implement Lib-
DeltaDB are not new. The database attributes described in this
section are critical for DeltaDB. When viewed individually,
they are mostly available in other databases (see Figure 12).
But existing databases have not been designed to handle all
of them together.

Log-Only: Write-ahead logging (WAL) [7] is a common
approach in databases, i.e. MySQL, DB2, PostgreSQL [8],
MongoDB [9], BigTable [10], HBase, Cassandra [11], and is
similar to the journaling feature in file systems. The idea is to
get all data modifications saved to disk as quickly as possible
so that data loss is minimal in the event of a system failure. As
shown in the case study above, it can also be a very efficient
way to store data in terms of space consumed.

LogBase [12] retains a relational data model, but like
DeltaDB, it keeps the data permanently in this log and
performs queries directly on this data. Most other databases
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Multi-Version

Schema-Free
Log-Only

Oracle No No No No
DB2 No No Yes No
MySQL No Add No No
PostgreSQL No No Add No
MongoDB No Yes Yes No
Cassandra No Yes Yes No
HBase/BigTable No Yes Yes No
Oracle NoSQL No Yes No No
Oracle Workspace Manager No No Yes No
LogBase Yes No Yes No
TempoDB ? No Yes Yes
DeltaDB Yes Yes Yes Yes

Fig. 12. Databases with desired features

incur extra overhead by searching for another location for the
modification and storing it again there. The other location
is chosen in order to optimize certain performance charac-
teristics that each database is geared towards. For systems
where queries are a bottleneck, this can be appropriate. But
for systems where write-throughput is a bottleneck, this re-
ordering of data imposes a limit on throughput.

Schema-Free: The entity-attribute-value (EAV) model [13]
can be used to handle schema-free data in any relational
database. But it often leads to queries with inefficient multi-
attribute expressions. NoSQL databases, however, are designed
to handle schema-free data natively.

Oracle NoSQL is designed specifically for schema-free data,
but it is separate from their well-known database solution.
Custom storage engines for MySQL enable it to accept schema
free data [14] [15], but no official implementation exists.

Multi-Version: The main feature in ANSI/ISO SQL:2011
is support for temporal databases. IBM DB2 [16] has imple-
mented this functionality allowing multiple historic versions
of a record in addition to the current version. It also han-
dles proposed versions of a record that automatically take
effect at a specified time in the future. Oracle Workspace
Manager [17] has similar capabilities, and a package built for
PostgreSQL [18] enables temporal capabilities [19].

Any schema-free database could handle multi-version data
by building the version into the attribute names, but the
attribute names could quickly get confusing.

Temporal-Reduction: In an overview [20] of time-series
data solutions Chukwas, OpenTSDB, TempoDB and Squwk
are compared and TempoDB is recommended. TempoDB pro-
vides range rollups, which are similar to temporal reduction in
LibDeltaDB. However, it does not support attributes grouped
together into objects, and so cannot support spatial reduction.

Potential Features: In an open distributed system having
a history of changes can be helpful in identifying tamper-
ing [21]. Also, stream data bears some similarity to DeltaDB
and research in that area [22] [23] might be applied to optimize
LibDeltaDB queries. The “store locally, query anywhere”
paradigm used in GaianDB [24] would allow for elasticity
in a distributed DeltaDB.
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