
Regulating Traffic in a Crowded Cache:
Overcoming the Container Explosion Problem

Kevin Gao
University of California, Berkeley

Tim Shaffer (Advisor)
University of Notre Dame

Kyle Chard (Advisor)
University of Chicago

Abstract—Multi-user interactive computing services, such as
Binder, dynamically create and deploy software containers to
provide customized execution environments with required system
and language dependencies. Unfortunately, container creation
can be slow, making services unresponsive to users, while
caching leads to combinatorial explosion in the number of
containers due to the infinite possible combinations, versions,
code changes, and users. We analyze 13,946,918 Binder launches
and explore caching strategies that consider various features,
including package popularity, version stability, recent use, and
install time and size. We show that our methods can reduce total
storage consumption by 1–3% and creation time by 6–11% when
compared with a least recently used strategy.

I. INTRODUCTION

Binder [1] is a multi-tenant service that enables users to
execute a Git repository by providing an interactive interface
to the Jupyter notebooks contained in that repository. Binder
builds a custom container for every execution using specifica-
tions in the repository and the repo2docker tool. Unfortunately,
building containers can be time-consuming, with a lower
bound of several minutes to build with few dependencies. As a
result, services like Binder cache containers for short periods
of time to rapidly serve repeated invocations. However, in
practice, the Binder workload is so diverse (e.g., Binder logs
show 112,793 distinct repositories) that effective caching is
difficult.

In this paper we explore Binder workload traces that pro-
vision Python environments. We augment these traces with
additional features (e.g., container specifications, package in-
stallation times, and popularity) and explore various strategies
for reusing and caching containers under different constraints.

II. WORKLOAD TRACES

Binder published a workload with ∼14 million launch
records, over the period of 3 years. Each launch record
includes the time and target Git repository. We crawled the
target repositories and obtained all repositories that included
Python configuration files (i.e., pip and Conda). This resulted
in 33,987 repositories and 2,011,412 associated launches [2].

We subsequently augmented this dataset with the following
features for each Python package:

1) Install time and size. We developed a profiler system
that deploys an empty virtual environment, installs the
package, and records time and size. We repeated exper-
iments for each package ten times and take the median.

2) Popularity statistics including GitHub stars/forks and
downloads, obtained from PyPI, libraries.io, and Github.

3) Version lifetime by obtaining all releases from Conda or
PyPI and computing the average time between releases.

Fig. 1 shows the correlation between our collected features.

Fig. 1: Pairwise Relationships For Collected Factors

III. SIMULATION

We developed a simulator to explore different caching mod-
els. The simulator “plays” the binder workload and records
performance metrics (e.g., time to create containers, respon-
siveness to requests, cache space) under configurable cache
constraints (e.g., number of containers and cache size).

IV. CONTAINER SHARING

One way to reduce the number of containers and improve
cache performance is to share containers between invocations
for different repositories. We explored three models.

1) Baseline: No containers are shared. Requests must use
a unique container for each repository.

2) Identical: Repositories with the same packages may
share containers.

3) Contained: Repositories with a subset of packages from
another repository may share that container.

We further constrain container sharing to consider package
versions: containers may be incompatible when package ver-
sions are miss-matched. While this reduces opportunities for
sharing, it is needed to meet user expectations.

Fig. 2: Performance of different sharing models

Fig. 2 shows the time to create containers and their size with
these policies over the multi-year trace. The figure shows that
reuse can improve performance over the baseline by ∼5x. If
we impose a constraint on cache capacity (in this case 20
containers) we see improvement of ∼2x.

V. CACHING METRICS

We explore five metrics for each package. Versions: Av-
erage time between versions. Popularity: Average number of
stars and forks. Size: Total size on disk. Time: Total time to
install. Dynamic Count: An online approach that counts the
number of package invocations within a sliding window.

We evaluate caching strategies that order containers based
on each metric. Table I shows the average performance of each
strategy using our simulator and Binder trace. We compare
against a baseline least recently used (LRU) implementation.
Our results suggest that individually, LRU is best.

Metric Size (TB) Time (Hrs) Hit rate (%)
LRU 2.71 115.39 84.61
Dynamic 5.11 128.05 83.39
Size 4.90 123.25 83.47
Popularity 5.68 130.11 83.11
Time 4.75 119.37 83.84
Versions 5.89 134.26 82.75

TABLE I: Average cache strategy performance with cache size
limits of [2000, 4000, 6000, 8000, 10000] megabytes.

VI. WEIGHTED COMBINATION: CACHERANK

Without an obvious “best” metric, we combined metrics into
a single ranking metric (CacheRank), implemented as follows.

f o r met in m e t r i c s :
rk = Rank (met)
s c o r e += m e t c o e f f * (rk − mean (rk)) / s t d (rk)

This approach aims to normalize the different metrics’
scores, efficiently account for overlap, and utilizes input
weightings for the factors. We use random values from a
Gaussian distribution as parameters for our simulations. Fig. 3
shows the best performance at every cache size limit and the
improvement over LRU in terms of size, time, and hit rate.

VII. MRU PROTECTION

CacheRank weights the ranking of each container uniformly
throughout the cache. However, this is likely to be flawed
as the containers at the front of the cache (most recently

Fig. 3: Improvement over LRU for different cache sizes.

used, MRU) are more impactful proportionally to the least
recently used containers. To integrate this observation we
explored protecting the MRU containers in the cache. In our
simulations, we set the MRU protection parameter cache safe
to be the 20th percentile for the cache limit being evaluated.
We can see in Fig. 4 that this strategy provides the best
performance as the most optimal value of cache safe lies
somewhere between 20% and 60% of the capacity.

Fig. 4: Distribution and quartiles for protection fractions

With the unprotected sector of the cache, we tested different
heuristics to prioritize the removal of containers, using: the
metric score as a sole basis for decision, the smallest total
size based on a minimum Knapsack algorithm, and a linear
combination of both score and size. We found the linear
combination outperformed the other methods.

VIII. SUMMARY

We explored container sharing and caching strategies to
improve the performance of multi-user computing services. We
collected features such as installed package size, installation
time, popularity metrics, and version history to create metrics
that could be combined with an LRU cache. Our strategies,
CacheRank and MRU protection, use these metrics to improve
cache performance under space constraints.

REFERENCES

[1] Binder, https://mybinder.org, 2021
[2] T. Shaffer, K. Chard, D. Thain, ”An Empirical Study of Package Depen-

dencies and Lifetimes in Binder Python Containers”. eScience, 2021.
[3] T. Shaffer et al., “Solving the Container Explosion Problem for Dis-

tributed High Throughput Computing,” IPDPS, 2020.

